Abstract
To define the basis of the heterogeneity of angiotensinogen, we have characterized the immunoreactivity of high molecular weight (HMW) and low molecular weight (LMW) plasma angiotensinogen, the angiotensinogen precursor synthesized by cell-free translation, and angiotensinogen secreted by human hepatoma (Hep G2) cells. Angiotensinogen precursor synthesized by rabbit reticulocyte lysate primed with RNA prepared from liver or Hep G2 cells was compared with angiotensinogen secreted by Hep G2 cells by using immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). So as to assess the contribution of N-glycosylation of angiotensinogen, Hep G2 cells were incubated in the presence of tunicamycin. Glycosylation of secreted angiotensinogen was further characterized by using chromatography on concanavalin A-Sepharose, digestion with neuraminidase, and treatment with trifluoromethane sulfonic acid. In Sephadex G-200 column chromatography, HMW plasma angiotensinogen eluted just after the column void volume and was clearly separated from LMW angiotensinogen which eluted just before bovine serum albumin. Both HMW and LMW plasma angiotensinogen were shown to bind to monoclonal and polyclonal antibodies raised against pure LMW angiotensinogen. Only one angiotensinogen precursor (mol wt 50,000) was identified by cell-free translation which, after cleavage by renin, was reduced to mol wt 45,600. Angiotensinogen secreted by Hep G2 cells showed electrophoretic heterogeneity (mol wt 53,100-65,400). Tunicamycin-treated Hep G2 cells secreted five discrete forms of angiotensinogen, a predominant form of mol wt 46,200, with other forms (mol wt 46,800, 48,100, 49,200, and 49,600) representing 10% of secreted angiotensinogen. All five forms showed a similar reduction in molecular weight after cleavage by renin. The predominant 46,200-mol wt protein represented nonglycosylated angiotensinogen in that, after cleavage by renin, it had an electrophoretic mobility (mol wt 45,600) identical to the desangiotensin I-angiotensinogen resulting from renin cleavage of the angiotensinogen precursor. The other higher molecular weight forms of angiotensinogen secreted by tunicamycin-treated Hep G2 cells were shown to represent O-glycosylated angiotensinogen in that they were reduced to 46,200 mol wt by treatment with trifluoromethane sulfonic acid. Dexamethasone (10(-7) and 10(-6)M) stimulated angiotensinogen secretion by Hep G2 cells two- to fourfold, both in the absence and presence of tunicamycin. However, a small stimulatory effect of mestranol (10(-7) M) was evident only in the presence of tunicamycin. Neither dexamethasone nor mestranol influenced the electrophoretic pattern (SDS-PAGE) of angiotensinogen secreted by Hep G2 cells. However, when incubation media were chromatographed on Sephadex G-200 with subsequent immunoprecipitation of the column fractions, both dexamethasone and mestranol were shown to stimulate the secretion of HMW angiotensinogen (eluting just after the column void volume) which, on SDS-PAGE, migrated in a position identical to LMW angiotensinogen. From these studies, we conclude that all forms of human angiotensinogen are derived from a single precursor. The heterogeneity of secreted angiotensinogen represents differences in posttranslational processing of angiotensinogen. This processing includes both N- and O-glycosylation, and also the formation of HMW complexes (HMW angiotensinogen) through association either with other angiotensinogen molecules or with some other protein(s) whose secretion by hepatocytes is stimulated by glucocorticoids and estrogens.
Full text
PDF













Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Aden D. P., Fogel A., Plotkin S., Damjanov I., Knowles B. B. Controlled synthesis of HBsAg in a differentiated human liver carcinoma-derived cell line. Nature. 1979 Dec 6;282(5739):615–616. doi: 10.1038/282615a0. [DOI] [PubMed] [Google Scholar]
- Baenziger J. U., Fiete D. Structural determinants of concanavalin A specificity for oligosaccharides. J Biol Chem. 1979 Apr 10;254(7):2400–2407. [PubMed] [Google Scholar]
- Bouhnik J., Clauser E., Strosberg D., Frenoy J. P., Menard J., Corvol P. Rat angiotensinogen and des(angiotensin I)angiotensinogen: purification, characterization, and partial sequencing. Biochemistry. 1981 Nov 24;20(24):7010–7015. doi: 10.1021/bi00527a036. [DOI] [PubMed] [Google Scholar]
- Campbell D. J., Bouhnik J., Coezy E., Pinet F., Clauser E., Menard J., Corvol P. Characterization of precursor and secreted forms of rat angiotensinogen. Endocrinology. 1984 Mar;114(3):776–785. doi: 10.1210/endo-114-3-776. [DOI] [PubMed] [Google Scholar]
- Campbell D. J., Bouhnik J., Ménard J., Corvol P. Identity of angiotensinogen precursors of rat brain and liver. Nature. 1984 Mar 8;308(5955):206–208. doi: 10.1038/308206a0. [DOI] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Coezy E., Bouhnik J., Clauser E., Pinet F., Philippe M., Menard J., Corvol P. Effects of glucocorticoids and antiglucocorticoid on angiotensinogen production by hepatoma cells in culture. In Vitro. 1984 Jul;20(7):528–534. doi: 10.1007/BF02639768. [DOI] [PubMed] [Google Scholar]
- Dorer F. E., Lentz K. E., Kahn J. R., Levine M., Skeggs L. T. Purification of human renin substrate. Anal Biochem. 1978 Jun 15;87(1):11–18. doi: 10.1016/0003-2697(78)90563-8. [DOI] [PubMed] [Google Scholar]
- Eggena P., Barrett J. D., Hidaka H., Chu C. L., Thananopavarn C., Golub M. S., Sambhi M. P. A direct radioimmunoassay for human renin substrate and identification of multiple substrate types in plasma. Circ Res. 1977 Oct;41(4 Suppl 2):34–37. doi: 10.1161/01.res.41.4.34. [DOI] [PubMed] [Google Scholar]
- Eggena P., Hidaka H., Barrett J. D., Sambhi M. P. Multiple forms of human plasma renin substrate. J Clin Invest. 1978 Aug;62(2):367–372. doi: 10.1172/JCI109137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Faiers A. A., Loh A. Y., Osmond D. H. Microheterogeneity and sialic acid in human plasma angiotensinogens in various physiological states. Can J Biochem. 1978 Sep;56(9):892–899. doi: 10.1139/o78-138. [DOI] [PubMed] [Google Scholar]
- Galen F. X., Devaux C., Guyenne T., Menard J., Corvol P. Multiple forms of human renin. Purification and characterization. J Biol Chem. 1979 Jun 10;254(11):4848–4855. [PubMed] [Google Scholar]
- Genain C., Bouhnik J., Tewksbury D., Corvol P., Menard J. Characterization of plasma and cerebrospinal fluid human angiotensinogen and des-angiotensin I-angiotensinogen by direct radioimmunoassay. J Clin Endocrinol Metab. 1984 Sep;59(3):478–484. doi: 10.1210/jcem-59-3-478. [DOI] [PubMed] [Google Scholar]
- Gordon D. B., Sachin I. N. Chromatographic separation of multiple renin substrates in women: effect of pregnancy and oral contraceptives. Proc Soc Exp Biol Med. 1977 Dec;156(3):461–464. doi: 10.3181/00379727-156-39957. [DOI] [PubMed] [Google Scholar]
- Gordon D. B., Sachin I. N., Dodd V. N. Heterogeneity of renin substrate in human plasma: effect of pregnancy and oral contraceptives. Proc Soc Exp Biol Med. 1976 Nov;153(2):314–318. doi: 10.3181/00379727-153-39536. [DOI] [PubMed] [Google Scholar]
- Hakimi J., Atkinson P. H. Growth-dependent alterations in oligomannosyl glycopeptides expressed in Sindbis virus glycoproteins. Biochemistry. 1980 Nov 25;19(24):5619–5624. doi: 10.1021/bi00565a025. [DOI] [PubMed] [Google Scholar]
- Hilgenfeldt U., Hackenthal E. Purification and characterization of rat angiotensinogen. Biochim Biophys Acta. 1979 Aug 28;579(2):375–385. doi: 10.1016/0005-2795(79)90065-5. [DOI] [PubMed] [Google Scholar]
- Hilgenfeldt U., Hackenthal E. Separation and characterization of two different species of rat angiotensinogen. Biochim Biophys Acta. 1982 Nov 19;708(3):335–342. doi: 10.1016/0167-4838(82)90446-0. [DOI] [PubMed] [Google Scholar]
- Kageyama R., Ohkubo H., Nakanishi S. Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence. Biochemistry. 1984 Jul 31;23(16):3603–3609. doi: 10.1021/bi00311a006. [DOI] [PubMed] [Google Scholar]
- Kalyan N. K., Bahl O. P. Effect of deglycosylation on the subunit interactions and receptor binding activity of human chorionic gonadotropin. Biochem Biophys Res Commun. 1981 Oct 30;102(4):1246–1253. doi: 10.1016/s0006-291x(81)80145-3. [DOI] [PubMed] [Google Scholar]
- Kalyan N. K., Bahl O. P. Role of carbohydrate in human chorionic gonadotropin. Effect of deglycosylation on the subunit interaction and on its in vitro and in vivo biological properties. J Biol Chem. 1983 Jan 10;258(1):67–74. [PubMed] [Google Scholar]
- Kessler M. J., Mise T., Ghai R. D., Bahl O. P. Structure and location of the O-glycosidic carbohydrate units of human chorionic gonadotropin. J Biol Chem. 1979 Aug 25;254(16):7909–7914. [PubMed] [Google Scholar]
- Knowles B. B., Howe C. C., Aden D. P. Human hepatocellular carcinoma cell lines secrete the major plasma proteins and hepatitis B surface antigen. Science. 1980 Jul 25;209(4455):497–499. doi: 10.1126/science.6248960. [DOI] [PubMed] [Google Scholar]
- Kokubu T., Hiwada K., Sogo Y. Isolation and characterization of human renin substrate. Jpn Circ J. 1980 Apr;44(4):274–282. doi: 10.1253/jcj.44.274. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Ferris C. Interaction of immunoglobulin glycopeptides with concanavalin A. J Biol Chem. 1975 Apr 10;250(7):2614–2619. [PubMed] [Google Scholar]
- Krakoff L. R., Eisenfeld A. J. Hormonal control of plasma renin substrate; (angiotensinogen). Circ Res. 1977 Oct;41(4 Suppl 2):43–46. doi: 10.1161/01.res.41.4.43. [DOI] [PubMed] [Google Scholar]
- LENTZ K. E., SKEGGS L. T., Jr, WOODS K. R., KAHN J. R., SHUMWAY N. P. The amino acid composition of hypertensin II and its biochemical relationship to hypertensin I. J Exp Med. 1956 Aug 1;104(2):183–191. doi: 10.1084/jem.104.2.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lentz K. E., Dorer F. E., Kahn J. R., Levine M., Skeggs L. T. Multiple forms of renin substrate in human plasma. Clin Chim Acta. 1978 Feb 15;83(3):249–257. doi: 10.1016/0009-8981(78)90113-4. [DOI] [PubMed] [Google Scholar]
- Miller J. S., Paterson B. M., Ricciardi R. P., Cohen L., Roberts B. E. Methods utilizing cell-free protein-synthesizing systems for the identification of recombinant DNA molecules. Methods Enzymol. 1983;101:650–674. doi: 10.1016/0076-6879(83)01046-0. [DOI] [PubMed] [Google Scholar]
- Muramatsu T., Koide N., Ceccarini C., Atkinson P. H. Characterization of mannose-labeled glycopeptides from human diploid cells and their growth-dependent alterations. J Biol Chem. 1976 Aug 10;251(15):4673–4679. [PubMed] [Google Scholar]
- Printz M. P., Printz J. M., Dworschack R. T. Human angiotensinogen. Purification partial characterization, and a comparison with animal prohormones. J Biol Chem. 1977 Mar 10;252(5):1654–1662. [PubMed] [Google Scholar]
- Printz M. P., Printz J. M., Lewicki J. A., Gregory T. Resolution of multiple forms of human angiotensinogen. Isoelectric focusing heterogeneity profile analysis. Circ Res. 1977 Oct;41(4 Suppl 2):37–43. doi: 10.1161/01.res.41.4.37. [DOI] [PubMed] [Google Scholar]
- SKEGGS L. T., Jr, KAHN J. R., LENTZ K., SHUMWAY N. P. The preparation, purification, and amino acid sequence of a polypeptide renin substrate. J Exp Med. 1957 Sep 1;106(3):439–453. doi: 10.1084/jem.106.3.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKEGGS L. T., Jr, LENTZ K. E., HOCHSTRASSER H., KAHN J. R. The purification and partial characterization of several forms of hog renin substrate. J Exp Med. 1963 Jul;118:73–98. doi: 10.1084/jem.118.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SKEGGS L. T., Jr, LENTZ K. E., KAHN J. R., SHUMWAY N. P. The synthesis of a tetradecapeptide renin substrate. J Exp Med. 1958 Sep 1;108(3):283–297. doi: 10.1084/jem.108.3.283. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiro R. G., Bhoyroo V. D. Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem. 1974 Sep 25;249(18):5704–5717. [PubMed] [Google Scholar]
- Tewksbury D. A. Angiotensinogen. Fed Proc. 1983 Jul;42(10):2724–2728. [PubMed] [Google Scholar]
- Tewksbury D. A., Dart R. A. High molecular weight angiotensinogen levels in hypertensive pregnant women. Hypertension. 1982 Sep-Oct;4(5):729–734. doi: 10.1161/01.hyp.4.5.729. [DOI] [PubMed] [Google Scholar]
- Tewksbury D. A., Dart R. A., Travis J. The amino terminal amino acid sequence of human angiotensinogen. Biochem Biophys Res Commun. 1981 Apr 30;99(4):1311–1315. doi: 10.1016/0006-291x(81)90762-2. [DOI] [PubMed] [Google Scholar]
- Thomas D. B., Winzler R. J. Structural studies on human erythrocyte glycoproteins. Alkali-labile oligosaccharides. J Biol Chem. 1969 Nov 10;244(21):5943–5946. [PubMed] [Google Scholar]
- Voigt J., Wittmann-Liebold B., Köster H. Purification and characterization of two forms of rat plasma proangiotensin. Eur J Biochem. 1982 Feb;122(1):183–191. doi: 10.1111/j.1432-1033.1982.tb05865.x. [DOI] [PubMed] [Google Scholar]
- Workman R. J., McKown M. M., Gregerman R. I. Renin: inhibition by proteins and peptides. Biochemistry. 1974 Jul 16;13(15):3029–3035. doi: 10.1021/bi00712a005. [DOI] [PubMed] [Google Scholar]










