Skip to main content
Studies in Mycology logoLink to Studies in Mycology
. 2014 Oct 16;79:1–47. doi: 10.1016/j.simyco.2014.07.003

Large-spored Alternaria pathogens in section Porri disentangled

JHC Woudenberg 1,2,, M Truter 3, JZ Groenewald 1, PW Crous 1,2,4
PMCID: PMC4255562  PMID: 25492985

Abstract

The omnipresent fungal genus Alternaria was recently divided into 24 sections based on molecular and morphological data. Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks, some of which are important plant pathogens (e.g. Alternaria porri, A. solani and A. tomatophila). We constructed a multi-gene phylogeny on parts of the ITS, GAPDH, RPB2, TEF1 and Alt a 1 gene regions, which, supplemented with morphological and cultural studies, forms the basis for species recognition in sect. Porri. Our data reveal 63 species, of which 10 are newly described in sect. Porri, and 27 species names are synonymised. The three known Alternaria pathogens causing early blight on tomato all cluster in one clade, and are synonymised under the older name, A. linariae. Alternaria protenta, a species formerly only known as pathogen on Helianthus annuus, is also reported to cause early blight of potato, together with A. solani and A. grandis. Two clades with isolates causing purple blotch of onion are confirmed as A. allii and A. porri, but the two species cannot adequately be distinguished based on the number of beaks and branches as suggested previously. This is also found among the pathogens of Passifloraceae, which are reduced from four to three species. In addition to the known pathogen of sweet potato, A. bataticola, three more species are delineated of which two are newly described. A new Alternaria section is also described, comprising two large-spored Alternaria species with concatenate conidia.

Key words: Alternaria, Early blight of potato, Early blight of tomato, Leaf and stem blight of sweet potato, Multi-gene phylogeny, Purple blotch of onion

Introduction

Alternaria is an important fungal genus with a worldwide distribution. This hyphomycetous ascomycete with phaeodictyospores includes saprophytic, endophytic and pathogenic species, which can be plant pathogens, post-harvest pathogens or human pathogens (Thomma 2003). The genus Alternaria was recently divided into 24 sections (Woudenberg et al. 2013) based on molecular and morphological data, which followed the recent initiative to divide Alternaria into sections (Lawrence et al. 2013). Alternaria sect. Porri is the largest section, containing almost all Alternaria species with medium to large conidia and long beaks. Among them are some important plant pathogens, such as Alternaria bataticola, A. porri, A. solani and A. tomatophila. Alternaria bataticola causes leaf petiole and stem blight of sweet potato in tropical and sub-tropical regions. The disease is most severe in East and Central Africa, with yield losses of over 70 % reported (Osiru et al. 2007). Alternaria porri causes purple blotch of onion, a very destructive disease of onions worldwide. The disease causes a significant reduction in seed and bulb yield, with seed losses of up to 100 % (Abo-Elyousr et al. 2014). Alternaria solani is the causative agent of early blight of potato. This very common disease, which can be found in most potato-growing countries, can cause considerable defoliation. The disease typically reduces yields by ∼20 %, but yield reductions of up to 80 % have been reported (Horsfield et al. 2010). Alternaria tomatophila is known for causing early blight of tomato, attacking the leaves, stems and fruit. This airborne pathogen has spread worldwide, mainly affecting field crops. When left untreated the damage can result in plant defoliation in excess of 60 % (Zitter & Drennan 2005).

The identification of these species has been problematic for many years, with every large-spored Alternaria found on Solanaceae commonly being identified as A. solani. This assumption changed with the treatment of Alternaria species on Solanaceae, in which Simmons (2000) distinguished 22 Alternaria and Nimbya species on solanaceous hosts on the basis of morphology. On potato, Simmons described the large-spored, long-beaked species A. grandis and A. solani, while on tomato he described A. tomatophila, A. cretica and A. subcylindrica. The distinction between potato and tomato pathogens was supported by subsequent molecular studies and chemotaxonomy (Andersen et al. 2008, Rodrigues et al. 2010, Brun et al. 2013, Gannibal et al. 2014).

The taxonomy of Alternaria species on Allium is also confused. Macrosporium porri was first described as pathogen of Allium (Cooke & Ellis 1879), followed by Alternaria allii (Nolla 1927). Both species were later synonymised (Angell 1929) and the name changed to Alternaria porri (Cifferi 1930). The name A. allii was resurrected by Simmons in his identification manual (2007) where he described five large-spored, long-beaked species from Allium, which he could distinguish based on morphology. Large-spored Alternaria from sweet potato were mostly identified as A. bataticola, even if the isolates from some studies (Osiru et al. 2008, Narayanin et al. 2010) showed morphological differences compared with the description of Simmons (2007).

In the present study we aim to use a molecular approach to delineate the medium- to large-spored Alternaria species with long beaks in sect. Porri. A multi-locus analysis based on five partial gene regions, the internal transcribed spacer regions 1 and 2 and intervening 5.8S nrDNA (ITS), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), RNA polymerase second largest subunit (RPB2), translation elongation factor 1-alpha (TEF1) and the Alternaria major allergen gene (Alt a 1), was performed. All available ex-type and representative isolates of medium to large-spored, long-beaked species described in Simmons (2007) were included in this study. The present multi-locus analysis supplemented with morphological and cultural data forms the basis for species recognition in sect. Porri.

Materials and methods

Isolates

One hundred eighty-three Alternaria strains including 116 ex-type or representative strains present at the Centraalbureau voor Schimmelcultures (CBS), Utrecht, the Netherlands were included in this study (Table 1). With “representative isolate” we refer to the strains used to describe the species based on morphology in Simmons (2007). Freeze-dried strains were revived in 2 mL malt/peptone (50 % / 50 %) and subsequently transferred to oatmeal agar (OA, Crous et al. 2009). Strains stored in the liquid nitrogen collection of the CBS were transferred to OA directly from the −80 °C storage.

Table 1.

Isolates used in this study and their GenBank accession numbers. Bold accession numbers were generated in other studies.

Name Old name Strain number1 Status2 Host / Substrate Locality GenBank accesion numbers
ITS GAPDH Alt a 1 TEF1 RPB2
Alternaria acalyphicola CBS 541.94; E.G.S. 38.100; IMI 266969 T Acalypha indica Seychelles KJ718097 KJ717952 KJ718617 KJ718446 KJ718271
Alternaria agerati CBS 117221; E.G.S. 30.001; QM 9369 R Ageratum houstonianum USA, Illinois KJ718098 KJ717953 KJ718618 KJ718447 KJ718272
Alternaria agripestis CBS 577.94; E.G.S. 41.034 T Euphorbia esula, stem lesion Canada, Saskatchewan KJ718099 JQ646356 KJ718619 KJ718448 KJ718273
Alternaria allii Alternaria porri CBS 107.28; E.G.S. 48.084 T Allium cepa, leaf spot Puerto Rico KJ718100 KJ717954 KJ718620 KJ718449 KJ718274
Alternaria porri CBS 109.41; CBS 114.38 Allium cepa, seed Denmark KJ718101 KJ717955 KJ718621 KJ718450 KJ718275
Alternaria porri CBS 225.76 Allium porrum, leaf Italy KJ718102 KJ717956 KJ718622 KJ718451 KJ718276
CBS 116701; E.G.S. 33.134 R Allium cepa var. viviparum, floral bract USA, Massachusetts KJ718103 KJ717957 KJ718623 KJ718452 KJ718277
Alternaria vanuatuensis CBS 121345; E.G.S. 45.018 (T) Allium cepa, leaf Vanuatu KJ718104 KJ717958 KJ718624 KJ718453 KJ718278
Alternaria alternariacida sp. nov. Alternaria solani CBS 105.51; ATCC 11078; IMI 46816; CECT 2997 T Solanum lycopersicum, fruit UK, England KJ718105 KJ717959 KJ718625 KJ718454 KJ718279
Alternaria anagallidis CBS 107.44 Anagallis arvensis, leaf spot Denmark, Copenhagen KJ718106 JQ646338 KJ718626 EU130544 KJ718280
CBS 101004 Anagallis arvensis, leaf spot New Zealand, Auckland KJ718107 KJ717960 KJ718627 KJ718455 KJ718281
CBS 117128; E.G.S. 42.074 R Anagallis arvensis, leaf spot New Zealand, Auckland KJ718108 KJ717961 KJ718628 KJ718456 KJ718282
CBS 117129; E.G.S. 50.091 R Anagallis arvensis, leaf spot New Zealand, Auckland KJ718109 KJ717962 KJ718629 KJ718457 KJ718283
Alternaria anodae PPRI 12376 Anoda cristata, leaf South Africa, Gauteng KJ718110 KJ717963 KJ718630 KJ718458 KJ718284
Alternaria aragakii CBS 594.93; E.G.S. 29.016; QM 9046 T Passiflora edulis USA, Hawaii KJ718111 KJ717964 KJ718631 KJ718459 KJ718285
Alternaria argyroxiphii CBS 117222; E.G.S. 35.122 T Argyroxiphium sp. USA, Hawaii KJ718112 JQ646350 KJ718632 KJ718460 KJ718286
PPRI 11848 Ipomoea batatas, stem lesion South Africa, Gauteng KJ718113 KJ717965 KJ718633 KJ718461 KJ718287
PPRI 11971 Ipomoea batatas, leaf and stem lesion South Africa, Mpumalanga KJ718114 KJ717966 KJ718634 KJ718462 KJ718288
Alternaria azadirachtae CBS 116444; E.G.S. 46.195; BRIP 25386(ss1) T Azadirachta indica, leaf spot Australia, Queensland KJ718115 KJ717967 KJ718635 KJ718463 KJ718289
CBS 116445; E.G.S. 46.196; BRIP 25386(ss2) R Azadirachta indica, leaf spot Australia, Queensland KJ718116 KJ717968 KJ718636 KJ718464 KJ718290
Alternaria bataticola CBS 531.63; IFO 6187; MUCL 28916 T Ipomoea batatas Japan KJ718117 JQ646349 JQ646433 KJ718465 KJ718291
CBS 532.63 Ipomoea batatas Japan, Tokyo KJ718118 KJ717969 KJ718637 KJ718466 KJ718292
CBS 117095; E.G.S. 42.157; IMI 350492; BRIP 19470a R Ipomoea batatas, leaf spot Australia, Queensland KJ718119 KJ717970 KJ718638 KJ718467 KJ718293
CBS 117096; E.G.S. 42.158; BRIP 19470b R Ipomoea batatas, leaf spot Australia, Queensland KJ718120 KJ717971 KJ718639 KJ718468 KJ718294
PPRI 10502 Ipomoea batatas, leaf and stem lesion South Africa, Gauteng KJ718121 KJ717972 KJ718640 KJ718469 KJ718295
PPRI 11930 Ipomoea batatas, leaf lesion South Africa, Kwazulu-Natal KJ718122 KJ717973 KJ718641 KJ718470 KJ718296
PPRI 11931 Ipomoea batatas, leaf lesion South Africa, Kwazulu-Natal KJ718123 KJ717974 KJ718642 KJ718471 KJ718297
PPRI 11934 Ipomoea batatas, leaf lesion South Africa, Gauteng KJ718124 KJ717975 KJ718643 KJ718472 KJ718298
Alternaria blumeae Alternaria brasiliensis CBS 117215; E.G.S. 39.116 (R) Phaseolus vulgaris, leaf spot Brazil, Esperito Santo KJ718125 KJ717976 KJ718644 KJ718473 KJ718299
CBS 117364; E.G.S. 40.149; ATCC 201357 T Blumea aurita Thailand, Yala Province KJ718126 AY562405 AY563291 KJ718474 KJ718300
Alternaria calendulae CBS 224.76; ATCC 38903; DSM 63161; IMI 205077 T Calendula officinalis, leaf spot Germany KJ718127 KJ717977 KJ718648 KJ718475 KJ718301
CBS 101498 Calendula officinalis, leaf New Zealand, Auckland KJ718128 KJ717978 KJ718645 KJ718476 KJ718302
Alternaria rosifolii CBS 116439; E.G.S. 42.197 (T) Rosa sp., leaf spot New Zealand, Auckland KJ718129 KJ717979 KJ718646 KJ718477 KJ718303
CBS 116650; E.G.S. 30.142; QM 9561 R Calendula officinalis, leaf spot Japan, Tokyo KJ718130 KJ717980 KJ718647 KJ718478 KJ718304
Alternaria carthami CBS 635.80 Carthamus tinctorius, leaf Italy, Perugia KJ718131 KJ717981 KJ718649 KJ718479 KJ718305
Alternaria heliophytonis CBS 116440; E.G.S. 43.143; IMI 366164 (T) Helianthus annuus, leaf Canada, Saskatchewan KJ718132 KJ717982 KJ718650 KJ718480 KJ718306
CBS 117091; E.G.S. 31.037 R Carthamus tinctorius, leaf spot USA, Montana KJ718133 KJ717983 KJ718651 KJ718481 KJ718307
Alternaria carthamicola Alternaria carthami CBS 117092; E.G.S. 37.057; IMI 276943 (R)T Carthamus tinctorius Iraq KJ718134 KJ717984 KJ718652 KJ718482 KJ718308
Alternaria cassiae CBS 478.81; E.G.S. 33.147 R Senna obtusifolia, diseased seedling USA, Mississippi KJ718135 KJ717985 KJ718653 KJ718483 KJ718309
Alternaria sauropodis CBS 116119; E.G.S. 47.112; IMI 286317; IMI 392448 (T) Sauropus androgynus Malaysia, Sarawak KJ718136 KJ717986 KJ718654 KJ718484 KJ718310
CBS 117224; E.G.S. 40.121 R Senna obtusifolia, leaf spot Brazil, Federal District KJ718137 KJ717987 KJ718655 KJ718485 KJ718311
Alternaria hibiscinficiens CBS 117369; E.G.S. 50.166 (T) Hibiscus sabdariffa, leaf Fiji KJ718138 KJ717988 KJ718656 KJ718486 KJ718312
Alternaria catananches sp. nov. CBS 137456; PD 013/05703936 T Catananche caerulea Netherlands KJ718139 KJ717989 KJ718657 KJ718487 KJ718313
Alternaria centaureae CBS 116446; E.G.S. 47.119 T Centaurea solstitialis, leaf spot USA, California KJ718140 KJ717990 KJ718658 KJ718488 KJ718314
Alternaria cichorii CBS 102.33; E.G.S. 07.017; QM 1760 T Cichorium intybus, leaf spot Cyprus KJ718141 KJ717991 KJ718659 KJ718489 KJ718315
CBS 117218; E.G.S. 52.046; IMI 225641 R Cichorium endivia Greece KJ718142 KJ717992 KJ718660 KJ718490 KJ718316
Alternaria cirsinoxia CBS 113261; E.G.S. 41.136 T Cirsium arvense, stem lesion Canada, Saskatchewan KJ718143 KJ717993 KJ718661 KJ718491 KJ718317
Alternaria citrullicola sp. nov. Alternaria cucumerina CBS 103.32; VKM F-1881; Nattrass No. 190 T Citrullus vulgaris, fruit Cyprus KJ718144 KJ717994 KJ718662 KJ718492 KJ718318
Alternaria conidiophora sp. nov. CBS 137457 T Netherlands KJ718145 KJ717995 KJ718663 KJ718493
Alternaria crassa CBS 103.18 Datura sp., leaf spot USA, Wisconsin KJ718146 KJ717996 KJ718664 KJ718494 KJ718319
CBS 110.38 T Datura stramonium, leaf spot Cyprus KJ718147 KJ717997 KJ718665 KJ718495 KJ718320
Alternaria capsici CBS 109160; E.G.S. 45.075; IMI 262408; IMI 381021 (T) Capsicum annuum Australia KJ718148 AY562408 AY563298 KJ718496 KJ718321
CBS 109162; E.G.S. 46.014 Nicandra physalodes USA, Indiana KJ718149 GQ180073 GQ180089 KJ718497 KJ718322
CBS 116647; E.G.S. 46.013 R Datura stramonium, leaf spot USA, Indiana KJ718150 KJ717998 KJ718666 KJ718498 KJ718323
CBS 116648; E.G.S. 50.180 R Datura stramonium, leaf spot New Zealand, Auckland KJ718151 KJ717999 KJ718667 KJ718499 KJ718324
CBS 122590; E.G.S. 44.071 R Datura stramonium, leaf spot USA, Indiana KJ718152 GQ180072 GQ180088 KJ718500 KJ718325
Alternaria cucumerina Alternaria loofahae CBS 116114; E.G.S. 35.123 (T) Luffa acutangula USA, Hawaii KJ718153 KJ718000 KJ718668 KJ718501 KJ718326
CBS 117225; E.G.S. 41.127 R Cucumis melo, leaf spot USA, Indiana KJ718154 KJ718001 KJ718669 KJ718502 KJ718327
CBS 117226; E.G.S. 44.197; BRIP 23060 R Cucumis melo, leaf spot Australia, Queensland KJ718155 KJ718002 KJ718670 KJ718503 KJ718328
Alternaria cyamopsidis CBS 364.67; E.G.S. 17.065; QM 8575 R Cyamopsis tetragonoloba, leaf spot USA, Maryland KJ718156 KJ718003 KJ718671 KJ718504 KJ718329
CBS 117219; E.G.S. 13.120; QM 8000 R Cyamopsis tetragonoloba, leaf spot USA, Georgia KJ718157 KJ718004 KJ718672 KJ718505 KJ718330
Alternaria dauci CBS 111.38 T Daucus carota, seed Italy KJ718158 KJ718005 KJ718673 KJ718506 KJ718331
CBS 106.48 Daucus carota, seed KJ718159 KJ718006 KJ718674 KJ718507 KJ718332
CBS 345.79; LEV 14814 Daucus carota, leaf spot New Zealand, Ohakune KJ718160 KJ718007 KJ718675 KJ718508 KJ718333
Alternaria cichorii CBS 477.83; CBS 721.79; PD 79/954 Cichorium intybus var. foliosum, leaf spot Netherlands, Limburg KJ718161 KJ718008 KJ718676 KJ718509 KJ718334
CBS 101592 Daucus carota, seed Netherlands KJ718162 KJ718009 KJ718677 KJ718510 KJ718335
CBS 117097; E.G.S. 46.006 R Daucus carota, commercial seed USA, California KC584192 KC584111 KJ718678 KC584651 KC584392
CBS 117098; E.G.S. 46.152 R Daucus carota, leaf spot New Zealand KJ718163 KJ718010 HE796726 KJ718511 KJ718336
CBS 117099; E.G.S. 47.131 R Daucus carota, seed USA, California KJ718164 KJ718011 KJ718679 KJ718512 KJ718337
Alternaria poonensis CBS 117100; E.G.S. 47.138 (R) Coriandrum sativum, seedling Puerto Rico KJ718165 JQ646348 KJ718680 KJ718513 KJ718338
Alternaria deserticola sp. nov. Alternaria acalyphicola CBS 110799 T desert soil Namibia KJ718249 KJ718077 KJ718755 KJ718595 KJ718424
Alternaria dichondrae CBS 199.74; E.G.S. 38.007 T Dichondra repens, leaf spot Italy KJ718166 JQ646357 JQ646441 KJ718514 KJ718339
CBS 200.74; E.G.S. 38.008 T Dichondra repens, leaf spot Italy KJ718167 KJ718012 KJ718681 KJ718515 KJ718340
CBS 346.79 Dichondra repens, leaf spot New Zealand KJ718168 KJ718013 KJ718682 KJ718516 KJ718341
CBS 117127; E.G.S. 40.057 R Dichondra sp., leaf New Zealand, Auckland KJ718169 KJ718014 KJ718683 KJ718517 KJ718342
Alternaria echinaceae CBS 116117; E.G.S. 46.081 T Echinacea sp., leaf lesion New Zealand, Gisborne KJ718170 KJ718015 KJ718684 KJ718518 KJ718343
CBS 116118; E.G.S. 46.082 R Echinacea sp., leaf lesion New Zealand, Gisborne KJ718171 KJ718016 KJ718685 KJ718519 KJ718344
Alternaria grandis CBS 109158; E.G.S. 44.106 T Solanum tuberosum, leaf spot USA, Pennsylvania KJ718239 JQ646341 JQ646425 EU130547 KJ718414
CBS 116695; E.G.S. 44.108 R Solanum tuberosum, leaf spot USA, Pennsylvania KJ718241 KJ718070 KJ718748 KJ718587 KJ718416
Alternaria euphorbiicola CBS 198.86; E.G.S. 38.082 Euphorbia pulcherrima USA, Florida KJ718172 KJ718017 KJ718686 KJ718520 KJ718345
CBS 119410; E.G.S. 41.029 R Euphorbia pulcherrima USA, Hawaii KJ718173 KJ718018 KJ718521 KJ718346
CBS 133874; E.G.S. 38.191 Euphorbia hyssopifolia USA, Louisiana KJ718174 KJ718019 KJ718687 KJ718522 KJ718347
Alternaria gypsophilae CBS 107.41; E.G.S. 07.025; IMI 264349 T Gypsophila elegans, seed Netherlands KC584199 KC584118 KJ718688 KC584660 KC584401
Alternaria ipomoeae sp. nov. Alternaria cucumerina CBS 219.79 T Ipomoea batatas, stem and petiole Ethiopia KJ718175 KJ718020 KJ718689 KJ718523 KJ718348
PPRI 8988 Ipomoea batatas, stem South Africa, Gauteng KJ718176 KJ718021 KJ718690 KJ718524 KJ718349
Alternaria jesenskae CBS 133855; CCM 8361 T Fumana procumbens, seed Slovakia KJ718177 KJ718022 KJ718691 KJ718525 KJ718350
Alternaria limicola CBS 483.90; E.G.S. 39.070 T Citrus aurantiifolia, leaf spot Mexico, Colima KJ718178 JQ646329 JQ646413 KJ718526 KJ718351
CBS 117360; E.G.S. 43.009 R Citrus sp. Mexico, Jalisco KJ718179 KJ718023 KJ718527 KJ718352
Alternaria linariae CBS 105.41; E.G.S. 07.016 T Linaria maroccana, seedling Denmark KJ718180 KJ718024 KJ718692 KJ718528 KJ718353
Alternaria solani CBS 108.53 KJ718181 KJ718025 KJ718693 KJ718529 KJ718354
Alternaria solani CBS 107.61 Belgium KJ718182 KJ718026 KJ718694 KJ718530 KJ718355
Alternaria tomatophila CBS 109156; E.G.S. 42.156 (T) Solanum lycopersicum, leaf spot USA, Indiana KJ718183 JQ646347 GQ180101 KJ718531 KJ718356
Alternaria subcylindrica CBS 109161; E.G.S. 45.113 (T) Solanum lycopersicum var. cerasiforme, leaf spot USA, Louisiana KJ718184 JQ646345 JQ646429 KJ718532 KJ718357
Alternaria cretica CBS 109164; E.G.S. 46.188 (T) Solanum lycopersicum, leaf spot Greece, Crete KJ718185 JQ646342 JQ646426 EU130545 KJ718358
Alternaria cucumericola CBS 116438; E.G.S. 41.057 (T) Cucumis sativus, leaf spot New Zealand KJ718186 KJ718027 KJ718695 KJ718533 KJ718359
Alternaria tabasco CBS 116441; E.G.S. 45.108 (T) Capsicum frutescens, leaf spot USA, Louisiana KJ718187 KJ718028 KJ718696 KJ718534 KJ718360
Alternaria tomatophila CBS 116704; E.G.S. 44.074 (R) Solanum lycopersicum, leaf spot USA, Indiana KJ718188 KJ718029 KJ718697 KJ718535 KJ718361
CPC 21620 Solanum lycopersicum, leaf spot Thailand, Chiang Mai KJ718189 KJ718030 KJ718698 KJ718536 KJ718362
Alternaria macrospora Alternaria porri CBS 106.29 Gossypium sp. Nigeria KJ718193 KJ718032 KJ718701 KJ718540 KJ718366
CBS 117228; E.G.S. 50.190; ATCC 58172 T Gossypium barbadense USA, Arizona KC584204 KC584124 KJ718702 KC584668 KC584410
Alternaria montanica CBS 121343; E.G.S. 44.112; IMI 257563 T Cirsium arvense USA, Montana KJ718194 KJ718033 KJ718703 KJ718541 KJ718367
Alternaria multirostrata CBS 712.68; ATCC 18515; IMI 135454; MUCL 11722; QM 8820; VKM F-2997 T Richardia scabra, floral bract USA, Georgia KJ718195 JQ646362 KJ718704 EU130546 KJ718368
CBS 713.68; ATCC 18517; IMI 135455; MUCL 11715; QM 8821 R Richardia scabra, floral bract USA, Georgia KJ718196 KJ718034 KJ718705 KJ718542 KJ718369
Alternaria neoipomoeae sp. nov. PPRI 8990 Ipomoea batatas South Africa, North West KJ718197 KJ718035 KJ718706 KJ718543 KJ718370
PPRI 11845 T Ipomoea batatas, stem South Africa, Gauteng KJ718198 KJ718036 KJ718707 KJ718544 KJ718371
PPRI 11847 Ipomoea batatas South Africa, Mpumalanga KJ718199 KJ718037 KJ718708 KJ718545 KJ718372
PPRI 13903 Ipomoea batatas, leaf lesion South Africa, Gauteng KJ718200 KJ718038 KJ718709 KJ718546 KJ718373
Alternaria nitrimali CBS 109163; E.G.S. 46.151 T Solanum viarum, leaf spot Puerto Rico KJ718201 JQ646358 KJ718710 KJ718547 KJ718374
Alternaria novae-guineensis CBS 116120; E.G.S. 47.198 T Citrus sp., dry leaf Papua New Guinea KJ718202 KJ718039 KJ718711 KJ718548 KJ718375
PPRI 12171 Galinsoga parviflora, leaf South Africa, Gauteng KJ718203 KJ718040 KJ718712 KJ718549 KJ718376
Alternaria obtecta CBS 117367; E.G.S. 42.063 R Euphorbia pulcherrima, leaf USA, California KJ718204 KJ718041 KJ718713 KJ718550 KJ718377
CBS 134278; E.G.S. 42.064 Euphorbia pulcherrima USA, California KJ718205 KJ718042 KJ718714 KJ718551 KJ718378
Alternaria paralinicola sp. nov. Alternaria linicola CBS 116652; E.G.S. 47.157; DAOM 225747 (R)T Linum usitatissimum, seed Canada, Manitoba KJ718206 KJ718043 KJ718715 KJ718552 KJ718379
Alternaria passiflorae CBS 113.38 Passiflora edulis Australia, South Queensland KJ718207 JQ646353 JQ646437 KJ718553 KJ718380
Alternaria solani CBS 166.77 Capsicum frutescens, leaf New Zealand, Waitakere KJ718208 KJ718044 KJ718716 KJ718554 KJ718381
CBS 629.93; E.G.S. 16.150; QM 8458 R Passiflora edulis, fruit New Zealand KJ718209 KJ718045 KJ718717 KJ718555 KJ718382
Alternaria hawaiiensis CBS 630.93; E.G.S. 29.020; QM 9050 (T) Passiflora edulis USA, Hawaii KJ718210 JQ646352 KJ718718 KJ718556 KJ718383
Alternaria gaurae CBS 116333; E.G.S. 50.121 (T) Gaura lindheimeri, leaf New Zealand, Auckland KJ718211 KJ718046 KJ718719 KJ718557 KJ718384
CBS 117102; E.G.S. 51.165 R Passiflora ligularis, fruit spot New Zealand, Auckland KJ718212 KJ718047 KJ718720 KJ718558 KJ718385
CBS 117103; E.G.S. 52.032 R Passiflora caerulea, leaf spot New Zealand, Auckland KJ718213 KJ718048 KJ718721 KJ718559 KJ718386
Alternaria pipionipisi CBS 116115; E.G.S. 40.096; IMI 340950 T Cajanus cajan, seed India KJ718214 KJ718049 KJ718722 KJ718560 KJ718387
Alternaria obtecta CBS 117365; E.G.S. 42.048 (R) Euphorbia pulcherrima, leaf USA, California KJ718215 KJ718050 KJ718723 KJ718561 KJ718388
Alternaria obtecta CBS 134265; E.G.S. 42.047 Euphorbia pulcherrima USA, California KJ718216 KJ718051 KJ718724 KJ718562 KJ718389
Alternaria porri Alternaria allii CBS 116649; E.G.S. 17.082; QM 8613 (R) Allium cepa, leaf USA, Nebraska KJ718217 KJ718052 KJ718725 KJ718563 KJ718390
CBS 116698; E.G.S. 48.147 R Allium cepa, leaf spot USA, New York DQ323700 KC584132 KJ718726 KC584679 KC584421
CBS 116699; E.G.S. 48.152 R,T Allium cepa, leaf spot USA, New York KJ718218 KJ718053 KJ718727 KJ718564 KJ718391
Alternaria protenta Alternaria solani CBS 347.79; E.G.S. 44.091; LEV 14726; ATCC 38569 Solanum lycopersicum, fruit rot New Zealand, Levin KJ718219 KJ718054 KJ718728 KJ718565 KJ718392
Alternaria hordeiseminis CBS 116437; E.G.S. 32.076 (T) Hordeum vulgare, seed New Zealand KJ718220 KJ718055 KJ718729 KJ718566 KJ718393
Alternaria solani CBS 116651; E.G.S. 45.020 (R) Solanum tuberosum, tuber USA, California KC584217 KC584139 GQ180097 KC584688 KC584430
CBS 116696; E.G.S. 45.023; IMI 372955 R Helianthus annuus, leaf spot Israel KJ718221 JQ646335 JQ646419 KJ718567 KJ718394
CBS 116697; E.G.S. 45.024; IMI 372957 R Helianthus annuus, leaf spot Israel KJ718222 KJ718056 KJ718730 KJ718568 KJ718395
Alternaria pulcherrimae CBS 121342; E.G.S. 42.122; IMI 310506 (R) Euphorbia pulcherrima Australia, Queensland KJ718223 KJ718057 KJ718731 KJ718569 KJ718396
Alternaria solani CBS 135189; E.G.S. 45.053 (R) Solanum tuberosum New Zealand, Hastings KJ718224 GQ180082 GQ180098 KJ718570 KJ718397
Alternaria pseudorostrata CBS 119411; E.G.S. 42.060 T Euphorbia pulcherrima USA, California JN383483 AY562406 AY563295 KC584680 KC584422
Alternaria ranunculi CBS 116330; E.G.S. 38.039; IMI 285697 T Ranunculus asiaticus, seed Israel KJ718225 KJ718058 KJ718732 KJ718571 KJ718398
Alternaria ricini CBS 215.31 T Ricinus communis Japan KJ718226 KJ718059 KJ718733 KJ718572 KJ718399
CBS 353.86 Ricinus communis Italy, Sardinia KJ718227 JQ646331 KJ718734 KJ718573 KJ718400
CBS 117361; E.G.S. 06.181 R Ricinus communis USA, Virginia KJ718228 KJ718060 KJ718735 KJ718574 KJ718401
Alternaria rostellata CBS 117366; E.G.S. 42.061 T Euphorbia pulcherrima, leaf USA, California KJ718229 JQ646332 KJ718736 KJ718575 KJ718402
Alternaria scorzonerae Alternaria linicola CBS 103.46; Elliot No. 45-190C Linum usitatissimum UK, Scotland KJ718190 JQ646363 JQ646447 KJ718537 KJ718363
CBS 478.83; E.G.S. 38.011 R,T Scorzonera hispanica, leaf spot Netherlands, Reusel KJ718191 JQ646334 KJ718699 KJ718538 KJ718364
Alternaria linicola CBS 116703; E.G.S. 36.110; IMI 274549 (R) Linum usitatissimum, seed UK, Derbyshire KJ718192 KJ718031 KJ718700 KJ718539 KJ718365
Alternaria sennae sp. nov. Alternaria cassiae CBS 477.81; E.G.S. 34.030; IMI 257253 (R)T Senna corymbosa, leaf India, Uttar Pradesh KJ718230 JQ646344 JQ646428 EU130543 KJ718403
Alternaria sesami CBS 240.73 Sesamum indicum Egypt KJ718231 JQ646343 KJ718737 KJ718576 KJ718404
CBS 115264; CBS 117214; E.G.S. 13.027 R Sesamum indicum, seedling India JF780939 KJ718061 KJ718738 KJ718577 KJ718405
Alternaria sidae CBS 117730; E.G.S. 12.129 T Sida fallax, leaf spot Kiribati, Phoenix Islands KJ718232 KJ718062 KJ718739 KJ718578 KJ718406
Alternaria silybi CBS 134092; VKM F-4109 T Silybum marianum, leaf Russia, Vladivistok KJ718233 KJ718063 KJ718740 KJ718579 KJ718407
CBS 134093; VKM F-4117 Silybum marianum, leaf Russia, Vladivistok KJ718234 KJ718064 KJ718741 KJ718580 KJ718408
CBS 134094; VKM F-4118 Silybum marianum, leaf Russia, Vladivistok KJ718235 KJ718065 KJ718742 KJ718581 KJ718409
Alternaria solani CBS 106.21 KJ718236 KJ718066 KJ718743 KJ718582 KJ718410
CBS 111.41 Solanum aviculare, leaf spot KJ718237 KJ718067 KJ718744 KJ718583 KJ718411
Alternaria danida CBS 111.44; E.G.S. 07.029; QM 1772 (T) Ageratum houstonianum, seed Italy Y17070 KJ718068 KJ718745 KJ718584 KJ718412
CBS 109157; E.G.S. 44.098 R Solanum tuberosum, leaf spot USA, Washington KJ718238 GQ180080 KJ718746 KJ718585 KJ718413
Alternaria viciae-fabae CBS 116442; E.G.S. 46.162; ICMP 10242 (T) Vicia faba New Zealand KJ718240 KJ718069 KJ718747 KJ718586 KJ718415
Alternaria solani-nigri Alternaria cyphomandrae CBS 109155; E.G.S. 40.058 (T) Cyphomandra betacea, fruit New Zealand, New Plymouth KJ718242 JQ646360 JQ646444 KJ718588 KJ718417
CBS 113403; E.G.S. 51.106; CPC 10620 R Solanum nigrum, leaf spot New Zealand, Waikato KJ718243 KJ718071 KJ718749 KJ718589 KJ718418
Alternaria herbiculinae CBS 116332; E.G.S. 49.180 (T) Petroselinum crispum, stunted plant New Zealand, Taranaki KJ718244 KJ718072 KJ718750 KJ718590 KJ718419
Alternaria glyceriae CBS 116334; E.G.S. 51.107 (T) Glyceria maxima, leaf spot New Zealand, Waikato KJ718245 KJ718073 KJ718751 KJ718591 KJ718420
Alternaria beticola CBS 116447; E.G.S. 47.196 (T) Beta vulgaris, leaf spot New Zealand, Canterbury KJ718246 KJ718074 KJ718752 KJ718592 KJ718421
CBS 117101; E.G.S. 51.032 R Solanum nigrum, leaf spot New Zealand, Waikato KJ718247 KJ718075 KJ718753 KJ718593 KJ718422
Alternaria ascaloniae CBS 121347; E.G.S. 46.052 (T) Allium ascalonicum, leaf spot New Zealand, Hastings KJ718248 KJ718076 KJ718754 KJ718594 KJ718423
Alternaria steviae CBS 631.88; IFO 31212 Stevia rebaudiana, leaf spot Japan, Kagawa KJ718250 KJ718078 KJ718756 KJ718596 KJ718425
CBS 632.88; IFO 31183 Stevia rebaudiana, leaf spot Japan, Kagawa KJ718251 JQ646339 KJ718757 KJ718597 KJ718426
CBS 117362; E.G.S. 37.019; IFO 31182 T Stevia rebaudiana, leaf spot Japan, Kagawa KJ718252 KJ718079 KJ718758 KJ718598 KJ718427
Alternaria tagetica CBS 297.79; GST AM2 Tagetes sp., seed UK KJ718253 KJ718080 KJ718759 KJ718599 KJ718428
CBS 298.79; GST AM3 Tagetes sp., seed UK KJ718254 KJ718081 KJ718760 KJ718600 KJ718429
CBS 479.81; E.G.S. 33.081; GST 556 R Tagetes erecta, seed UK, England KC584221 KC584143 KJ718761 KC584692 KC584434
CBS 480.81; E.G.S. 33.184 R Tagetes sp., seed USA, South Carolina KJ718255 KJ718082 KJ718762 KJ718601 KJ718430
CBS 117217; E.G.S. 44.045 R Tagetes sp., leaf spot USA, Ohio KJ718256 KJ718083 KJ718763 KJ718602 KJ718431
Alternaria thunbergiae CBS 116331; E.G.S. 41.073; BRIP 14963 T Thunbergia alata, leaf spot Australia, Queensland KJ718257 KJ718084 KJ718764 KJ718603 KJ718432
Alternaria iranica CBS 120986; E.G.S. 51.075 (T) Allium cepa, leaf Iran, Miandoab KJ718258 KJ718085 KJ718765 KJ718604 KJ718433
CBS 122597 Thunbergia alata New Zealand, Auckland KJ718259 KJ718086 KJ718766 KJ718605 KJ718434
Alternaria tillandsiae CBS 116116; E.G.S. 43.074 T Tillandsia usneoides New Zealand KJ718260 KJ718087 KJ718767 KJ718606 KJ718435
Alternaria tropica CBS 631.93; E.G.S. 39.126 T Passiflora edulis, fruit USA, Florida KJ718261 KJ718088 KJ718768 KJ718607 KJ718436
CBS 117216; E.G.S. 39.125 R Passiflora edulis, fruit USA, Florida KJ718262 KJ718089 KJ718769 KJ718608 KJ718437
Alternaria venezuelensis CBS 116121; E.G.S. 48.065 T Phaseolus vulgaris, leaf spot Venezuela, Maracay KJ718263 KJ718090 KJ718770 KJ718609 KJ718438
Alternaria zinniae CBS 118.44 Callistephus chinensis, seed Hungary KJ718264 JQ646361 KJ718771 KJ718610 KJ718439
CBS 107.48 Zinnia sp., leaf Netherlands KJ718265 KJ718091 KJ718772 KJ718611 KJ718440
CBS 117.59 Zinnia elegans Italy, Sardinia KJ718266 KJ718092 KJ718773 KJ718612 KJ718441
CBS 108.61 Zinnia elegans KJ718267 KJ718093 KJ718774 KJ718613 KJ718442
CBS 299.79 Zinnia sp., seed UK KJ718268 KJ718094 KJ718775 KJ718614 KJ718443
CBS 300.79 Zinnia sp., seed UK KJ718269 KJ718095 KJ718776 KJ718615 KJ718444
CBS 117223; E.G.S. 44.035 R Zinnia elegans, leaf spot New Zealand, Auckland KJ718270 KJ718096 KJ718777 KJ718616 KJ718445
1

ATCC: American Type Culture Collection, Manassas, VA, USA; BRIP: Queensland Plant Pathology Herbarium, Queensland, Australia; CBS: Culture collection of the Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, Netherlands; CCM: Czech Collection of Microorganisms, Brno, Czech Republic; CECT: Spanish Type Culture Collection, Valencia, Spain; CPC: Personal collection of P.W. Crous, Utrecht, Netherlands; DAOM: Canadian Collection of Fungal Cultures, Ottawa, Canada; DSM: German Collection of Microorganisms and Cell Cultures, Leibniz Institute, Braunschweig, Germany; E.G.S.: Personal collection of Dr. E.G. Simmons; Elliott: Personal collection of M.E. Elliott; GST: Personal collection of G.S. Taylor; ICMP: International Collection of Micro-organisms from Plants, Auckland, New Zealand; IFO: Institute for Fermentation Culture Collection, Osaka, Japan; IMI: Culture collection of CABI Europe UK Centre, Egham UK; LEV: Plant Health and Diagnostic Station, Levin, New Zealand; MUCL: (Agro)Industrial Fungi and Yeast Collection of the Belgian Co-ordinated Collections of Micro-organisms (BCCM), Louvain-la Neuve, Belgium; Nattrass: Personal collection of R.M. Nattrass; PD: Plant Protection Service, Wageningen, Netherlands; PPRI: ARC-Plant Protection Research Institute, Roodeplaat, South Africa; QM: Quarter Master Culture Collection, Amherst, MA, USA; VKM: All-Russian Collection of Microorganisms, Moscow, Russia.

2

T: ex-type strain; R: representative strain; Letters between parentheses refer to synonymised species names; Bold letters are designated in this study.

PCR and sequencing

DNA extraction was performed using the UltraClean Microbial DNA isolation kit (Mobio laboratories, Carlsbad, CA, USA), according to the manufacturer's instructions. The ITS region was amplified with the primers V9G (de Hoog & Gerrits van den Ende 1998) and ITS4 (White et al. 1990), the GAPDH region with gpd1 and gpd2 (Berbee et al. 1999) the RPB2 region with RPB2–5F2 (Sung et al. 2007) and fRPB2–7cR (Liu et al. 1999), the TEF1 gene with the primers EF1-728F and EF1-986R (Carbone & Kohn 1999) or EF2 (O'Donnell et al. 1998) and the Alt a 1 region with the primers Alt-for and Alt-rev (Hong et al. 2005). The ITS, GAPDH, RPB2 and TEF1 PCRs were performed as described in Woudenberg et al. (2013). The reaction mixture for the Alt a 1 PCR consisted of 1 μL genomic DNA, 1 × NH4 reaction buffer (Bioline, Luckenwalde, Germany), 3 mM MgCl2, 20 μM of each dNTP, 0.2 μM of each primer and 0.25 U BIOTAQ DNA polymerase (Bioline). Conditions for PCR amplification consisted of an initial denaturation step of 5 min at 94 °C followed by 40 cycles of 30 s at 94 °C, 30 s at 55 °C and 60 s at 72 °C and a final elongation step of 7 min at 72 °C. The PCR products were sequenced in both directions using the PCR primers and the BigDye Terminator v. 3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, USA), and analysed with an ABI Prism 3730XL Sequencer (Applied Biosystems) according to the manufacturer's instructions. Consensus sequences were computed from forward and reverse sequences using the BioNumerics v. 4.61 software package (Applied Maths, St-Martens-Latem, Belgium). All newly generated sequences were deposited in GenBank (Table 1).

Phylogenetic analysis

Multiple sequence alignments were generated with MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/index.html), and adjusted by eye where necessary. Bayesian inference and Maximum Likelihood analyses were performed on both the individual sequence datasets as well as the concatenated datasets as described in Woudenberg et al. (2013), with the sample frequency set to 1000 instead of 100 in the Bayesian analysis. For the TEF1 partition an online tool (http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html) suggested the K2P model with a gamma-rate variation as nucleotide substitution model, and for the remaining four partitions the TrN model with gamma-distributed rate variation. Sequences from the type species of the phylogenetically closest section, sect. Gypsophilae, A. gypsophilae (Woudenberg et al. 2013), were used as outgroup. The resulting trees were printed with TreeView v. 1.6.6 (Page 1996) and the alignments and trees deposited into TreeBASE (http://www.treebase.org).

Taxonomy

Cultures were incubated on potato carrot agar (PCA, Crous et al. 2009) and synthetic nutrient-poor agar (SNA, Nirenberg 1976) plates at moderate temperatures (∼22 °C) under CoolWhite fluorescent light with an 8 h photoperiod. After 7 d the growth rates were measured and the colony characters noted. Colony colours were rated according to Rayner (1970). Morphological descriptions were made for isolates grown on SNA with a small piece of autoclaved filter paper placed onto the agar surface to enhance sporulation. When sporulation occurred, the sellotape technique was used for making slide preparations (Schubert et al. 2007) with Titan Ultra Clear Tape (Conglom Inc., Toronto, Canada) and Shear's medium as mounting fluid. The 95 % confidence intervals were derived from measurements of 30 structures, with extremes given in parentheses. Photographs of characteristic structures were made with a Nikon Eclipse 80i microscope equipped with a Nikon digital sight DS-Fi1 high definition colour camera, using differential interference contrast (DIC) illumination and the Nikon software NIS-Elements D v. 3.00. Adobe Bridge CS5.1 and Adobe Photoshop CS5 Extended, v. 12.1, were used for the final editing and photographic preparation. Colonies which did not sporulate after 7 d were checked for sporulation up to 3 wk; after this period they were noted as sterile. Nomenclatural data were deposited in MycoBank (Crous et al. 2004).

Results

Phylogeny

Because the amplification/sequencing of the RPB2 region of CBS 137457 and the Alt a 1 region of CBS 119410 and CBS 117360 failed, these genes were included as missing data in the combined analysis of these isolates. The topologies of the trees obtained from the RAxML and Bayesian analyses were overall congruent, resulting in identical species-clades. The phylogenies of the single-gene trees were congruent with one exception, CBS 137456, which swapped between clusters with the different genes used, resulting in a somewhat distorted picture in the combined analysis. The aligned sequences of the ITS (538 characters), GAPDH (581 characters), RPB2 (772 characters), TEF1 (355 characters) and Alt a 1 (476 characters) gene regions of the 183 included Alternaria strains had a total length of 2 722 characters, with respectively 77, 111, 134, 141 and 131 unique site patterns. After discarding the burn-in phase trees, the Bayesian analysis resulted in 7 502 trees from which the 50 % majority rule consensus tree and posterior probabilities were calculated. The multi-gene phylogeny of section Porri (Fig. 1) divided the isolates in 62 species (clades) and one new Alternaria section. The species A. euphorbiicola and A. limicola, previously assigned to sect. Porri (Lawrence et al. 2013, Woudenberg et al. 2013), form a sister-clade to sect. Porri, here described as Alternaria sect. Euphorbiicola sect. nov. A Bayesian phylogeny based on the GAPDH, RPB2 and TEF1 sequences of representative isolates of the closely related sections in Alternaria (sequences obtained from Woudenberg et al. 2013) was constructed for comparison, with A. brassicicola CBS 118699 from sect. Brassisicola, as outgroup (Fig. 2).

Fig. 1.

Fig. 1

Fig. 1

Fig. 1

Bayesian 50 % majority rule consensus tree based on the ITS, GAPDH, RPB2, TEF1 and Alt a 1 sequences of 183 Alternaria strains. The Bayesian posterior probabilities > 0.75 (PP) and RAxML bootstrap support values > 65 (ML) are given at the nodes (PP/ML). Thickened lines indicate a PP of 1.0 and ML of 100. Species names between parentheses represent synonymised species names. Ex-type strains are indicated with T and representative strains with R. Novel species names are printed in bold face. The tree was rooted to A. gypsophilae (CBS 107.41).

Fig. 2.

Fig. 2

Bayesian 50 % majority rule consensus tree based on the GAPDH, RPB2 and TEF1 sequences of 41 Alternaria strains. The Bayesian posterior probabilities (PP) are given at the nodes. Thickened lines indicate a PP of 1.0. The tree was rooted to A. brassicola (CBS 118699).

Taxonomy

At the onset of this study, Alternaria sect. Porri contained 82 Alternaria species. After extensive phylogenetic analyses and morphological examination we now recognise 63 species in this section (Table 2), of which 10 are newly described. Twenty-seven species names are reduced to synonymy (Table 2). All isolates where taxonomic changes were found based on the multi-gene phylogeny were studied morphologically; photo plates of these species are included. Type details are only listed when typification is proposed.

Table 2.

Current species within Alternaria sect. Porri and their host / substrate.

Species name Synonymised names (this study) Host / Substrate
Alternaria acalyphicola Euphorbiaceae (Acalypha indica)
Alternaria agerati Asteraceae (Ageratum houstonianum)
Alternaria agripestis Euphorbiaceae (Euphorbia esula)
Alternaria allii Alternaria vanuatuensis Amaryllidaceae (Allium cepa, A. porrum)
Alternaria alternariacida Solanaceae (Solanum lycopersicum)
Alternaria anagallidis Primulaceae (Anagallis arvensis)
Alternaria anodae Malvaceae (Anoda cristata)
Alternaria aragakii Passifloraceae (Passiflora edulis)
Alternaria argyroxiphii Asteraceae (Argyroxiphium sp.), Convolvulaceae (Ipomoea batatas)
Alternaria azadirachtae Meliaceae (Azadirachta indica)
Alternaria bataticola Convolvulaceae (Ipomoea batatas)
Alternaria blumeae Alternaria brasilliensis Asteraceae (Blumea aurita), Fabaceae (Phaseolus vulgaris)
Alternaria calendulae Alternaria rosifolii Asteraceae (Calendula officinalis), Rosaceae (Rosa sp.)
Alternaria carthami Alternaria heliophytonis Asteraceae (Carthamus tinctorius, Helianthus annuus)
Alternaria carthamicola Asteraceae (Carthamus tinctorius)
Alternaria cassiae Alternaria hibiscinficiens Fabaceae (Senna obtusifolia), Malvacea (Hibiscus sabdariffa), Phyllanthaceae (Sauropus androgynus)
Alternaria sauropodis
Alternaria catananches Asteraceae (Catananche caerulea)
Alternaria centaureae Asteraceae (Centaurea solstitialis)
Alternaria cichorii Asteraceae (Cichorium endivia, C. intybus)
Alternaria cirsinoxia Asteraceae (Cirsium arvense)
Alternaria citrullicola Cucurbitaceae (Citrullus lanatus)
Alternaria conidiophora Unknown
Alternaria crassa Alternaria capsici Solanaceae (Capsicum annuum, Datura stramonium, Nicandra physalodes)
Alternaria cucumerina Alternaria loofahae Cucurbitaceae (Cucumis melo, Luffa acutangula)
Alternaria cyamopsidis Fabaceae (Cyamopsis tetragonoloba)
Alternaria dauci Alternaria poonensis Apiaceae (Daucus carota, Coriandrum sativum), Asteraceae (Cichorium intybus)
Alternaria deserticola Soil
Alternaria dichondrae Convolvulaceae (Dichondra sp., D. repens)
Alternaria echinaceae Asteraceae (Echinacea sp.)
Alternaria grandis Solanaceae (Solanum tuberosum)
Alternaria ipomoeae Convolvulaceae (Ipomoea batatas)
Alternaria jesenskae Cistaceae (Fumana procumbens)
Alternaria linariae Alternaria cretica Cucurbitaceae (Cucumis sativus), Scrophulariaceae (Linaria maroccana), Solanaceae (Capsicum frutescens, Solanum lycopersicum)
Alternaria cucumericola
Alternaria subcylindrica
Alternaria tabasco
Alternaria tomatophila
Alternaria macrospora Malvaceae (Gossypium sp., G. barbadense)
Alternaria montanica Asteraceae (Cirsium arvense)
Alternaria multirostrata Rubiaceae (Richardia scabra)
Alternaria neoipomoeae Convolvulaceae (Ipomoea batatas)
Alternaria nitrimali Solanacaea (Solanum viarum)
Alternaria novae-guineensis Asteraceae (Galinsoga parviflora), Rutaceae (Citrus sp.)
Alternaria obtecta Euphorbiaceae (Euphorbia pulcherrima)
Alternaria paralinicola Linaceae (Linum usitatissimum)
Alternaria passiflorae Alternaria gaurae Onagraceae (Gaura lindheimeri), Passifloraceae (Passiflora edulis, P. caerulea, P. ligularis), Solanaceae (Capsicum frutescens)
Alternaria hawaiiensis
Alternaria pipionipisi Euphorbiaceae (Euphorbia pulcherrima), Fabaceae (Cajanus cajan)
Alternaria porri Amaryllidaceae (Allium cepa, A. porrum)
Alternaria protenta Alternaria hordeiseminis Asteraceae (Helianthus annuus), Euphorbiaceae (Euphorbia pulcherrima), Gramineae (Hordeum vulgare), Solanaceae (Solanum lycopersicum, S. tuberosum)
Alternaria pulcherrimae
Alternaria pseudorostrata Euphorbiaceae (Euphorbia pulcherrima)
Alternaria ranunculi Ranunculaceae (Ranunculus asiaticus)
Alternaria ricini Euphorbiaceae (Ricinus communis)
Alternaria rostellata Euphorbiaceae (Euphorbia pulcherrima)
Alternaria scorzonerae Alternaria linicola Asteraceae (Sorzonerae hispanica), Linaceae (Linum usitatissimum)
Alternaria sennae Fabaceae (Senna corymbosa)
Alternaria sesami Pedaliaceae (Sesamum indica)
Alternara sidae Malvaceae (Sida fallax)
Alternaria silybi Asteraceae (Silybum marianum)
Alternaria solani Alternaria danida Asteraceae (Ageratum houstonianum), Fabaceae (Vicia faba), Solanaceae (Solanum aviculare, S. tuberosum)
Alternaria viciae-fabae
Alternaria solani-nigri Alternaria ascaloniae Amaryllidaceae (Allium ascalonicum), Apiaceae (Petroselinum crispum), Chenopodiaceae (Beta vulgaris), Gramineae (Glyceria maxima), Solanaceae (Cyphomandra betacea, Solanum nigrum)
Alternaria beticola
Alternaria cyphomandrae
Alternaria glyceriae
Alternaria herbiculinae
Alternaria steviae Asteraceae (Stevia rebaudiana)
Alternaria tagetica Asteraceae (Tagetes sp., T. erecta)
Alternaria thunbergiae Alternaria iranica Acanthaceae (Thunbergia alata), Amaryllidaceae (Allium cepa)
Alternaria tillandsiae Bromeliaceae (Tillandsia usneoides)
Alternaria tropica Passifloraceae (Passiflora edulis)
Alternaria venezuelensis Fabaceae (Phaseolus vulgaris)
Alternaria zinniae Asteraceae (Callistephus chinensis, Zinnia sp., Z. elegans)

Section Porri D.P. Lawr., Gannibal, Peever & B.M. Pryor, Mycologia 105: 541. 2013

Type species: Alternaria porri (Ellis) Cif.

Section Porri is characterised by broadly ovoid, obclavate, ellipsoid, subcylindrical or obovoid, medium to large conidia, disto- and euseptate, solitary or in short chains, with a simple or branched, long to filamentous beak. Conidia contain multiple transverse and longitudinal septa and are slightly constricted near some transverse septa. Secondary conidiophores can be formed apically and/or laterally.

Species in sect. Porri

Alternaria acalyphicola E.G. Simmons, Mycotaxon 50: 260. 1994.

Material examined: Seychelles, from Acalypha indica (Euphorbiaceae), before Apr. 1982, C. Kingsland, culture ex-type of A. acalyphicola CBS 541.94 = E.G.S. 38.100 = IMI 266969.

Notes: Alternaria acalyphicola is closely related to A. ricini, with only 1 nt difference in three out of the five genes sequenced; RPB2, TEF1 and GAPDH. Based on this single isolate, the data is inconclusive to support the synonymy of these two species.

Alternaria agerati E.G. Simmons, Mycotaxon 65: 63. 1997.

= Alternaria agerati Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 86: 165. 1943. (nom. inval., Art. 36.1)

Material examined: USA, Illinois, Springfield, from Ageratum houstonianum (Asteraceae) in a commercial greenhouse, Nov. 1968, J.L. Forsberg, representative isolate of A. agerati CBS 117221 = E.G.S. 30.001 = QM 9369.

Alternaria agripestis E.G. Simmons & K. Mort., Mycotaxon 50: 255. 1994.

Material examined: Canada, Saskatchewan, Maxim, from infected stem of Euphorbia esula (Euphorbiaceae), 9 Jul. 1992, P. Harris, culture ex-type of A. agripestis CBS 577.94 = E.G.S. 41.034.

Alternaria allii Nolla, Phytopathology 17: 118. 1927. Fig. 3.

Fig. 3.

Fig. 3

Alternaria allii: conidia and conidiophores. AC. CBS 107.28. D–E. CBS 109.41. F–H. CBS 225.76. I–L. CBS 121345. Scale bars = 10 μm.

= Alternaria vanuatuensis E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 260. 2007.

Materials examined: Denmark, from seed of Allium cepa (Amaryllidaceae), 1937, P. Neergaard, CBS 109.41 = CBS 114.38. Italy, from leaf of Allium porrum (Amaryllidaceae), 1974, H. Nirenberg, CBS 225.76. Puerto Rico, from leaf of Allium cepa, before 1928, J.A.B. Nolla, culture ex-type of A. allii CBS 107.28 = E.G.S. 48.084. USA, Massachusetts, Hadley, from floral bract of Allium cepa var. viviparum, 13 Jul. 1980, E.G. Simmons, representative of A. allii CBS 116701 = E.G.S. 33.134. Vanuatu, from leaves of Allium cepa, 1996, C.F. Hill, culture ex-type of A. vanuatuensis CBS 121345 = E.G.S 45.018.

Notes: Simmons (2007) designated the lectotype of A. allii as Nolla (1927), loc. cit., Pl. III, fig. 11–19, based on the absence of original Nolla specimens. In our study, however, we managed to uncover an original specimen, CBS 107.28, which was deposited in the CBS by J.A.B. Nolla in December 1927 as his “A. allii sp. nov.”, just after he published the new species description. We therefore recognise this isolate as the ex-type strain of A. allii. Isolate CBS 116701 did not sporulate after 3 wk of cultivation on SNA.

Alternaria alternariacida Woudenb. & Crous, sp. nov. MycoBank MB808990. Fig. 4.

Fig. 4.

Fig. 4

Alternaria alternariacida sp. nov. CBS 105.51: A–H. Conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after its ability to produce high amounts of alternaric acid.

Alternaria alternariacida differs from the ex-type isolate of its closest phylogenetic neighbour A. silybi (CBS 134092) based on alleles in three loci (positions derived from respective alignments of the separate loci deposited in TreeBASE): ITS position 386 (T), 497 (T), 498 (T); TEF1 position 3 (T), 18 (T); Alt a 1 position 205 (C), 336 (T), 339 (A), 350 (C), 404 (T), 408 (G).

Sporulation is atypical. Primary conidiophores solitary, simple, straight to slightly curved, septate, pale brown with a subhyaline tip, (52–)73–93(–155) × (4–)5–6(–7) μm, bearing a single, darkened, apical conidiogenous locus. Conidia solitary or in unbranched chains of 2(–3) conidia, conidium body pale olive-brown, smooth-walled, narrowly ovoid, solitary, non-catenulate, and secondary conidia (33–)44–49(–56) × (5–)7–8(–9) μm, with (3–)5–6(–8) transverse eusepta and no longitudinal septa; primary conidia in total (85–)99–111(–121) × (6–)7–8(–10) μm. The conidial body can be slightly constricted near the septa. The conidium body gradually tapers into mostly an aseptate, single, unbranched beak, but branched beaks do occur; apical and multiple lateral secondary conidiophores can also occur. Beaks (47−)129−257(−610) μm long, ca. 2 μm wide throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white; aerial mycelium sparse, white, colonies reaching 25−30 mm diam; cultures on PCA flat, entire, olivaceous in the centre with three olivaceous concentric circles and a buff to white margin; aerial mycelium fine, felty, white, colonies reaching 50 mm diam; reverse with four olivaceous concentric circles.

Material examined: UK, England, from fruit of Solanum lycopersicum (Solanaceae), 1946, P.W. Brian (holotype CBS H-21734, culture ex-type CBS 105.51 = ATCC 11078 = IMI 46816 = CECT 2997 = IBPG 14 = BRL408).

Note: The atypical sporulation of the single isolate of A. alternariacida, which is over 60 yr old, resulted in our decision to include sequence data in the species description.

Alternaria anagallidis A. Raabe, Hedwigia 78: 87. 1939.

Materials examined: Denmark, Copenhagen, from Anagallis arvensis (Primulaceae), before Mar. 1944, P. Neergaard, CBS 107.44. New Zealand, Auckland, Lynfield, from Anagallis arvensis, 4 May 1998, C.F. Hill, CBS 101004; Auckland, Lynfield, from Anagallis arvensis, 28 Jun. 1995, C.F. Hill, representative isolate of A. anagallidis CBS 117128 = E.G.S. 42.074; Auckland, from leaf spot of Anagallis arvensis, Jan. 2002, C.F. Hill, representative isolate of A. anagallidis CBS 117129 = E.G.S. 50.091.

Notes: Isolate CBS 107.44 differs on 6 nt positions in its RPB2 sequence from the other three A. anagallidis isolates included in this study. Because CBS 107.44 still clusters closest to the other A. anagallidis isolates, and since these isolates, from a single host species, form a distinct clade from all other Alternaria spp., we retained the name A. anagallidis for this isolate.

Alternaria anodae E.G. Simmons, Mycotaxon 88: 198. 2003.

Material examined: South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from leaves of Anoda cristata (Malvaceae), 12 Jan. 2012, A. Thompson, PPRI 12376.

Alternaria aragakii E.G. Simmons, Mycotaxon 46: 181. 1993.

Material examined: USA, Hawaii, from Passiflora edulis (Passifloraceae), before Oct. 1968, M. Aragaki, culture ex-type of A. aragakii CBS 594.93 = E.G.S. 29.016 = QM 9046.

Alternaria argyroxiphii E.G. Simmons & Aragaki, Mycotaxon 65: 40. 1997.

Materials examined: South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from stem lesion of Ipomoea batatas (Convolvulaceae), 20 Apr. 2005, A. Thompson, PPRI 11848; Mpumalanga Province, Marble Hall, from stem and leaf lesion of Ipomoea batatas, 22 Nov. 2011, A. Thompson, PPRI 11971. USA, Hawaii, Maui, Haleakala, from Argyroxiphium sp. (Asteraceae), 1969, M. Aragaki, culture ex-type of A. argyroxiphii CBS 117222 = E.G.S. 35.122.

Note: The host range of A. argyroxiphii is not restricted to Argyroxiphium, but has been broadened with the inclusion of two isolates from Ipomoea batatas (Convolvulaceae).

Alternaria azadirachtae E.G. Simmons & Alcorn, CBS Biodiversity Ser. (Utrecht) 6: 218. 2007.

Materials examined: Australia, Queensland, Tewantin, from Azadirachta indica (Meliaceae), 20 Jul. 1998, A. Bradley, culture ex-type of A. azadirachtae CBS 116444 = E.G.S. 46.195 = BRIP 25386 (ss1); additional strain from the same source, CBS 116445 = E.G.S. 46.196 = BRIP25386 (ss2).

Alternaria bataticola W. Yamam., Trans. Mycol. Soc. Japan 2(5): 89. 1960.

= Macrosporium bataticola Ikata, Agric. Hort. (Tokyo) 22: 241. 1947 (nom. inval., Art. 36.1).

Type: (Lectotype, designated in Simmons 2007) S. Ikata, Agric. & Hort. 22: 241. fig. 1. 1947.

Materials examined: Australia, Queensland, Walkamin, from leaf spot of Ipomoea batatas (Convolvulaceae), 5 Jul. 1991, collector unknown, representative isolate of A. bataticola CBS 117095 = E.G.S. 42.157 = IMI 350492 = BRIP 19470a; additional strain from the same source CBS 117096 = E.G.S. 42.158 = BRIP 19470b. Japan, Tokyo, from Ipomoea batatas, before Nov. 1963, collector unknown, CBS 532.63; from Ipomoea batatas, before Nov. 1963, collector unknown (epitype designated here CBS H-21743, MBT178114, culture ex-epitype CBS 531.63 = IFO 6187 = MUCL 28916). South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from leaf and stem lesion of Ipomoea batatas, 16 Jun. 2010, M. Truter, PPRI 10502; Kwazulu-Natal Province, Empangeni, from leaf lesion of Ipomoea batatas, 4 Jul. 2011, A. Thompson, PPRI 11930; Kwazulu-Natal Province, Empangeni, from leaf lesion of Ipomoea batatas, 4 Jul. 2011, A. Thompson, PPRI 11931; Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from leaf lesion of Ipomoea batatas, 12 Jan. 2012, A. Thompson, PPRI 11934.

Alternaria blumeae E.G. Simmons & Sontirat, Mycotaxon 65: 81. 1997. Fig. 5.

Fig. 5.

Fig. 5

Alternaria blumeae: conidia and conidiophores. A–D. CBS 117364. E–H. CBS 117215. Scale bars = 10 μm.

= Alternaria brasiliensis F.M. Queiroz, M.F.S. Muniz & M. Menezes, Mycopathologia 150: 63. 2001.

Materials examined: Brazil, Espirito Santo, from leaf spot of Phaseolus vulgaris (Fabaceae), 1989, F.M. Queiroz, representative isolate of A. brasiliensis CBS 117215 = E.G.S. 39.116. Thailand, Yala Province, Amphoe Muang, from Blumea aurita (Asteraceae), 18 Jan. 1992, P. Sontirat, culture ex-type of A. blumeae CBS 117364 = E.G.S. 40.149 = ATCC 201357.

Notes: By synonymising A. brasiliensis with A. blumeae, the host range of this taxon has expanded to include Phaseolus vulgaris. The five sequenced genes are 100 % identical between the two examined specimens.

Alternaria calendulae Ondřej, Čas. Slez. Mus., Ser. A, Hist. Nat. 23: 150. 1974. Fig. 6.

Fig. 6.

Fig. 6

Alternaria calendulae: conidia and conidiophores. A–C. CBS 224.76. D–E. CBS 101498. F–H. CBS 116650. I–L. CBS 116439. Scale bars = 10 μm.

= Alternaria calendulae W. Yamam. 1939 (nom. nud.).

= Macrosporium calendulae Nelen, Bull. Centr. Bot. Gard. (Moscow) 35: 90. 1959 (nom. inval., Art. 36.1).

= Macrosporium calendulae Nelen, Bot. Mater. Otd. Sporov. Rast. Bot. Inst. Akad. Nauk S.S.S.R. 15: 144. 1962.

= Alternaria calendulae Nirenberg, Phytopathol. Z. 88: 108. 1977 (nom. illegit., Art. 53.1).

= Alternaria rosifolii E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 192. 2007.

Materials examined: Germany, former West-Germany, from leaf spot of Calendula officinalis (Asteraceae), 1974, H. Nirenberg, culture ex-type of A. calendulae Nirenberg CBS 224.76 = ATCC 38903 = IMI 205077 = DSM 63161. Japan, Tokyo, from leaf spot of Calendula officinalis, before 1964, representative isolate of A. calendulae CBS 116650 = E.G.S. 30.142 = QM 9561. New Zealand, Auckland, Kumeu, from leaf spot of Calendula officinalis, Oct. 1998, C.F. Hill, CBS 101498; Auckland, Mount Albert, from leaf of Rosa sp. (Rosaceae), before Feb. 1995, C.F. Hill, culture ex-type of A. rosifolii CBS 116439 = E.G.S. 42.197.

Note: By synonymising A. rosifolii with A. calendulae, the host range of this taxon has expanded to include Rosa.

Alternaria carthami S. Chowdhury, J. Indian Bot. Soc. 23: 65. 1944. Fig. 7.

Fig. 7.

Fig. 7

Alternaria carthami: conidia and conidiophores. A–D. CBS 117091. E–H. CBS 116440. Scale bars = 10 μm.

= Macrosporium anatolicum A. Săvul., Bull. Sect. Sci. Acad. Roumaine 26: 709. 1944.

= Alternaria heliophytonis E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 206. 2007.

Materials examined: Canada, Saskatchewan, Saskatoon, from leaf of Helianthus annuus (Asteraceae), 26 Aug. 1993, C. Jasalavich, culture ex-type of A. heliophytonis CBS 116440 = IMI 366164 = E.G.S. 43.143. Italy, Perugia, from leaf of Carthamus tinctorius (Asteraceae), before Nov. 1980, A. Zazzerini, CBS 635.80. USA, Montana, Sidney, from leaf spot of Carthamus tinctorius, 11 Jul. 1973, E.E. Burns, representative isolate of A. carthami CBS 117091 = E.G.S. 31.037.

Notes: Isolate CBS 635.80 did not sporulate after 3 wk cultivation on SNA. By synonymising A. heliophytonis with A. carthami, the host range of this taxon has expanded to include Helianthus annuus (Asteraceae).

Alternaria carthamicola Woudenb. & Crous, sp. nov. MycoBank MB808991. Fig. 8.

Fig. 8.

Fig. 8

Alternaria carthamicola sp. nov. CBS 117092: A–L. Conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after the host genus from which it was collected, Carthamus.

Primary conidiophores solitary or in small groups, simple, straight to slightly curved, septate, pale to dark brown with a subhyaline tip, (33–)55–71(–108) × 5–6(–7) μm, bearing a single, darkened, apical conidiogenous locus, but may produce geniculate conidiogenous extensions. Conidia solitary, rarely in chains of two conidia, conidium body pale olive-brown, mostly smooth-walled but sometimes ornamented at the base, ovoid, (39–)58–64(–82) × (13–)15–16(–17) μm; with (5–)6–7(–9) transverse and (1–)3(–4) longitudinal septa. Dark coloured eusepta can be formed during development; the conidial body is slightly constricted near the transverse septa. Conidia mostly have a septate, single to double filamentous beak, triple beaks are observed but not common, apical secondary conidiophores can be formed. Beaks (40–)158–186(–219) μm long, ca. 2 μm diam throughout their length and 4 μm at the base. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, rhizoid, white to opaque; aerial mycelium sparse, white, floccose, colonies reaching 55–60 mm diam; cultures on PCA flat, entire, olivaceous with three clear concentric circles; aerial mycelium fine, felty, olivaceous to olivaceous-grey, colonies reaching 65–70 mm diam; reverse shows four olivaceous concentric circles with an buff edge.

Material examined: Iraq, from Carthamus tinctorius (Asteraceae), 10 Apr. 1983, M.M. Elsahookie (holotype CBS H-21735, culture ex-type CBS 117092 = IMI 276943 = E.G.S. 37.057).

Notes: The new species A. carthamicola, originally identified as A. carthami, differs only on 9 nt positions in its RPB2 sequence from the other two A. carthami strains studied. Based on its RPB2 sequence it clusters with A. linicola.

Alternaria cassiae Jurair & A. Khan, Pakistan J. Sci. Industr. Res. 3: 72. 1960. Fig. 9.

Fig. 9.

Fig. 9

Alternaria cassiae: conidia and conidiophores. A–D. CBS 116119. E–H. CBS 117224. I–L. CBS 117369. Scale bars = 10 μm.

= Alternaria hibiscinficiens E.G. Simmons & C.F. Hill, Mycotaxon 88: 205. 2003.

= Alternaria sauropodis E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 340. 2007.

Materials examined: Brazil, Federal District, from leaf spot of Senna obtusifolia (Fabaceae), May 1990, G. Fiqueiredo, representative isolate of A. cassiae CBS 117224 = E.G.S. 40.121. Fiji, from leaf of Hibiscus sabdariffa (Malvaceae), Jun. 2002, C.F. Hill, culture ex-type of A. hibiscinficiens CBS 177369 = E.G.S. 50.166. Malaysia, Sarawak, Kuching, from Sauropus androgynus (Phyllanthaceae), 25 Apr. 1984, T.K. Kieh, culture ex-type of A. sauropodis CBS 116119 = IMI 286317 = IMI 392448 = E.G.S. 47.112. USA, Mississippi, Stoneville, from diseased seedling of Senna obtusifolia, before Oct. 1980, H.L. Walker, representative isolate of A. cassiae CBS 478.81 = E.G.S. 33.147.

Notes: Isolate CBS 478.81 did not sporulate after 3 wk incubation on SNA. By synonymising A. hibiscinficiens and A. sauropodis with A. cassiae, the host range of this taxon has expanded to include Sauropus androgynus (Euphorbiaceae) and Hibiscus sabdariffa (Malvaceae).

Alternaria catananches Woudenb. & Crous, sp. nov. MycoBank MB808992. Fig. 10.

Fig. 10.

Fig. 10

Alternaria catananches sp. nov. A–B. Disease symptoms on Catananche caerulea (photo's K.-H. Nugteren, Florensis B.V., Netherlands). C–L. CBS 137456: conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after its host genus from which it was isolated, Catananche.

Primary conidiophores solitary, simple, straight to curved, septate, pale brown, (31–)54–67(–94) × (5–)6(–7) μm, bearing a single, darkened, apical conidiogenous locus, but may produce geniculate conidiogenous extensions. Conidia solitary, conidium body pale olive-brown, ornamented in lower half of the conidium, narrowly ovoid, (26–)37–43(–57) × (7–)8–9(–11) μm, with (2–)4(–6) transverse septa and no longitudinal septa. Some darker coloured eusepta can be formed during development. The conidium body gradually tapers into a single, septate, unbranched beak; basal lateral secondary conidiophores can be formed. Beaks (77–)126–160(–260) μm long, ca. 2 μm diam throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, entire/fimbriate, olivaceous around agar plug, white; aerial mycelium felty, white to olivaceous, colonies reaching 10–15 mm diam; cultures on PCA flat, erose, grey-olivaceous; aerial mycelium fine felty, olivaceous-grey; colonies reaching 25 mm diam; reverse identical.

Material examined: Netherlands, from Catananche caerulea (Asteraceae), 11 Dec. 2013, N. Troost-Riksen (holotype CBS H-21736, culture ex-type CBS 137456 = PD 013/05703936).

Notes: Alternaria catananches seems closely related to the A. cichorii isolates in the multi-gene phylogeny, but this is probably caused by long-branch attraction and incongruency between the different gene trees. Based on the ITS sequence it is identical to A. jesenskae, with RPB2 it is identical to A. cirsinoxia, with TEF1 it clusters with A. cichorii/A. cirsinoxia/A. carthami and with Alt a 1 it is identical to A. cichorii CBS 102.33, A. alternariacida and A. scorzonerae. Only its GAPDH sequences make it distinct from all other Alternaria species. Although the multi-gene tree does not provide strong support for separating it from the A. cichorii isolates, based on the individual gene sequences it is described here as a new Alternaria species.

Alternaria centaureae E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 236. 2007.

Specimen examined: USA, California, Sacramento, from Centaurea solstitialis (Asteraceae), Feb. 1999, D. Fogle, culture ex-type of A. centaureae CBS 116446 = E.G.S. 47.119.

Alternaria cichorii Nattrass, First List of Cyprus Fungi: 29. 1937.

Alternaria porri f. sp. cichorii (Nattrass) T. Schmidt, Pflanzenschutzberichte 32: 181. 1965.

Macrosporium cichorii (Nattrass) Gordenko, Mikol. Fitopatol. 9: 241. 1975.

Materials examined: Cyprus, from leaf spot of Cichorium intybus (Asteraceae), 1933, R.M. Nattrass (holotype IMI 1007, culture ex-type CBS 102.33 = E.G.S. 07.017 = QM 1760). Greece, Attica, from Cichorium endivia (Asteraceae), 24 Feb. 1978, S.D. Demetriades, representative isolate of A. cichorii CBS 117218 = E.G.S. 52.046 = IMI 225641.

Notes: Strain CBS 102.33 was deposited in Aug. 1933 in the CBS by R.M. Nattrass as A. cichorii sp. nov., with the remark that the description of the new species was in preparation. The holotype was subsequently deposited in IMI (IMI 1007) which consists of a dried herbarium specimen. In the present study we link CBS 102.33 as ex-type of A. cichorii to IMI 1007. The two isolates used in this study, CBS 102.33 and CBS 117218, differ only on 7 nt positions in their Alt a 1 sequence. Unfortunately CBS 102.33 is sterile, which does not provide additional information to support them as being two different species. Furthermore, the time difference of 45 yr between isolation of the two strains led to the decision to retain them as one species for now, pending fresh collections.

Alternaria cirsinoxia E.G. Simmons & K. Mort., Mycotaxon 65: 72. 1997.

Material examined: Canada, Saskatchewan, Watrous, from stem lesion and top dieback of Cirsium arvense (Asteraceae), 5 Aug. 1993, K. Mortensen, culture ex-type of A. cirsinoxia CBS 113261 = E.G.S. 41.136.

Alternaria citrullicola Woudenb. & Crous, sp. nov. MycoBank MB808993. Fig. 11.

Fig. 11.

Fig. 11

Alternaria citrullicola sp. nov. CBS 103.32: A–H. Conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after the host genus from which it was collected, Citrullus.

Primary conidiophores solitary, simple, straight or sometimes curved, septate, pale brown with a subhyaline tip, (28–)35–52(–73) × (3–)4(–5) μm, bearing a single, darkened, apical conidiogenous locus. Conidia mostly solitary but chains of two conidia can occur, conidium body pale olive-brown, smooth-walled, narrowly ovoid, (28–)35–41(–56) × (6–)8(–10) μm; with (3–)5–6(–9) transverse distosepta and 0–1(–2) longitudinal septa. Conidia have a single, aseptate, unbranched filamentous beak; apical secondary conidiophores can be formed. Beaks (72–)178–232(–324) μm long, ca. 2 μm diam throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white to opaque with primrose sections near the edge; aerial mycelium sparse, fine felty, colonies reaching 45–50 mm diam; cultures on PCA flat, entire, olivaceous with three unclear concentric circles; aerial mycelium is sparse, pale olivaceous-grey, colonies reaching 50–55 mm diam; reverse shows olivaceous-buff to olivaceous rings.

Material examined: Cyprus, from fruit of Citrullus lanatus (Cucurbitaceae), before Jul. 1932, R.M. Nattrass (holotype CBS H-21742, culture ex-type CBS 103.32 = VKM F-1881).

Alternaria conidiophora Woudenb. & Crous, sp. nov. MycoBank MB808995. Fig. 12.

Fig. 12.

Fig. 12

Alternaria conidiophora sp. nov. CBS 137457: A–H. Conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after its characteristically long, thick, conidiophores.

Primary conidiophores solitary, simple, mostly straight but sometimes curved, septate, dark brown with a subhyaline tip, (46–)89–105(–152) × (6–)7(–8) μm, bearing a single to multiple, darkened, long geniculate conidiogenous loci. Conidia solitary, conidium body olive-brown, smooth-walled, narrowly ovoid, (30–)45–52(–66) × (10–)12–13(–18) μm, with (2–)6–7(–9) transverse septa and (0–)1–2(–4) longitudinal septa. Darker coloured eusepta are formed during development. The conidial body is slightly constricted near the transverse septa. Conidia have a single, septate, unbranched, filamentous beak; basal, lateral secondary conidiophores can be formed. Beaks (49–)117–138(–186) μm long; ca. 2 μm diam throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate to rhizoid, white to opaque; aerial mycelium felty, white, colonies reaching 55–60 mm diam; cultures on PCA flat, entire, grey-olivaceous with two concentric circles; aerial mycelium wooly, pale olivaceous-grey, colonies reaching 55–60 mm diam; reverse identical.

Material examined: Netherlands, from unidentified host, Jul. 2011, U. Damm (holotype CBS H-21737, culture ex-type CBS 137457).

Alternaria crassa (Sacc.) Rands, Phytopathology 7: 337. 1917. Fig. 13.

Fig. 13.

Fig. 13

Alternaria crassa: conidia and conidiophores. A–D. CBS 109162. E–H. CBS 116648. I–L. CBS 119160. Scale bars = 10 μm.

Basionym: Cercospora crassa Sacc., Michelia 1(no. 1): 88. 1877.

= Macrosporium solani Cooke, Grevillea 12: 32. 1883. (non M. solani Ellis & Martin, 1882)

= Cercospora daturae Peck, Rep. New York State Mus. Nat. Hist. 35: 140. 1884.

= Macrosporium cookei Sacc., Syll. Fungorum 4: 530. 1886. (nom. nov. in Saccardo for M. solani Cooke, 1883, non M. solani Ellis & Martin, 1882)

Alternaria cookei (Sacc.) Bremer, Iʂmen, Karel, Özkan & M. Özkan, Istanbul Üniv. Fak. Mecm., B. 13: 42. 1948.

= Macrosporium daturae Fautrey, Rev. Mycol. (Toulouse) 16: 76. 1894.

Alternaria daturae (Fautrey) Bubák & Ranoj., Fungi Imperf. Exsicc. Fasc. 14: 694. 1911.

= Alternaria capsici E.G. Simmons, Mycotaxon 75: 84. 2000.

Type: (Lectotype, designated in Simmons 2000) PAD, Cercospora crassa, Datura stramonium, S. [elva] ′76. 10.

Materials examined: Australia, from Capsicum annuum (Solanaceae), May 1981, D. Trimboli, culture ex-type of A. capsici CBS 109160 = IMI 262408 = IMI 381021 = E.G.S 45.075. Cyprus, Famagusta, from leaves of Datura stramonium (Solanaceae), Jan. 1936, R.M. Nattrass (epitype designated here CBS H-21744, MBT178115, culture ex-epitype CBS 110.38). New Zealand, Auckland, from leaf spot of Datura stramonium, 2002, C.F. Hill, representative isolate of A. crassa CBS 116448 = E.G.S. 50.180. USA, Indiana, Montgomery County, Nicandra physalodes (Solanaceae), 5 Sep. 1997, E.G. Simmons, CBS 109162 = E.G.S. 46.014; Indiana, from leaf spot of Datura stramonium, 5 Sep. 1997, E.G. Simmons, representative isolate of A. crassa CBS 116447 = E.G.S. 46.013; Indiana, Montgomery County, from leaf spot of Datura stramonium, 1 Aug. 1996, E.G. Simmons, representative isolate of A. crassa CBS 122590 = E.G.S. 44.071; Wisconsin, Madison, from leaf spot of Datura sp., before Apr. 1918, R.D. Rands, CBS 103.18.

Notes: Isolates CBS 110.38 and CBS 116647 did not sporulate after 3 wk incubation on SNA. By synonymising A. capsici with A. crassa, the host range of this taxon expanded to include Capsicum annuum, which also belongs to the Solanaceae.

Alternaria cucumerina (Ellis & Everh.) J.A. Elliott, Amer. J. Bot. 4: 472. 1917. Fig. 14.

Fig. 14.

Fig. 14

Alternaria cucumerina: conidia and conidiophores. A–D. CBS 117225. E–H. CBS 117226. I–L. CBS 116114. Scale bars = 10 μm.

Basionym: Macrosporium cucumerinum Ellis & Everh., Proc. Acad. Nat. Sci. Philadelphia 47: 440. 1895.

= Alternaria loofahae E.G. Simmons & Aragaki, CBS Biodiversity Ser. (Utrecht) 6: 316. 2007.

Materials examined: Australia, Queensland, from leaf spot of Cucumis melo (Cucurbitaceae), Oct. 1996, R. O’Brien, representative isolate of A. cucumerina CBS 117226 = E.G.S. 44.197 = BRIP 23060. USA, Hawaii, Oahu, Waialua, from Luffa acutangula (Cucurbitaceae), 1971, M. Aragaki, culture ex-type of A. loofahae CBS 116114 = E.G.S. 35.123; Indiana, Knox County, from leaf spot of Cucumis melo, 1993, R.X. Latin, representative isolate of A. cucumerina CBS 117225 = E.G.S. 41.127.

Notes: The species clade for A. cucumerina does not have a clear support in the multi-gene phylogeny. CBS 117225 and CBS 117226 differ only on 2 nt in their RPB2 sequence, while the ex-type of A. loofahae (CBS 116114) differs on 1 nt from both A. cucumerina isolates in RPB2 and on 1 nt in Alt a 1. This internal variation in the two A. cucumerina isolates and the identical host family, Cucurbitaceae, with A. loofahae, supported the synonymy of A. loofahae. By synonymising A. loofahae with A. cucumerina, the host range of this taxon expanded to include Luffa acutangula.

Alternaria cyamopsidis Rangaswami & A.V. Rao, Indian Phytopathol. 10: 23. 1957.

Alternaria cucumerina var. cyamopsidis (Rangaswami & A.V. Rao) E.G. Simmons, Mycopathol. Mycol. Appl. 29: 131. 1966.

Materials examined: USA, Georgia, from leaf spot of Cyamopsis tetragonoloba (Fabaceae), Jul. 1961, G. Sowell, representative isolate of A. cyamopsidis CBS 117219 = E.G.S. 13.120 = QM 8000; Maryland, Beltsville, from leaf spot of Cyamopsis tetragonoloba, 1964, R.G. Orellana, representative isolate of A. cyamopsidis CBS 364.67 = E.G.S. 17.065 = QM 8575.

Alternaria dauci (J.G. Kühn) J.W. Groves & Skolko, Canad. J. Res., Sect. C, Bot. Sci. 22: 222. 1944. Fig. 15.

Fig. 15.

Fig. 15

Alternaria dauci. A. Disease symptoms on Daucus carota. B–L. Conidia and conidiophores. B–C. CBS 117097. D–F. CBS 117098. G–I. CBS 117099. J–L. CBS 117100. Scale bars = 10 μm.

Basionym: Sporidesmium exitiosum var. dauci J.G. Kühn, Hedwigia 1: 91. 1855.

Polydesmus exitiosus var. dauci (J.G. Kühn) J.G. Kühn, Die Krankheiten der Kulturgewächse, ihre Ursachen und ihre Verhütung: 165. 1858.

Macrosporium dauci (J.G. Kühn) Rostr., Tidsskr. Landoekon. ser. 5, 7: 385. 1888.

Alternaria brassicae var. dauci (J.G. Kühn) Lindau, Rabenhorst‘s Kryptog.-Fl., Edn 2 (Leipzig) 1(9): 260. 1908.

Alternaria porri f. sp. dauci (J.G. Kühn) Neerg, Danish species of Alternaria & Stemphylium: 252. 1945.

= Macrosporium carotae Ellis & Langl., J. Mycol. 6: 36. 1890.

Alternaria carotae (Ellis & Langl.) J.A. Stev. & Wellman, J. Wash. Acad. Sci. 34: 263. 1944.

= Alternaria poonensis Ragunath, Mycopathol. Mycol. Appl. 21: 315. 1963.

Type: (Lectotype, designated in Simmons 1995) B, ms. spec. Sporidesmium exitiosum var. dauci Kühn, Leg. Gross Krausche p. Bunzlau, Jul. Kühn.

Materials examined: Italy, from seed of Daucus carota (Apiaceae), Sept. 1937, P. Neergaard (neotype designated here CBS H-21745, MBT178116, culture ex-neotype CBS 111.38). Netherlands, Limburg, Horst, from leaf spot in Cichorium intybus var. foliosum (Asteraceae), 1979, W.M. Loerakker, CBS 477.83 = CBS 721.79 = PD 79/954; from seed of Daucus carota, 1993, S&G Seeds, CBS 101592. New Zealand, from leaf spot of Daucus carota, Mar. 1998, C.F. Hill, representative isolate of A. dauci CBS 117098 = E.G.S. 46.152; Ohakune, from leaf spot of Daucus carota, before Jul. 1979, G.F. Laundon, CBS 345.79 = LEV 14814. Puerto Rico, from seedling of Coriandrum sativum (Apiaceae), 1999, W. Almodovar, representative isolate of A. poonensis CBS 117100 = E.G.S. 47.138. Unknown, from seed of Daucus carota, Jan. 1948, J.W. Groves, CBS 106.48. USA, California, from commercial seed of Daucus carota, Nov. 1994, B.M. Pryor, representative isolate of A. dauci CBS 117097 = E.G.S. 46.006; California, Kern County, from seed of Daucus carota, 1999, D. Fogle, representative isolate of A. dauci CBS 117099 = E.G.S. 47.131.

Notes: The indicated lectotype cannot be traced in B, and appears to be lost. We therefore designate CBS 111.38 as neotype. The isolates CBS 111.38, CBS 345.79 and CBS 101592 did not sporulate after 3 wk incubation on SNA.

Alternaria deserticola Woudenb. & Crous, sp. nov. MycoBank MB808996.

Etymology: Named after the substrate from which it was isolated, namely desert soil.

Culture sterile

Alternaria deserticola differs from the ex-type strain of its closest phylogenetic neighbour A. thunbergiae (CBS 116331) based on alleles in all five loci (positions derived from respective alignments of the separate loci deposited in TreeBASE): ITS position 165 (−), 373 (T), 381 (C), 383 (C), 488 (A); GAPDH position 484 (T); RPB2 position 76 (C), 88 (T), 91 (T), 139 (C), 211 (T), 316 (T), 490 (C), 496 (A), 646 (T), 670 (C), 671 (T), 673 (A), 760 (G); TEF1 position 37 (C), 49 (G), 197 (A), 223 (A), 274 (T), 277(–), 311(T); Alt a 1 position 10 (C), 209 (A), 210 (T), 220 (G), 322 (T), 452 (G).

Culture characteristics: After 7 d cultures on SNA flat, rhizoid, olivaceous-buff; aerial mycelium absent, colonies reaching 55 mm diam; cultures on PCA flat, entire, five grey-olivaceous concentric circles; aerial mycelium sparse, colonies reaching 75–80 mm diam; reverse shows five olivaceous-grey rings.

Material examined: Namibia, from desert soil, 2001, M. Christensen (holotype CBS H-21738, culture ex-type CBS 110799).

Note: The clear phylogenetic distinction of the sterile culture of A. deserticola from all other strains included in this study, resulted in our decision to describe this species based on sequence data only.

Alternaria dichondrae Gambogi, Vannacci & Triolo, Trans. Brit. Mycol. Soc. 65(2): 323. 1975.

Materials examined: Italy, Pisa, from leaf spot of Dichondra repens (Convolvulaceae), Mar. 1974, P. Gambogi, ex-isotype of A. dichondrae CBS 199.74 = E.G.S. 38.007; Pisa, from leaf spot of Dichondra repens, Mar. 1974, P. Gambogi, living lectotype of A. dichondrae CBS 200.74 = E.G.S. 38.008. New Zealand, from leaf spot of Dichondra repens, before 1979, G.F. Laundon, CBS 346.79; Auckland, Lynfield, from leaf of Dichondra sp., Apr. 1991, C.F. Hill, representative isolate of A. dichondrae CBS 117127 = E.G.S. 40.057.

Note: Simmons (2007) designated a lectotype with ex-lectotype strain (CBS 200.74), as he found the ex-isotype strain (CBS 199.74) to be sterile.

Alternaria echinaceae E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 318. 2007.

Materials examined: New Zealand, Gisborne, Makaraka, from leaf of Echinacea sp. (Asteraceae), Jan. 1998, C.F. Hill, culture ex-type of A. echinaceae CBS 116117 = E.G.S. 46.081; Gisborne, Makaraka, from leaf of Echinacea sp., Jan. 1998, C.F. Hill, representative isolate of A. echinaceae CBS 116118 = E.G.S. 46.082.

Alternaria grandis E.G. Simmons, Mycotaxon 75: 96. 2000. Fig. 16.

Fig. 16.

Fig. 16

Alternaria grandis: conidia and conidiophores. A–D. CBS 109158. E–H. CBS 116695. Scale bars = 10 μm.

Materials examined: USA, Pennsylvania, Centre County, from leaf lesion of Solanum tuberosum (Solanaceae), Sep. 1966, B.J. Christ, culture ex-type of A. grandis CBS 109158 = E.G.S. 44.106; Pennsylvania, Clarion County, from leaf spot of Solanum tuberosum, Sep. 1966, B.J. Christ, representative isolate of A. grandis CBS 116695 = E.G.S 44.108.

Notes: Although A. grandis differs by only 1 nt in its GAPDH sequence from A. solani, we retain it as a distinct species. Conidia of A. grandis are substantially larger than those of A. solani, and a recently published study could separate A. solani (CBS 109157) and A. grandis (CBS 109158) based on partial calmodulin gene sequence data (Gannibal et al. 2014).

Alternaria ipomoeae M. Truter, Woudenb. & Crous, sp. nov. MycoBank MB808997. Fig. 17.

Fig. 17.

Fig. 17

Alternaria ipomoeae sp. nov. CBS 219.79: A–L. Conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after the host genus on which it occurs, Ipomoea.

Primary conidiophores simple to branched, straight to slightly curved, septate, pale brown, (10–)51–73(–145) × (4–)5 μm, bearing a single to multiple, darkened, geniculate conidiogenous loci. Conidia mostly solitary but chains of two conidia can occur, conidium body olive-brown, smooth-walled with ornamented base, long ellipsoid to obclavate, (53–)60–65(–76) × (9–)12(–15) μm, with (6–)8–9(–12) transverse septa and (0–)2(–3) longitudinal septa. Up to four dark coloured eusepta can be formed during development; the conidial body is constricted near these eusepta. Conidia have a septate, single to double, filamentous beak; apical and lateral secondary conidiophores can be formed. Beaks (47–)136–162(–221) μm long, single beaks generally longer than multiple beaks, ca. 2 μm diam throughout their length, and approx. 3 μm diam at the base. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA are flat, fimbriate, white; aerial mycelium sparse, felty, white, colonies reaching 50 mm diam; cultures on PCA flat, entire, grey-olivaceous with some darker sections; aerial mycelium fine felty, pale olivaceous-grey, colonies reaching 65–70 mm diam; reverse identical.

Materials examined: Ethiopia, from black lesions of Ipomoea batatas (Convolvulaceae), Jun. 1978, A.H.C. van Bruggen (holotype CBS H-21739, culture ex-type CBS 219.79). South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from stem lesions of Ipomoea batatas, 16 Nov. 2006, C.D. Narayanin (paratype PREM 60979, culture ex-paratype PPRI 8988).

Alternaria jesenskae Labuda, P. Eliáš & Sterfl., Microbiol. Res. 163: 209. 2008.

Material examined: Slovakia, district of the village Muzla, Podunajská nizina lowland, from seeds of Fumana procumbens (Cistaceae), Aug. 1999, P. Eliáš jr., culture ex-type of A. jesenskae CBS 133855 = CCM 8361.

Alternaria linariae (Neerg.) E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 677. 2007. Fig. 18.

Fig. 18.

Fig. 18

Alternaria linariae. A. Disease symptoms on Solanum lycopersicum. B–P. Conidia and conidiophores. B–C. CBS 105.41. D–F. CBS 109161. G–H. CBS 107.61. I–J. CBS 109156. K–L. CBS 109164. M–N. CBS 116438. O–P. CBS 116441. Scale bars = 10 μm.

Basionym: Alternaria anagallidis var. linariae Neerg., Danish species of Alternaria & Stemphylium: 297. 1945.

= Alternaria cretica E.G. Simmons & Vakal., Mycotaxon 75: 64. 2000.

= Alternaria subcylindrica E.G. Simmons & R.G. Roberts, Mycotaxon 75: 62. 2000.

= Alternaria tomatophila E.G. Simmons, Mycotaxon 75: 53. 2000.

= Alternaria cucumericola E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 210. 2007.

= Alternaria tabasco E.G. Simmons & R.G. Roberts, CBS Biodiversity Ser. (Utrecht) 6: 158. 2007.

Materials examined: Belgium, host unknown, before Mar. 1961, R. Sys, CBS 107.61. Denmark, from seedling of Linaria maroccana (Scrophulariaceae), 13 Nov. 1940, P. Neergaard, culture ex-type of A. linariae CBS 105.41 = E.G.S. 07.016. Greece, Crete, Heraklio, from leaf spot of Solanum lycopersicum (Solanaceae), 1997, D.J. Vakalounakis, culture ex-type of A. cretica, CBS 109164 = E.G.S. 46.188. New Zealand, Northland, Kerikeri, from leaf spot of Cucumis sativus (Cucurbitaceae), Mar. 1993, C.F. Hill, culture ex-type of A. cucumericola CBS 116438 = E.G.S. 41.057. Thailand, Chiang Mai, Royal project, from leaf spot of Solanum lycopersicum, 5 Nov. 2012, P.W. Crous, CPC 21620. Unknown, host unknown, before Apr. 1953, P.W. Brian, CBS 108.53 = No. 408P. USA, Indiana, Montgomery County, from leaf spot of Solanum lycopersicum, 23 Aug. 1995, E.G. Simmons, culture ex-type of A. tomatophila CBS 109156 = E.G.S. 42.156; Indiana, from leaf lesion of Solanum lycopersicum, Aug. 1996, E.G. Simmons, representative isolate of A. tomatophila CBS 116704 = E.G.S. 44.074; Louisiana, Baton Rouge, Louisiana State University Burden Research Plantation, from leaf lesion of Solanum lycopersicum var. cerasiforme, 2 Jul. 1997, R.G. Roberts, culture ex-type of A. subcylindrica CBS 109161 = E.G.S. 45.113; Louisiana, Avery Island, from leaf spot of Capsicum frutescens (Solanaceae), 1 Jul. 1997, R.G. Roberts, culture ex-type of A. tabasco CBS 116441 = E.G.S 45.108 = R.G.R. 97-52.

Notes: By synonymising A. cretica, A. cucumericola, A. subcylindrica, A. tabasco and A. tomatophila with A. linariae, the broad host range of this taxon now consists of Solanaceae, Cucurbitaceae and Scrophulariaceae species. The isolates CBS 108.53 and CBS 116704 did not sporulate on SNA after 3 wk of incubation.

Alternaria macrospora Zimm., Ber. Land-Forstw. Deutsch-Ostafrika 2: 24. 1904.

Macrosporium macrosporum (Zimm.) Nishikado & Oshima, Agric. Res. (Kurashiki) 36: 391. 1944.

= Sporidesmium longipedicellatum Reichert, Bot. Jahrb. Syst. 56: 723. 1921.

Alternaria longipedicellata (Reichert) Snowden, Rep. Dept. Agric. Uganda: 31. 1927 [1926].

Materials examined: Nigeria, from Gossypium sp. (Malvaceae), May 1929, Jones, CBS 106.29. USA, Arizona, from Gossypium barbadense (Malvaceae), before 1984, P.J. Cotty, culture epitype of A. macrospora CBS 117228 = E.G.S. 50.190 = ATCC 58172.

Notes: Isolate CBS 106.29 was preserved in the CBS collection as A. porri, but did not sporulate since 1978. Based on our molecular data this isolate belongs to A. macrospora, which, based on the same host, seems plausible.

Alternaria montanica E.G. Simmons & Robeson, CBS Biodiversity Ser. (Utrecht) 6: 178. 2007.

Material examined: USA, Montana, from Cirsium arvense (Asteraceae), before Apr. 1981, D.J. Robeson, culture ex-type of A. montanica CBS 121343 = E.G.S. 44.112 = IMI 257563.

Alternaria multirostrata E.G. Simmons & C.R. Jacks., Phytopathology 58: 1139. 1968.

Materials examined: USA, Georgia, Tifton, from floral bract of Richardia scabra (Rubiaceae), 1967, C.R. Jackson, culture ex-type of A. multirostrata CBS 712.68 = ATCC 18515 = IMI 135454 = MUCL 11722 = QM 8820 = VKM-F2997; Georgia, Tifton, from floral bract of Richardia scabra, 1967, C.R. Jackson, representative isolate of A. multirostrata CBS 713.68 = ATCC 18517 = IMI 135455 = MUCL 11715 = QM 8821.

Alternaria neoipomoeae M. Truter, Woudenb. & Crous, sp. nov. MycoBank MB808998. Fig. 19.

Fig. 19.

Fig. 19

Alternaria neoipomoeae sp. nov. A. Disease symptoms on Ipomoeae batatas (Photo A.H. Thompson, ARC, South Africa). B–L. PPRI 11845: conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after its close phylogenetic relationship to A. ipomoeae.

Primary conidiophores solitary, simple, straight to slightly curved, septate, pale brown, (10–)23–59(–111) × (4–)5 μm, bearing a single, darkened, apical conidiogenous locus, which may produce 1–2 geniculate conidiogenous extensions. Conidia are mostly solitary but chains of two conidia can occur, conidium body olive-brown, smooth-walled with ornamented base, long ellipsoid to obclavate, (52–)66–77(–93) × (12–)14–16(–18) μm, with (7–)9(–12) transverse and (2–)3–4(–5) longitudinal septa. Up to four dark coloured eusepta can be formed during development; the conidial body is constricted near these eusepta. Conidia mostly have a septate, single to double, filamentous beak, triple beaks are observed but not common; apical and lateral secondary conidiophores can be formed. Beaks (54–)104–136(–200) μm long, ca. 2 μm diam throughout their length, and approx. 3 μm diam at the base. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white to opaque; aerial mycelium sparse, fine felty, white, colonies reaching 60−65 mm diam; cultures on PCA flat, entire, grey-olivaceous with 2 dark and one lighter concentric circles and a pale olivaceous edge; aerial mycelium fine felty, pale olivaceous-grey, colonies reaching 55–60 mm diam; reverse four olivaceous-grey rings.

Materials examined: South Africa, Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from stem lesion of Ipomoea batatas (Convolvulaceae), 8 Jun. 2011, A. Thompson (holotype PREM 60981, culture ex-type PPRI 11845); North-West Province, Brits, from Ipomoea batatas, 25 Oct. 2007, C.D. Narayanin (paratype PREM 60982, culture ex-paratype PPRI 8990); Mpumalanga Province, Kwamahlanga, from Ipomoea batatas, between 2006 and 2008, C.D. Narayanin (paratype PREM 60983, culture ex-paratype PPRI 11847); Gauteng Province, Pretoria, ARC-Roodeplaat VOPI, from leaf lesion of Ipomoea batatas, Oct. 2013, A. Thompson (paratype PREM 60984, culture ex-paratype PPRI 13903).

Alternaria nitrimali E.G. Simmons & M.E. Palm, Mycotaxon 75: 93. 2000.

Material examined: Puerto Rico, Luquillo, from leaf spot of Solanum viarum (Solanaceae), 26 Feb. 1998, USDA-APHIS, culture ex-type of A. nitrimali CBS 109163 = E.G.S 46.151.

Alternaria novae-guineensis E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 350. 2007.

Materials examined: Papua New Guinea, from dried leaf of Citrus sp. (Rutaceae) imported to New Zealand, 1999, C.F. Hill, culture ex-type of A. novae-guineensis CBS 116120 = E.G.S. 47.198. South Africa, Gauteng, Pretoria, ARC-Roodeplaat VOPI, from leaves of Galinsoga parviflora (Asteraceae), 12 Jan. 2012, A. Thompson, PPRI 12171.

Alternaria obtecta E.G. Simmons, Mycotaxon 50: 250. 1994.

Materials examined: USA, California, Encinitas, from leaf of Euphorbia pulcherrima (Euphorbiaceae), Nov. 1994, C.F. Hill, representative isolate of A. obtecta CBS 117367 = E.G.S. 42.063; California, Encinitas, from Euphorbia pulcherrima (Euphorbiaceae), Nov. 1994, C.F. Hill, CBS 134278 = E.G.S. 42.064.

Alternaria paralinicola Woudenb. & Crous, sp. nov. MycoBank MB808999. Fig. 20.

Fig. 20.

Fig. 20

Alternaria paralinicola sp. nov. CBS 116652: A–L. Conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after its close phylogenetic relationship to A. linicola.

Primary conidiophores solitary, simple, straight to slightly curved, septate, pale brown, (39–)64–82(–133) × (4–)5–6 μm, bearing a single, darkened, apical conidiogenous locus, but may produce geniculate conidiogenous extensions. Conidia are mostly solitary but chains of two conidia can occur, conidium body pale olive-brown, smooth-walled, narrowly ovoid, (31–)39–44(–58) × (8–)10–11(–15) μm, with (3–)5–6(–8) transverse septa and 0–1(–2) longitudinal septa. Dark coloured eusepta are formed during maturation. The conidial body is slightly constricted near the transverse septa. Some transverse blocks of cells can have a conspicuously different width in comparison with neighbouring segments, resulting in specific shape of the conidium body. Conidia mostly have a single, aseptate, unbranched, filamentous beak; double beaks are observed but not common; apical or lateral secondary conidiophores can be formed. Beaks (61–)114–135(–169) μm long, ca. 2 μm diam throughout their length. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white to opaque; aerial mycelium sparse, white, colonies reaching 70–75 mm diam; cultures on PCA flat, entire, grey-olivaceous with four olivaceous clear concentric circles; aerial mycelium is fine felty, olivaceous, colonies reaching 70 mm diam; reverse shows five grey-olivaceous concentric circles.

Material examined: Canada, Manitoba, from seeds of cultivated Linum usitatissimum (Linaceae), 1996, M.E. Corlett (holotype CBS H-21740, culture ex-type CBS 116652 = E.G.S. 47.157 = DAOM 225747).

Note: Alternaria paralinicola, which was originally identified as A. linicola, differs on 16 nt positions in its RPB2 sequence from the other two A. linicola strains studied. Based on its RPB2 sequence it clusters with A. passiflorae.

Alternaria passiflorae J.H. Simmonds, Proc. Roy. Soc. Queensland. 49: 151. 1938. Fig. 21.

Fig. 21.

Fig. 21

Alternaria passiflorae: conidia and conidiophores. A–B. CBS 117102. C–D. CBS 117103. E–F. CBS 116333. G–H. CBS 166.77. I–J. CBS 630.93. K–L. CBS 629.93. Scale bars = 10 μm.

= Alternaria hawaiiensis E.G. Simmons, Mycotaxon 46: 184. 1993.

= Alternaria gaurae E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 188. 2007.

Materials examined: New Zealand, from fruit of Passiflora edulis (Passifloraceae), 6 Feb. 1963, F.J. Mortin, representative isolate of A. passiflorae CBS 629.93 = E.G.S. 16.150 = QM 8458; Auckland, from fruit spot of Passiflora ligularis (Passifloraceae), Apr. 2004, C.F. Hill, representative isolate of A. passiflorae CBS 117102 = E.G.S. 51.165; Auckland, from leaf spot of Passiflora caerulea (Passifloraceae), Jul. 2004, C.F. Hill, representative isolate of A. passiflorae CBS 117103 = E.G.S. 52.032; Auckland, from leaf spot of Gaura lindheimeri (Onagraceae), May 2002, C.F. Hill, culture ex-type of A. gaurae CBS 116333 = E.G.S. 50.121; Waitakere, from leaf of Capsicum frutescens (Solanaceae), May 1975, CBS 166.77. USA, Hawaii, from Passiflora edulis, before Oct. 1968, M. Aragaki, culture ex-type of A. hawaiiensis CBS 630.93 = E.G.S. 29.020 = QM 9050.

Notes: By synonymising A. gaurae with A. passiflorae, and including CBS 166.77, formerly identified as A. solani, the host range of A. passiflorae has broadened to include Gaura sp. (Onagraceae) and Capsicum frutescens (Solanaceae).

Alternaria pipionipisi E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 302. 2007.

Materials examined: India, Andhra Pradesh, Hyderabad, from seed of Cajanus cajan (Fabaceae), before Feb. 1990, K.M. & Ch. Reddy, culture ex-type of A. pipionipisi CBS 116115 = E.G.S. 40.096 = IMI 340950. USA, California, Encinitas, from Euphorbia pulcherrima (Euphorbiaceae), Sep. 1994, C.F. Hill, CBS 134265 = E.G.S. 42.047; California, Encinitas, from Euphorbia pulcherrima, Sep. 1994, C.F. Hill, representative isolate of A. obtecta CBS 117365 = E.G.S. 42.048.

Alternaria porri (Ellis) Cif., J. Dept. Agric. Porto Rico 14: 30. 1930 [1929]. Fig. 22.

Fig. 22.

Fig. 22

Alternaria porri: conidia and conidiophores. A–D. CBS 116698. E–H. CBS 116699. I–L. CBS 116649. Scale bars = 10 μm.

Basionym: Macrosporium porri Ellis, Grevillea 8 (no. 45): 12. 1879.

Alternaria porri (Ellis) Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa, 61: 92. 1930.

Type: (Lectotype, designated in Simmons 2007) NY, Ellis Collection: on leaves of Allium porrum, Newfield, N.J. Sept. 78.

Materials examined: USA, Nebraska, Lincoln, from leaf of Allium cepa (Amaryllidaceae), 1965, D.S. Meredith, representative isolate of A. allii CBS 116649 = E.G.S. 17.082 = QM 8613; New York, Ithaca, from leaf of Allium cepa, 1996, M.J. Yáñes Morales, representative isolate of A. porri CBS 116698 = E.G.S. 48.147; New York, Orange County, from leaf of Allium cepa, 1996, M.J. Yáñes Morales (epitype designated here CBS H-21746, MBT178117, culture ex-epitype CBS 116699 = E.G.S. 48.152).

Alternaria protenta E.G. Simmons, Mycotaxon 25: 207. 1986. Fig. 23.

Fig. 23.

Fig. 23

Alternaria protenta: conidia and conidiophores. A–B. CBS 116696. C–D. CBS 116697. E–G. CBS 116643. H–J. CBS 116651. K–M. CBS 121342. N–P. CBS 347.79. Scale bars = 10 μm.

= Alternaria pulcherrimae T.Y. Zhang & J.C. David, Mycosystema 8-9: 110. 1996.

= Alternaria hordeiseminis E.G. Simmons & G.F. Laundon, CBS Biodiversity Ser. (Utrecht) 6: 150. 2007.

Materials examined: Australia, Queensland, Brisbane, Chapel Hill, from Euphorbia pulcherrimae (Euphorbiaceae), 25 Aug. 1986, J.L. Alcorn, representative isolate of A. pulcherrimae CBS 121342 = E.G.S. 42.122 = IMI 310506. Israel, from Helianthus annuus (Asteraceae), 1996, collector unknown, representative isolate of A. protenta CBS 116697 = E.G.S. 45.024 = IMI 372957; from Helianthus annuus, 1996, collector unknown, representative isolate of A. protenta CBS 116696 = E.G.S. 45.023 = IMI 372955. New Zealand, Hastings, from Solanum tuberosum (Solanaceae), Mar. 1997, C.F. Hill, representative isolate of A. solani CBS 135189 = E.G.S. 45.053; Levin, from fruit rot of Solanum lycopersicum (Solanaceae), before Jul. 1979, G.F. Laundon, CBS 347.79 = E.G.S. 44.091 = ATCC 38569 = LEV 14726; Palmerston North, from seed of Hordeum vulgare (Gramineae), Jul. 1977, G.F. Laundon, culture ex-type of A. hordeiseminis CBS 116437 = E.G.S. 32.076 = CBS 116443 = E.G.S. 46.163. USA, California, Siskiyou, from Solanum tuberosum, 1996, D. Fogle, representative isolate of A. solani CBS 116651 = E.G.S. 45.020.

Notes: By synonymising A. pulcherrimae and A. hordeiseminis with A. protenta and including three isolates formerly identified as A. solani (CBS 347.79, 116651 and 135189), the host range of A. protenta has expanded extensively. It now comprises plants from the Asteraceae, Euphorbiaceae, Gramineae and Solanaceae. Based on molecular (and morphological) data, A. protenta is closely related to A. solani, and these two species can only be distinguished based on 9 nt differences in their RPB2 sequences (see RPB2 alignment in TreeBASE).

Alternaria pseudorostrata E.G. Simmons, Mycotaxon 57: 398. 1996.

Material examined: USA, California, Encinitas, from Euphorbia pulcherrimae (Euphorbiaceae), Dec. 1994, C.F. Hill, culture ex-type of A. pseudorostrata CBS 119411 = E.G.S. 42.060.

Alternaria ranunculi E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 212. 2007.

Material examined: Israel, Palestine, from seed of Ranunculus asiaticus (Ranunculaceae), 10 Apr. 1984, collector unknown, culture ex-type of A. ranunculi CBS 116330 = E.G.S. 38.039 = IMI 285697.

Alternaria ricini (Yoshii) Hansf., Proc. Linn. Soc. Lond. : 53. 1943.

Basionym: Macrosporium ricini Yoshii, Bult. Sci. Fak. Terk. Kjusu Imp. Univ. 3(4): 327. 1929.

Type: (Lectotype, designated in Simmons 1994) BPI 445446, Macrosporium ricini, Japan, Fukuoka, Ricinus communis, July 1928.

Materials examined: Italy, Sardinia, Sasseri, from Ricinus communis (Euphorbiaceae), before Aug. 1986, J.A. von Arx, CBS 353.86. Japan, Ricinus communis, deposited Feb. 1931 by K. Nakata (epitype designated here CBS H-21747, MBT178118, culture ex-epitype CBS 215.31). USA, Virginia, Holland, from leaf of Ricinus communis, 9 Aug. 1954, C.A. Thomas, representative isolate of A. ricini CBS 117361 = E.G.S. 06.181.

Alternaria rostellata E.G. Simmons, Mycotaxon 57: 401. 1996.

Material examined: USA, California, Encinitas, from leaf of Euphorbia pulcherrimae (Euphorbiaceae), Jan. 1995, C.F. Hill, culture ex-type of A. rostellata CBS 117366 = E.G.S. 42.061.

Alternaria scorzonerae (Aderh.) Loer., Netherlands J. Pl. Pathol. 90(1): 37. 1984.

Basionym: Sporidesmium scorzonerae Aderh., Arbeiten Kaiserl. Biol. Anst. Land-Forstw. 3: 439. 1903.

= Alternaria linicola J.W. Groves & Skolko, Canad. J. Res., Sect. C, Bot. Sci. 22: 223. 1944.

= Alternaria linicola Neerg, Danish species of Alternaria & Stemphylium: 302. 1945. (nom. illegit., Art. 53.1)

Type: (Lectotype, designated in Simmons 1997) Aderhold, Arbeiten Kaiserl. Biol. Anst. Land-Forstw. 3: 440. fig. w/o number. 1903.

Materials examined: Netherlands, Reusel, from leaf spot of Scorzonera hispanica (Asteraceae), 1982, W.M. Loerakker (epitype designated here CBS H-21748, MBT178119, culture ex-epitype CBS 478.83 = E.G.S. 38.011). UK, Scotland, from Linum usitatissimum (Linaceae), 22 Nov. 1945, J.W. Groves, CBS 103.46; Derbyshire, from seed of Linum usitatissimum, 1983, C. Nicholls, representative isolate of A. linicola CBS 116703 = E.G.S. 36.110 = IMI 274549.

Notes: None of the three isolates sporulated on SNA or PCA after 3 wk of incubation, also not after scarification. Corlett & Corlett (1999) already stated that, after sub-cultivation, A. linicola sporulates poorly, or not at all. By synonymising A. linicola with A. scorzonerae, the host range of A. scorzonerae is expanded to include Linum usitatissimum (Linaceae).

Alternaria sennae Woudenb. & Crous, sp. nov. MycoBank MB809000. Fig. 24.

Fig. 24.

Fig. 24

Alternaria sennae sp. nov. CBS 477.81: A–L. Conidia and conidiophores. Scale bars = 10 μm.

Etymology: Named after the host genus on which it occurs, Senna.

Primary conidiophores solitary, simple, straight to slightly curved, septate, dark brown with a hyaline tip, (43–)67–81(–108) × (5–)6(–7) μm, bearing a single, darkened, apical conidiogenous locus, but may produce geniculate conidiogenous extensions. Conidia solitary, conidium body pale olive-brown, smooth-walled, narrowly ovoid, (46–)55–62(–69) × (8–)10–12(–14) μm, with (7–)7–8(–10) transverse distosepta and (1–)2–3(–4) longitudinal septa. The conidial body can be slightly constricted near some transverse septa. Conidia have a single, aseptate, filamentous beak, which occasionally branches once; basal lateral secondary conidiophores can be formed. Beaks (38–)99–163(–314) μm long, ca. 2 μm diam. Sexual morph not observed.

Culture characteristics: After 7 d cultures on SNA flat, fimbriate, white to opaque with two olivaceous concentric circles; aerial mycelium sparse, white, floccose, colonies reaching 35−40 mm diam; cultures on PCA flat, undulate, white with grey-olivaceous zones; aerial mycelium felty, pale olivaceous-grey, colonies reaching 50–55 mm diam; reverse with pale olivaceous-grey zones.

Material examined: India, Uttar Pradesh, Gorakhpur, from leaf of Senna corymbosa (Fabaceae), 10 Apr. 1981, R.P. Verma (holotype CBS H-21741, culture ex-type CBS 477.81 = E.G.S. 34.030 = IMI 257253).

Alternaria sesami (E. Kawam.) Mohanty & Behera, Curr. Sci. 27: 493. 1958.

Basionym: Macrosporium sesami E. Kawam., Fungi 1: 27. 1931.

Materials examined: Egypt, from Sesamum indicum (Pedaliaceae), 1972, S.B. Mathur, CBS 240.73. India, from seedlings of Sesamum indicum, Dec. 1959, E.E. Leppik, representative isolate CBS 115264 = CBS 117214 = E.G.S. 13.027.

Alternaria sidae E.G. Simmons, Mycotaxon 88: 202. 2003.

Material examined: Kiribati, Phoenix islands, Canton Island, from leaf spot of Sida fallax (Malvaceae), 11 Feb. 1958, O. & I. Degener, culture ex-type of A. sidae CBS 117730 = E.G.S. 12.129.

Alternaria silybi Gannibal, Mycotaxon 114: 110. 2011.

Materials examined: Russia, Vladivostok, Trudovoe, from leaf lesion of Silybum marianum (Asteraceae), 1 Sep. 2006, Ph. B. Gannibal, culture ex-type of A. silybi CBS 134092 = VKM F-4109; Vladivostok, Trudovoe, from leaf lesion of Silybum marianum, 1 Sep. 2006, Ph. B. Gannibal, CBS 134094 = VKM F-4118; Vladivostok, Botanical Garden-Institute, from leaf lesion of Silybum marianum, 6 Sep. 2006, Ph. B. Gannibal, CBS 134093 = VKM F-4117.

Alternaria solani Sorauer, Z. Pflanzenkrankh. Pflanzenschutz 6: 6. 1896. Fig. 25.

Fig. 25.

Fig. 25

Alternaria solani. A. Disease symptoms on Solanum tuberosum (Photo J.E. van der Waals, University of Pretoria, South Africa). B–H. Conidia and conidiophores. B–D. CBS 109157. E–H. CBS 116442. Scale bars = 10 μm.

= Macrosporium solani Ellis & G. Martin, Amer. Naturalist 16(12): 1003. 1882 (non M. solani Cooke, 1883)

Alternaria solani (Ellis & G. Martin) L.R. Jones & Grout, Vermont Agric. Exp. Sta. Annual Rep. 9: 86. 1899. (nom. illegit., Art. 53.1)

Alternaria americana Sawada, Rep. Dept. Agric. Gov. Res. Inst. Formosa 51:117. 1931. (nom. nov. for A. solani (Ellis & G. Martin) L.R. Jones & Grout (1899), non A. solani Sorauer (1896))

Alternaria porri f. sp. solani (Ellis & G. Martin) Neerg, Danish species of Alternaria & Stemphylium: 260. 1945.

= Sporidesmium solani-varians Vañha, Naturwiss. Z. Forst- Landw. 2: 117. 1904.

= Alternaria danida E.G. Simmons, Mycotaxon 65: 78. 1997.

= Alternaria viciae-fabae E.G. Simmons & G.F. Laundon, CBS Biodiversity Ser. (Utrecht) 6: 234. 2007.

Materials examined: Italy, from seed of Ageratum houstonianum (Asteraceae), 27 Aug. 1941, P. Neergaard, culture ex-type of A. danida CBS 111.44 = E.G.S. 07.029 = QM 1772. New Zealand, from Vicia faba (Fabaceae), Jun. 1979, G.F. Laundon, culture ex-type of A. viciae-fabae CBS 116442 = E.G.S. 46.162 = ICMP 10242. Unknown, from leaf spot of Solanum aviculare (Solanaceae), before May 1941, P. Neergaard, CBS 111.41; unknown host, before Nov. 1921, isolated by Künkel, CBS 106.21. USA, Washington, Douglas County, from leaf spot of Solanum tuberosum (Solanaceae), 25 Aug. 1996, E.G. Simmons, representative isolate of A. solani CBS 109157 = E.G.S. 44.098.

Notes: By synonymising A. danida and A. viciae-fabae with A. solani, the host range of this pathogen has expanded to include Asteraceae and Fabaceae host plants. The isolates CBS 106.21 and CBS 111.44 did not sporulate after 3 wk of incubation on SNA (both were already labelled as sterile in the CBS collection database). Isolate CBS 111.41 did sporulate, but the spore formation was atypical.

Alternaria solani-nigri R. Dubey, S.K. Singh & Kamal [as “solani-nigrii”], Microbiol. Res. 154: 120. 1999. Fig. 26.

Fig. 26.

Fig. 26

Alternaria solani-nigri: conidia and conidiophores. A–B. CBS 113403. C–D. CBS 116447. E–G. CBS 109155. H–I. CBS 116334. J–K. CBS 121347. L–M. CBS 116332. N–P. CBS 117101. Scale bars = 10 μm.

= Alternaria cyphomandrae E.G. Simmons, Mycotaxon 75: 86. 2000.

= Alternaria ascaloniae E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 168. 2007.

= Alternaria beticola E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 170. 2007.

= Alternaria glyceriae E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 148. 2007.

= Alternaria herbiculinae E.G. Simmons, CBS Biodiversity Ser. (Utrecht) 6: 166. 2007.

Materials examined: New Zealand, Canterbury, Ashburton, from leaf lesion of Beta vulgaris (Chenopodiaceae), Jul. 1999, B. Alexander, culture ex-type of A. beticola CBS 116447 = E.G.S. 47.196; Hastings, from leaf spot of Allium ascalonicum (Amaryllidaceae), Oct. 1997, C.F. Hill, culture ex-type of A. ascaloniae CBS 121347 = E.G.S 46.052; New Plymouth, from fruit of Cyphomandra betacea (Solanaceae), May 1991, C.F. Hill, culture ex-type of A. cyphomandrae CBS 109155 = E.G.S. 40.058; Taranaki, Otaki, from stunted Petroselinum crispum (Apiaceae), 14 Jun. 2001, J.B. Wong, culture ex-type of A. herbiculinae CBS 116332 = E.G.S. 49.180; Waikato, Kopuku, from leaf spot of Glyceria maxima (Gramineae), Apr. 2003, C.F. Hill, culture ex-type of A. glyceriae CBS 116334 = E.G.S. 51.107; Waikato, Whangamarino swamp, from leaf spot of Solanum nigrum (Solanaceae), 21 Jun. 2003, C.F. Hill, representative isolate of A. solani-nigri CBS 113403 = E.G.S. 51.106 = CPC 10620; Waikato, Whangamarino swamp, from leaf spot of Solanum nigrum, 6 Feb. 2003, C.F. Hill, representative isolate of A. solani-nigri CBS 117101 = E.G.S. 51.032.

Notes: By synonymising these five Alternaria species with A. solani-nigri, this becomes a species with a broad host range found on Amaryllidaceae, Apiaceae, Chenopodiaceae, Gramineae and Solanaceae. All studied specimens originate from New Zealand, but the holotype of A. solani-nigri was described from India. The five sequenced genes are 100 % identical between all the specimens studied.

Alternaria steviae Ishiba, T. Yokoy. & Tani, Ann. Phytopathol. Soc. Japan 48(1): 46. 1982.

Materials examined: Japan, Kagawa, Kida-gun, Miki-cho, Ikenobe, from leaf spot of Stevia rebaudiana (Asteraceae), CBS 631.88 = IFO 31212; Kagawa, Kida-gun, Miki-cho, Ikenobe, from leaf spot of Stevia rebaudiana, Jun. 1980, CBS 632.88 = IFO 31183; Kagawa, Zentsuji, Harada-cho, from leaf spot of Stevia rebaudiana, Aug. 1978, C. Ishiba, culture ex-type of A. steviae CBS 117362 = IFO 31182 = E.G.S. 37.019.

Alternaria tagetica S.K. Shome & Mustafee, Curr. Sci. 35: 370. 1966.

Materials examined: UK, from seed of Tagetes sp. (Asteraceae), before May 1979, G.S. Taylor, CBS 297.79; from seed of Tagetes sp., before May 1979, G.S. Taylor, CBS 298.79; England, Manchester, from seed of Tagetes erecta (Asteraceae), before Apr. 1980, G.S. Taylor, representative isolate of A. tagetica CBS 479.81 = E.G.S. 33.081. USA, Ohio, Butler County, Oxford, from leaf of cultivated Tagetes sp., 14 Jun. 1996, M.A. Vincent, representative isolate of A. tagetica CBS 117217 = E.G.S 44.045; South Carolina, Clemson, from seed of Tagetes sp., before Mar. 1981, E. Smallwood Hotchkiss, representative isolate of A. tagetica CBS 480.81 = E.G.S. 33.184.

Alternaria thunbergiae E.G. Simmons & Alcorn, CBS Biodiversity Ser. (Utrecht) 6: 136. 2007. Fig. 27.

Fig. 27.

Fig. 27

Alternaria thunbergiae: conidia and conidiophores. A–C. CBS 116331. D–E. CBS 122597. F–H. CBS 120986. Scale bars = 10 μm.

= Alternaria iranica E.G. Simmons & Ghosta, CBS Biodiversity Ser. (Utrecht) 6: 122. 2007.

Materials examined: Australia, Queensland, Brisbane, Chapel Hill, from leaf spot of Thunbergia alata (Acanthaceae), 6 Feb. 1986, J.L. Alcorn, culture ex-type of A. thunbergiae CBS 116331 = E.G.S. 41.073 = BRIP 14963. Iran, Miandoab, from leaf of Allium cepa (Amaryllidaceae), 13 Sep. 2001, Y. Ghosta, culture ex-type of A. iranica CBS 120986 = E.G.S. 51.075. New Zealand, Auckland, Mangere, Tidal Road, from Thunbergia alata, 4 Jun. 2001, C.F. Hill, CBS 122597.

Notes: By synonymising A. iranica with A. thunbergiae, the host range of this taxon has expanded to include Allium cepa. The five sequenced genes are 100 % identical between the ex-type strains of A. thunbergiae and A. iranica. As both species were originally described in the same publication, there is no case for nomenclatural priority. Therefore we chose to synonymise A. iranica under A. thunbergiae because A. thunbergiae is more commonly used in literature (Leahy 1992, Melo et al. 2009).

Alternaria tillandsiae E.G. Simmons & C.F. Hill, CBS Biodiversity Ser. (Utrecht) 6: 314. 2007.

Material examined: USA, from Tillandsia usneoides (Bromeliaceae), Dec. 1995, B. Milnes, culture ex-type of A. tillandsiae CBS 116116 = E.G.S. 43.074.

Alternaria tropica E.G. Simmons, Mycotaxon 46: 187. 1993.

Materials examined: USA, Florida, Homestead, from fruit of Passiflora edulis (Passifloraceae), May 1990, R.T. McMillan Jr., culture ex-type of A. tropica CBS 631.93 = E.G.S. 39.126; Florida, Homestead, from fruit of Passiflora edulis, May 1990, R.T. McMillan Jr., representative isolate of A. tropica CBS 117216 = E.G.S. 39.125.

Alternaria venezuelensis E.G. Simmons & Rumbos, CBS Biodiversity Ser. (Utrecht) 6: 128. 2007.

Material examined: Venezuela, Maracay, from leaf spot of Phaseolus vulgaris (Fabaceae), before Oct. 1999, R. Rumbos, culture ex-type of A. venezuelensis CBS 116121 = E.G.S. 48.065.

Alternaria zinniae M.B. Ellis, Mycol. Pap. 131: 22. 1972.

= Alternaria zinniae H. Pape, Angew. Bot. 24: 61. 1942. (nom. inval., Art. 36.1)

Materials examined: Hungary, from seed of Callistephus chinensis (Asteraceae), 12 Aug. 1942, P. Neergaard, CBS 118.44. Italy, Sardinia, Sasseri, from Zinnia elegans (Asteraceae), 18 Oct. 1958, U. Prota, CBS 117.59. Netherlands, Huizum, from leaf of Zinnia sp., 27 Jul. 1948, A. Jaarsveld, CBS 107.48. New Zealand, Auckland, Royal Oak, from leaf spot of Zinnia elegans, May 1996, C.F. Hill, representative isolate of A. zinniae CBS 117223 = E.G.S. 44.035. UK, from seed of Zinnia sp., 1979, G.S. Taylor, CBS 299.79; from seed of Zinnia sp., 1979, G.S. Taylor, CBS 300.79. Unknown, from Zinnia elegans, summer 1961, Smith, CBS 108.61.

Section Euphorbiicola Woudenb. & Crous, sect. nov. MycoBank MB809001. Fig. 28

Fig. 28.

Fig. 28

Alternaria section Euphorbiicola: conidia and conidiophores. A–G. Alternaria limicola. H–P. Alternaria euphorbiicola. A–D. CBS 117360. E–G. CBS 483.90. H–J. CBS 198.86. K–M. CBS 119410. N–P. CBS 133874. Scale bars = 10 μm.

Type species: Alternaria euphorbiicola E.G. Simmons & Engelhard.

Section Euphorbiicola is characterised by ovoid, obclavate, medium to large conidia that are disto- and euseptate, in short to moderately long chains, with no or a simple long beak in the terminal conidia. Conidia contain multiple transverse and some longitudinal septa and are slightly constricted near some transverse septa. Short to long, broad, apical, and sometimes lateral, secondary conidiophores are formed.

Note: The new Alternaria sect. Euphorbiicola can be easily distinguished from sect. Porri based on the formation of conidia in chains in sect. Euphorbiicola.

Alternaria euphorbiicola E.G. Simmons & Engelhard, Mycotaxon 25: 196. 1986.

Macrosporium euphorbiae Reichert, Bot. Jahrb. Syst. 56: 723. 1921. Non Macrosporium euphorbiae Bartholomew 1908. (nom. illegit., Art 53.1).

Materials examined: USA, Florida, from Euphorbia pulcherrima (Euphorbiaceae), 1985, A.W. Engelhard, CBS 198.86 = E.G.S. 38.082; Hawaii, Oahu, from Euphorbia pulcherrima, Mar. 1984, M. Aragaki, representative isolate CBS 119410 = E.G.S. 41.029; Louisiana, from Euphorbia hyssopifolia (Euphorbiaceae), 1986, L. Walker, CBS 133874 = E.G.S 38.191.

Alternaria limicola E.G. Simmons & M.E. Palm, Mycotaxon 37: 82. 1990.

Materials examined: Mexico, Colima, from leaf of Citrus aurantiifolia (Rutaceae), May 1989, M. Palm, culture ex-type of A. limicola CBS 483.90 = E.G.S. 39.070; Jalisco, from Citrus sp., Sep. 1995, M. Palm, representative isolate CBS 117360 = E.G.S. 43.009.

Discussion

In the present phylogenetic study aiming to delimit Alternaria species in sect. Porri, we reduced the 82 known morphospecies in this section to 63 based on our polyphasic approach. Some important plant pathogens have now been assigned to specific clades in the phylogenetic tree and correlated with their distinct morphology, which will aid plant pathologists to identify their newly collected isolates.

The 10 isolates named A. solani at the onset of this study cluster within five different species-clades, and only three of them retain the name A. solani. This is not surprising, as almost all large-spored, narrow-beaked Alternaria strains hitherto isolated from Solanaceae were called A. solani, following the concept of M.B. Ellis (1971). Simmons (2000) already noted that early blight of tomato is actually caused by A. tomatophila rather than A. solani, and also described two additional species on tomato, A. cretica and A. subcylindrica. These tomato pathogens all cluster in one clade based on our phylogenetic analysis, which also includes the ex-type strain of A. linariae. The basionym of A. linariae, A. anagallidis var. linariae, is the oldest name in this cluster, which therefore applies to this clade mainly represented by tomato pathogens. When Neergaard (1945) described this species he found the fungus on seeds and seedlings with damping-off symptoms from Linaria marroccana (Scrophulariaceae), Antirrhinum majus (Scrophulariaceae) and on a healthy seedling of Papaver rhoeas (Papaveraceae). His pathogenicity tests (Neergaard 1945) showed that A. linariae could also attack Brassica oleracea (Brassicaceae), Solanum lycopersicum (Solanaceae), Lactuca sativa (Asteraceae), Godetia hybrida (Onagraceae), Nicotiana affinis (Solanaceae) and Papaver paeoniflorum (Papaveraceae), indicating a very broad host range. The isolates included in this study also show that, besides its broad host range, A. linariae is also widespread, found in Europe, USA, New Zealand and Asia. Three other isolates formerly identified as A. solani, including a former representative isolate used by Simmons (2007), cluster with A. protenta, an Alternaria species originally described from Helianthus annuus (Asteraceae). CBS 116651 is mentioned as a representative strain of A. solani by Simmons (2007), but he later expressed doubt as to the identity of this isolate (Simmons pers. comm.). The host range of A. protenta has expanded extensively, now comprising plants from the Asteraceae, Euphorbiaceae, Gramineae and Solanaceae. A pathogenicity test performed on A. protenta isolated from sunflower seed (Wu & Wu 2003) concluded that sunflower was the only susceptible host among the 10 host plants tested. One of the host plants tested was Solanum lycopersicum, which we include as host of A. protenta. However, the authors did not clearly state how the A. protenta isolates, which they only found on seed of one out of seven cultivars of sunflower seeds tested, were identified. The manuscript also lacks molecular data, which could affirm their identification of A. protenta. To our knowledge, no pathogenicity tests have thus far been performed with the species synonymised under A. protenta, A. hordeiseminis or A. pulcherrimae. Based on molecular and morphological data, A. protenta is closely related to A. solani, and these two species can only be distinguished by the 9 nt differences in their RPB2 sequences. To confirm the potato pathogen clade, called A. solani, we sequenced the RPB2 region of multiple isolates collected from Solanum tuberosum, which are present in E.G. Simmons collection, now deposited at the CBS. Almost all (22/24 strains) cluster within the now recognised A. solani species clade (data not shown). The ex-type strain of A. danida (CBS 111.44), now a synonym of A. solani, was originally deposited in the CBS collection by P. Neergaard as A. porri f. sp. solani. Pathogenicity tests performed on this strain (Neergaard 1945) showed that it could attack hosts from several plant families [e.g. Allium cepa (Amaryllidaceae), Brassica oleracea (Brassicaceae), Solanum lycopersicum (Solanaceae) and Lactuca sativa (Asteraceae)], indicating a very broad host range. Our sequences of A. danida differ from those deposited in GenBank by Lawrence et al. (2013), and therefore we repeated the cultivation and DNA extraction to confirm our results and the resulting synonymy with A. solani. Although the other large-spored, long-beaked Alternaria species described from potato, A. grandis (Simmons 2000), differs only by 1 nt in its GAPDH sequence (position 99, T instead of C, see locus alignment in TreeBASE) within the 2 722 positions used in the phylogeny, we did not synonymise A. grandis under A. solani. The two isolates included, CBS 109158 and CBS 116695, have substantially larger conidia than the other A. solani isolates, and a recently published study revealed that A. solani (CBS 109157) and A. grandis (CBS 109158) differ on 8 out of 770 nt in their calmodulin sequence (Gannibal et al. 2014).

The oldest large-spored onion pathogens, A. porri and A. allii, form two closely related but distinct clades, which only differ based on 8 nt in their RPB2 sequences (see locus alignment in TreeBASE). The three newer species described from Allium, A. ascaloniae, A. iranica and A. vanuatuensis (Simmons 2007), are all synonymised with other species. Alternaria ascaloniae is synonymised under A. solani-nigri, a species with a broad host range, mainly found in New Zealand. To our knowledge, no pathogenicity tests have been performed with the species now placed in synonomy with A. solani-nigri, which could affirm the broad host range for this species. Alternaria iranica is synonymised under A. thunbergiae, known as the causative agent of Alternaria leaf spot on Thunbergia (Leahy 1992), reported from Australia, USA and Brazil. Alternaria vanuatuensis clusters in the Allium clade, comprising A. allii and A. porri. Based on the sequence data generated here, it is synonymised under A. allii. According to Simmons (2007), the conidia of A. allii are distinguishable from those of A. porri and other large-spored species known on Allium, based on their multiple beaks and branches. However, the representative isolates of A. allii used by Simmons (2007) do not cluster in a single clade; CBS 116649 clusters with the two A. porri representative isolates. On the other hand, A. vanuatuensis is described as a single-beaked species, but clusters with the A. allii isolate deposited in the CBS collection by J.A.B. Nolla on 27 December 1927 as A. allii sp. nov. (CBS 107.28, recognised as the ex-type strain here). Simmons obtained this isolate from the CBS in February 2000 (E.G.S. 48.084), but was unable to induce sporulation. We observed few conidia, but these were only single-beaked. Unfortunately we could not induce CBS 116701 to sporulate, which leaves us at odds with Simmons's notes, with only single- to double-beaked conidia in the A. allii clade, and double- to triple-beaked conidia in the A. porri clade. The number of beaks and branches from the Allium isolates therefore is not suitable to make a distinction between the two major Allium species. The species can be easily differentiated on the basis of sequence data of the RPB2 gene region generated in this study.

Based on morphology, four large-spored Alternaria species with long beaks were described as Passifloraceae pathogens. Our phylogeny only supports three of these: A. tropica, A. aragakii and the more common A. passiflorae. The fourth species, A. hawaiiensis, is synonymised under A. passiflorae based on sequence data. Simmons (2007) described A. hawaiiensis as a new species lacking multiple beaks, which is a characteristic of A. passiflorae. Our sequence data led us to conclude that this characteristic is not suitable for species delimitation, which we also concluded from the data of the onion pathogens, A. allii, A. vanuatuensis and A. porri. The clustering of two isolates within our A. passiflorae clade, which originate from different host families (Onagraceae and Solanaceae), renders A. passiflorae as unspecific to Passifloraceae.

An ongoing study in South Africa on sweet potato pathogens reveals multiple Alternaria species on this host associated with blight symptoms on leaves, petioles, and stems. In addition to the known pathogen of sweet potato, A. bataticola, three other pathogenic species are delineated of which two are newly described as A. ipomoeae and A. neoipomoea. A new unknown Alternaria pathogen, causing sweet potato stem blight in Ethiopia, was reported by van Bruggen in 1984. This isolate (CBS 219.79) was sent to the CBS for identification, but the author did not agree with the morphological identification made at that time as A. cucumerina, a name under which it was still stored in the CBS collection. Our data indicate that this pathogen, which also is found in stem lesions of Ipomoea batatas in South Africa, should be recognised as a new species, now named A. ipomoeae. Most isolates from South Africa however cluster in a clade close to A. ipomoeae, now named A. neoipomoea, which can clearly be distinguished from A. ipomoeae morphologically and by sequence data. Two more isolates from sweet potato in South Africa are identified as A. argyroxiphii, an Alternaria species originally described from Argyroxiphium sp. This finding is a new host report for A. argyroxiphii, and a first report of the fungus from South Africa.

Based on the sequence data generated in this study, A. euphorbiicola and A. limicola clearly separate from the other species in sect. Porri (Fig. 1). This separation is supported by morphological differences, and we therefore propose the new section, sect. Euphorbiicola. However, when we examined the phylogeny displaying the neighbouring sections of sect. Porri (Fig. 2), questions arose concerning sect. Gypsophilae and sect. Radicina. These two sections display almost similar branch length differences within the respective sections, comparable to what sect. Porri displays with sect. Euphorbiicola. An additional character of sect. Gypsophilae and sect. Radicina is that the species within these sections share the same host family, respectively Caryophyllaceae and Apiaceae. We therefore choose to retain these sections at present, but additional molecular and morphological studies could eventually lead to the recognition of additional sections.

The present polyphasic approach displays the current species delimitation in Alternaria sect. Porri. We recognise 63 Alternaria species in this section with medium to large conidia and a long (filamentous) beak, which can be distinguished based on molecular data. Not all species distinctions are 100 % clear based on DNA data only; nevertheless, we tried to be consistent in synonymising or not synonymising species: the number of genes with nt differences and the number of nt differences are taken into account, together with the morphology, host, country and time of isolation. All Alternaria isolates currently stored in the CBS collection, which cluster within sect. Porri based on their gene sequences, were included in our study. Some species, however, are under-sampled, which results in some uncertainty in keeping isolates as separate species or reducing them to synonymy. Although we attempted to use the available data as best as possible, with the inclusion of additional isolates some uncertain species boundaries are bound to be better resolved.

The finding of the third species on potato (A. protenta) is a good example of the importance of fungal systematics. Multiple manuscripts report on the high level of genetic variability observed among A. solani isolates (van der Waals et al. 2004; Lourenco et al. 2011, Leiminger et al. 2013) and based on secondary metabolite profiling A. solani isolates cluster in two distinct groups (Andersen et al. 2008). Furthermore, two genotypes are described based on the cytochrome b gene structure of A. solani isolates (Leiminger et al. 2014), which is an important gene in fungicide resistance. However, our study indicates that previous reports could actually be dealing with three (or more) different species. Without knowing the correct identity of your pathogen, many incorrect conclusions can be drawn about diversity, evolutionary mechanisms, host range, and options for disease control.

Acknowledgements

This research was supported by the Dutch Ministry of Education, Culture and Science through an endowment of the FES programme “Making the tree of life work”.

Footnotes

Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre.

References

  1. Abo-Elyousr K.A.M., Abdel-Hafez S.I.I., Abdel-Rahim I.R. Isolation of Trichoderma and evaluation of their antogonistic potential against Alternaria porri. Journal of Phytopathology. 2014;162:567–574. [Google Scholar]
  2. Andersen B., Dongo A., Pryor B.M. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila. Mycological Research. 2008;112:241–250. doi: 10.1016/j.mycres.2007.09.004. [DOI] [PubMed] [Google Scholar]
  3. Angell H.R. Purple blotch of onion (Macrosporium porri Ell.) Journal of Agricultural Research. 1929;38(9):467–487. [Google Scholar]
  4. Berbee M.L., Pirseyedi M., Hubbard S. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia. 1999;91:964–977. [Google Scholar]
  5. Bruggen A.H.C. van. Sweet potato stem blight caused by Alternaria sp.: a new disease in Ethiopia. Netherlands Journal of Plant Pathology. 1984;90:155–164. [Google Scholar]
  6. Brun S., Madrid H., Gerrits van den Ende A.H.G. Multilocus phylogeny and MALDI-TOF analysis of the plant pathogenic species Alternaria dauci and relatives. Fungal Biology. 2013;117:32–40. doi: 10.1016/j.funbio.2012.11.003. [DOI] [PubMed] [Google Scholar]
  7. Carbone I., Kohn L.M. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91:553–556. [Google Scholar]
  8. Cifferi R. Phytopathological survey of Santo Domingo, 1925–1929. Journal of the Department of Agriculture of Porto Rico. 1930;14:5–44. [Google Scholar]
  9. Cooke M.C., Ellis J.B. New Jersey fungi. Grevillea. 1879;8:11–16. [Google Scholar]
  10. Corlett M., Corlett M.E. Fungi Canadenses. No. 341. Alternaria linicola. Canadian Journal of Plant Pathology. 1999;21(1):55–57. [Google Scholar]
  11. Crous P.W., Gams W., Stalpers J.A. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology. 2004;50:19–22. [Google Scholar]
  12. Crous P.W., Verkley G.J.M., Groenewald J.Z., editors. Fungal Biodiversity. CBS-KNAW Fungal Biodiversity Centre; Utrecht, Netherlands: 2009. (CBS laboratory Manual Series 1). [Google Scholar]
  13. Ellis M.B. Commonwealth Mycological Institute; Kew, UK: 1971. Dematiaceous hyphomycetes. [Google Scholar]
  14. Gannibal P.B., Orina A.S., Mironenko N.V. Differentiation of the closely related species, Alternaria solani and A. tomatophila, by molecular and morphological features and aggressiveness. European Journal of Plant Pathology. 2014;139:609–623. [Google Scholar]
  15. Hong S.G., Cramer R.A., Lawrence C.B. Alt a 1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genetics and Biology. 2005;42:119–129. doi: 10.1016/j.fgb.2004.10.009. [DOI] [PubMed] [Google Scholar]
  16. Hoog G.S. de, Gerrits van den Ende A.H.G. Molecular diagnostics of clinical strains of filamentous Basidiomycetes. Mycoses. 1998;41:183–189. doi: 10.1111/j.1439-0507.1998.tb00321.x. [DOI] [PubMed] [Google Scholar]
  17. Horsfield A., Wicks T., Davies K. Effect of fungicides use strategies on the control of early blight (Alternaria solani) and potato yield. Australasian Plant Pathology. 2010;39:368–375. [Google Scholar]
  18. Lawrence D.P., Gannibal P.B., Peever T.L. The sections of Alternaria: formalizing species-groups concepts. Mycologia. 2013;105:530–546. doi: 10.3852/12-249. [DOI] [PubMed] [Google Scholar]
  19. Leahy R.M. Florida Department of Agriculture and Consumer Services, Division of Plant Industry; 1992. Alternaria leaf spot of Thunbergia. Plant pathology circular No. 352. [Google Scholar]
  20. Leiminger J.H., Auinger H.-J., Wenig M. Genetic variability among Alternaria solani isolates from potatoes in Southern Germany based on RAPD-profiles. Journal of Plant Diseases and Protection. 2013;120:164–172. [Google Scholar]
  21. Leiminger J.H., Adolf B., Hausladen H. Occurence of the F129L mutation in Alternaria solani populations in Germany in response to QoI application, and its effect on sensitivity. Plant Pathology. 2014;63:640–650. [Google Scholar]
  22. Liu Y.J., Whelen S., Hall B.D. Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution. 1999;16:1799–1808. doi: 10.1093/oxfordjournals.molbev.a026092. [DOI] [PubMed] [Google Scholar]
  23. Lourenço V., Jr., Rodrigues T.T.M.S., Campos A.M.D. Genetic structure of the population of Alternaria solani in Brazil. Journal of Phytopathology. 2011;159:233–240. [Google Scholar]
  24. Melo M.P., Soares D.J., Araújo J.S.P. Alternaria leaf spot, caused by Alternaria thunbergiae, recorded for the first time on Thunbergia alata from Brazil. Australasian Plant Disease Notes. 2009;4:23–25. [Google Scholar]
  25. Narayanin C.D., Thompson A.H., Slabbert M.M. First report of Alternaria blight of sweet potato caused by Alternaria bataticola in South Africa. African Plant Protection. 2010;16:7–9. [Google Scholar]
  26. Neergaard P. Oxford University Press; London: 1945. Danish species of Alternaria and Stemphylium. [Google Scholar]
  27. Nirenberg H.I. Untersuchungen über die morphologische und biologische Differenzierung in der Fusarium-Section Liseola. Mitteilungen aus der Biologischen Bundesanstalt für Land- und Forstwirtschaft Berlin-Dahlem. 1976;169:1–117. [Google Scholar]
  28. Nolla J.A.B. A new Alternaria disease of onions (Allium cepa L.) Phytopathology. 1927;17(2):115–132. [Google Scholar]
  29. O'Donnell K., Kistler H.C., Cigelnik E. Multiple evolutionary origins of the fungus causing Panama disease of banana: concordant evidence from nuclear and mitochondrial gene genealogies. Proceedings of the National Academy of Sciences of the United States of America. 1998;95:2044–2049. doi: 10.1073/pnas.95.5.2044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Osiru M., Adipala E., Olanya O.M. Occurrence and distribution of Alternaria leaf petiole and stem blight on sweetpotato in Uganda. Plant Pathology Journal. 2007;6(2):112–119. [Google Scholar]
  31. Osiru M.O., Adipala E., Olanya O.M. Leaf petiol and stem blight of sweet potato caused by Alternaria bataticola in Uganda. Plant Pathology Journal. 2008;7(1):118–119. [Google Scholar]
  32. Page R.D.M. TreeView: an application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences. 1996;12:357–358. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  33. Rayner R.W. Commonwealth Mycological Institute; Kew, UK: 1970. A Mycological Colour Chart. [Google Scholar]
  34. Rodrigues T.T.M.S., Berbee M.L., Simmons E.G. First report of Alternaria tomatophila and A. grandis causing early blight on tomato and potato in Brazil. New Disease Reports. 2010;22:28. [Google Scholar]
  35. Schubert K., Groenewald J.Z., Braun U. Biodiversity in the Cladosporium herbarum complex (Davidiellaceae, Capnodiales) with standardisation of methods for Cladosporium taxonomy and diagnostics. Studies in Mycology. 2007;58:105–156. doi: 10.3114/sim.2007.58.05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Simmons E.G. Alternaria themes and variations (74–105) Mycotaxon. 1994;50:219–270. [Google Scholar]
  37. Simmons E.G. Alternaria themes and variations (112–144) Mycotaxon. 1995;55:55–163. [Google Scholar]
  38. Simmons E.G. Alternaria themes and variations (151–223) Mycotaxon. 1997;65:1–91. [Google Scholar]
  39. Simmons E.G. Alternaria themes and variations (244–286). Species on Solanaceae. Mycotaxon. 2000;75:1–115. [Google Scholar]
  40. Simmons E.G. CBS Fungal Biodiversity Centre; Utrecht, Netherlands: 2007. Alternaria: an Identification Manual. CBS Biodiversity Series 6. [Google Scholar]
  41. Sung G.-H., Sung J.-M., Hywel-Jones N.L. A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution. 2007;44:1204–1223. doi: 10.1016/j.ympev.2007.03.011. [DOI] [PubMed] [Google Scholar]
  42. Thomma B.P.H.J. Alternaria spp.: from general saprophyte to specific parasite. Molecular Plant Pathology. 2003;4:225–236. doi: 10.1046/j.1364-3703.2003.00173.x. [DOI] [PubMed] [Google Scholar]
  43. Waals J.E. van der, Korsten L., Slippers B. Genetic diversity among Alternaria solani isolates from potatoes in South Africa. Plant Disease. 2004;88:959–964. doi: 10.1094/PDIS.2004.88.9.959. [DOI] [PubMed] [Google Scholar]
  44. White T.J., Bruns T., Lee S. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols: a Guide to Methods and Applications. Academic Press; San Diego, California, USA: 1990. pp. 315–322. [Google Scholar]
  45. Woudenberg J.H.C., Groenewald J.Z., Binder M. Alternaria redefined. Studies in Mycology. 2013;75:171–212. doi: 10.3114/sim0015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Wu H.C., Wu W.S. Sporulation, pathogenicity and chemical control of Alternaria protenta a new seedborne pathogen on sunflower. Australasian Plant Pathology. 2003;32:309–312. [Google Scholar]
  47. Zitter T.A., Drennan J.L. Proceedings in the 20th Annual Tomato Disease Workshop. Ohio State University; Ohio: 2005. Shift in performance of fungicides for the control of tomato early blight; pp. 28–30. [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

RESOURCES