Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1985 Jun;75(6):1770–1780. doi: 10.1172/JCI111889

Release of arachidonate from membrane phospholipids in cultured neonatal rat myocardial cells during adenosine triphosphate depletion. Correlation with the progression of cell injury.

K R Chien, A Sen, R Reynolds, A Chang, Y Kim, M D Gunn, L M Buja, J T Willerson
PMCID: PMC425531  PMID: 3924955

Abstract

The present study utilized a cultured myocardial cell model to evaluate the relationship between the release of arachidonate from membrane phospholipids, and the progression of cell injury during ATP depletion. High-energy phosphate depletion was induced by incubating cultured neonatal rat myocardial cells with various combinations of metabolic inhibitors (deoxyglucose, oligomycin, cyanide, and iodoacetate). Phospholipid degradation was assessed by the release of radiolabeled arachidonate from membrane phospholipids. In this model, the current study demonstrates that (a) cultured myocardial cells display a time-dependent progression of cell injury during ATP depletion; (b) the morphologic patterns of mild and severe cell injury in the cultured cells are similar to those found in intact ischemic canine myocardial models; (c) cultured myocardial cells release arachidonate from membrane phospholipids during ATP depletion; and (d) using two separate combinations of metabolic inhibitors, there is a correlation between the release of arachidonate, the development of severe cellular and sarcolemmal damage, the release of creatine kinase into the extracellular medium, and the loss of the ability of the myocardial cells to regenerate ATP when the metabolic inhibitors are removed. Thus, the present results suggest that during ATP depletion, in cultured neonatal rat myocardial cells, the release of arachidonate from myocardial membrane phospholipids is linked to the development of membrane defects and the associated loss of cell viability.

Full text

PDF
1770

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson F. S., Murphy R. C. Isocratic separation of some purine nucleotide, nucleoside, and base metabolites from biological extracts by high-performance liquid chromatography. J Chromatogr. 1976 Jun 23;121(2):251–262. doi: 10.1016/s0021-9673(00)85021-9. [DOI] [PubMed] [Google Scholar]
  2. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  3. Burton K. P., Hagler H. K., Templeton G. H., Willerson J. T., Buja L. M. Lanthanum probe studies of cellular pathophysiology induced by hypoxia in isolated cardiac muscle. J Clin Invest. 1977 Dec;60(6):1289–1302. doi: 10.1172/JCI108888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burton K. P., Hagler H. K., Willerson J. T., Buja L. M. Abnormal lanthanum accumulation due to ischemia in isolated myocardium: effect of chlorpromazine. Am J Physiol. 1981 Nov;241(5):H714–H723. doi: 10.1152/ajpheart.1981.241.5.H714. [DOI] [PubMed] [Google Scholar]
  5. Chien K. R., Abrams J., Pfau R. G., Farber J. L. Prevention by chlorpromazine of ischemic liver cell death. Am J Pathol. 1977 Sep;88(3):539–557. [PMC free article] [PubMed] [Google Scholar]
  6. Chien K. R., Abrams J., Serroni A., Martin J. T., Farber J. L. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell injury. J Biol Chem. 1978 Jul 10;253(13):4809–4817. [PubMed] [Google Scholar]
  7. Chien K. R., Crie J. S., Decker R. S., Wildenthal K. Influence of chlorpromazine on lysosomal alterations during myocardial ischaemia. Cardiovasc Res. 1983 Jul;17(7):407–414. doi: 10.1093/cvr/17.7.407. [DOI] [PubMed] [Google Scholar]
  8. Chien K. R., Han A., Sen A., Buja L. M., Willerson J. T. Accumulation of unesterified arachidonic acid in ischemic canine myocardium. Relationship to a phosphatidylcholine deacylation-reacylation cycle and the depletion of membrane phospholipids. Circ Res. 1984 Mar;54(3):313–322. doi: 10.1161/01.res.54.3.313. [DOI] [PubMed] [Google Scholar]
  9. Chien K. R., Peau R. G., Farber J. L. Ischemic myocardial cell injury. Prevention by chlorpromazine of an accelerated phospholipid degradation and associated membrane dysfunction. Am J Pathol. 1979 Dec;97(3):505–529. [PMC free article] [PubMed] [Google Scholar]
  10. Chien K. R., Reeves J. P., Buja L. M., Bonte F., Parkey R. W., Willerson J. T. Phospholipid alterations in canine ischemic myocardium. Temporal and topographical correlations with Tc-99m-PPi accumulation and an in vitro sarcolemmal Ca2+ permeability defect. Circ Res. 1981 May;48(5):711–719. doi: 10.1161/01.res.48.5.711. [DOI] [PubMed] [Google Scholar]
  11. Doorey A. J., Barry W. H. The effects of inhibition of oxidative phosphorylation and glycolysis on contractility and high-energy phosphate content in cultured chick heart cells. Circ Res. 1983 Aug;53(2):192–201. doi: 10.1161/01.res.53.2.192. [DOI] [PubMed] [Google Scholar]
  12. HARARY I., FARLEY B. In vitro studies on single beating rat heart cells. I. Growth and organization. Exp Cell Res. 1963 Feb;29:451–465. doi: 10.1016/s0014-4827(63)80008-7. [DOI] [PubMed] [Google Scholar]
  13. Hagler H. K., Sherwin L., Buja L. M. Effect of different methods of tissue preparation on mitochondrial inclusions of ischemic and infarcted canine myocardium: transmission and analytic electron microscopic study. Lab Invest. 1979 May;40(5):529–544. [PubMed] [Google Scholar]
  14. Haworth R. A., Hunter D. R., Berkoff H. A. The isolation of Ca2+-resistant myocytes from the adult rat. J Mol Cell Cardiol. 1980 Jul;12(7):715–723. doi: 10.1016/0022-2828(80)90101-7. [DOI] [PubMed] [Google Scholar]
  15. Higgins T. J., Allsopp D., Bailey P. J., D'Souza E. D. The relationship between glycolysis, fatty acid metabolism and membrane integrity in neonatal myocytes. J Mol Cell Cardiol. 1981 Jun;13(6):599–615. doi: 10.1016/0022-2828(81)90330-8. [DOI] [PubMed] [Google Scholar]
  16. Higgins T. J., Allsopp D., Bailey P. J. The effect of extracellular calcium concentration and Ca-antagonist drugs on enzyme release and lactate production by anoxic heart cell cultures. J Mol Cell Cardiol. 1980 Sep;12(9):909–927. doi: 10.1016/0022-2828(80)90059-0. [DOI] [PubMed] [Google Scholar]
  17. Hsueh W., Isakson P. C., Needleman P. Hormone selective lipase activation in the isolated rabbit heart. Prostaglandins. 1977 Jun;13(6):1073–1091. doi: 10.1016/0090-6980(77)90135-6. [DOI] [PubMed] [Google Scholar]
  18. Ingwall J. S., DeLuca M., Sybers H. D., Wildenthal K. Fetal mouse hearts: a model for studying ischemia. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2809–2813. doi: 10.1073/pnas.72.7.2809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jarmakani J. M., Nagatomo T., Nakazawa M., Langer G. A. Effect of hypoxia on myocardial high-energy phosphates in the neonatal mammalian heart. Am J Physiol. 1978 Nov;235(5):H475–H481. doi: 10.1152/ajpheart.1978.235.5.H475. [DOI] [PubMed] [Google Scholar]
  20. Katz A. M., Messineo F. C. Lipid-membrane interactions and the pathogenesis of ischemic damage in the myocardium. Circ Res. 1981 Jan;48(1):1–16. doi: 10.1161/01.res.48.1.1. [DOI] [PubMed] [Google Scholar]
  21. Kloner R. A., Ganote C. E., Whalen D. A., Jr, Jennings R. B. Effect of a transient period of ischemia on myocardial cells. II. Fine structure during the first few minutes of reflow. Am J Pathol. 1974 Mar;74(3):399–422. [PMC free article] [PubMed] [Google Scholar]
  22. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  23. Langer G. A., Frank J. S., Philipson K. D. Correlation of alterations in cation exchange and sarcolemmal ultrastructure produced by neuraminidase and phospholipases in cardiac cell tissue culture. Circ Res. 1981 Dec;49(6):1289–1299. doi: 10.1161/01.res.49.6.1289. [DOI] [PubMed] [Google Scholar]
  24. Muntz K. H., Hagler H. K., Boulas H. J., Willerson J. T., Buja L. M. Redistribution of catecholamines in the ischemic zone of the dog heart. Am J Pathol. 1984 Jan;114(1):64–78. [PMC free article] [PubMed] [Google Scholar]
  25. Nunnally R. L., Bottomley P. A. Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 NMR with surface coils. Science. 1981 Jan 9;211(4478):177–180. doi: 10.1126/science.7444460. [DOI] [PubMed] [Google Scholar]
  26. Pei P. T., Kossa W. C., Ramachandran S., Henly R. S. High pressure reverse phase liquid chromatography of fatty acid p-bromophenacyl esters. Lipids. 1976 Nov;11(11):814–816. doi: 10.1007/BF02533409. [DOI] [PubMed] [Google Scholar]
  27. Rau E. E., Shine K. I., Langer G. A. Potassium exchange and mechanical performance in anoxic mammalian myocardium. Am J Physiol. 1977 Jan;232(1):H85–H94. doi: 10.1152/ajpheart.1977.232.1.H85. [DOI] [PubMed] [Google Scholar]
  28. Rude R. E., Rubin H. S., Stone M. J., Lewis S., Parkey R. W., Bonte F. J., Buja L. M., Willerson J. T. Radioimmunoassay of serum creatine kinase B isoenzyme in the diagnosis of acute myocardial infarction. Correlation with technetium-99m stannous pyrophosphate myocardial scintigraphy. Am J Med. 1980 Mar;68(3):405–413. doi: 10.1016/0002-9343(80)90112-6. [DOI] [PubMed] [Google Scholar]
  29. Willerson J. T., Scales F., Mukherjee A., Platt M., Templeton G. H., Fink G. S., Buja L. M. Abnormal myocardial fluid retention as an early manifestation of ischemic injury. Am J Pathol. 1977 Apr;87(1):159–188. [PMC free article] [PubMed] [Google Scholar]
  30. van der Vusse G. J., Roemen T. H., Prinzen F. W., Coumans W. A., Reneman R. S. Uptake and tissue content of fatty acids in dog myocardium under normoxic and ischemic conditions. Circ Res. 1982 Apr;50(4):538–546. doi: 10.1161/01.res.50.4.538. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES