Skip to main content
Studies in Mycology logoLink to Studies in Mycology
. 2014 Sep 22;78:373–451. doi: 10.1016/j.simyco.2014.09.002

A taxonomic and phylogenetic revision of Penicillium section Aspergilloides

J Houbraken 1,, CM Visagie 1, M Meijer 1, JC Frisvad 2, PE Busby 3, JI Pitt 4, KA Seifert 5, G Louis-Seize 5, R Demirel 6, N Yilmaz 1, K Jacobs 7,, M Christensen 8, RA Samson 1
PMCID: PMC4255628  PMID: 25492984

Abstract

Species belonging to Penicillium section Aspergilloides have a world-wide distribution with P. glabrum, P. spinulosum and P. thomii the most well-known species of this section. These species occur commonly and can be isolated from many substrates including soil, food, bark and indoor environments. The taxonomy of these species has been investigated several times using various techniques, but species delimitation remains difficult. In the present study, 349 strains belonging to section Aspergilloides were subjected to multilocus molecular phylogenetic analyses using partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) sequences. Section Aspergilloides is subdivided into 12 clades and 51 species. Twenty-five species are described here as new and P. yezoense, a species originally described without a Latin diagnosis, is validated. Species belonging to section Aspergilloides are phenotypically similar and most have monoverticillate conidiophores and grow moderately or quickly on agar media. The most important characters to distinguish these species were colony sizes on agar media, growth at 30 °C, ornamentation and shape of conidia, sclerotium production and stipe roughness.

Key words: Eurotiales, Soil fungi, Multigene phylogeny, ITS barcoding

Introduction

In the classification of Raper & Thom (1949), Penicillia that produce monoverticillate conidiophores were placed in the Monoverticillata group. They divided this group into nine series based on colony texture, production of sclerotia and/or cleistothecia and length of conidiophores. A series of species with irregularly branched conidiophores was also included in this classification, namely series Ramigena fide Raper & Thom. Pitt (1980) later excluded this series from his circumscription of subgenus Aspergilloides. In Pitt's classification, subgenus Aspergilloides only included species in which the majority of conidiophore stipes are well defined and terminate in monoverticillate penicilli (Pitt 1980). Additionally, he introduced sections Aspergilloides and Exilicaulis in subgenus Aspergilloides based on the presence or absence of a swelling at the stipe apex. Peterson (2000) was among the first to study the infrageneric relations in Penicillium using DNA sequence data. Based on a phylogeny of nrDNA sequences, the genus was divided into six groups with group 2 containing species mainly belonging to Pitt's section Aspergilloides (P. glabrum, P. purpurescens, P. spinulosum, P. fuscum (syn. E. pinetorum), P. thomii, P. lividum, P. lapidosum (syn. E. lapidosum) and P. asperosporum). Houbraken & Samson (2011) studied the phylogeny of Penicillium in more detail using a combined data set of four genes. Based on the inferred phylogenetic relationships among the Penicillia, they proposed a sectional classification and subdivided Penicillium into two subgenera and 25 sections, with section Aspergilloides being one of them. With exception of P. lapidosum, all species assigned to Peterson's group 2 were included in the re-circumscribed section Aspergilloides and an additional twelve species were included. The majority of species belonging to section Aspergilloides are predominantly monoverticillate and most grow quickly on agar media (Pitt 1980, Houbraken & Samson 2011).

The most well-known species in section Aspergilloides are P. glabrum and P. spinulosum. Phenotype-based identification of these species is problematic and the taxonomy has been studied several times. Raper & Thom (1949) distinguished P. spinulosum from P. glabrum based on colony texture: the colony surface of P. spinulosum was stated to be “loose textured” while P. glabrum was “strictly velvety”. This distinction was also adopted by Ramírez (1982). Pitt (1980) primarily separated P. glabrum from P. spinulosum by conidial wall texture, which was stated to be “smooth or at most finely roughened” for P. glabrum and “rugose or spinose” for P. spinulosum. However, P. spinulosum isolates with smooth to finely roughened conidia were also accepted in his definition of the species, and then the floccose texture of the colony was the key character to separate P. spinulosum from P. glabrum. In 1990, the Subcommission on Penicillium and Aspergillus Systematics (SPAS, currently known as the International Commission on Penicillium and Aspergillus, ICPA) investigated the taxonomy of P. glabrum, P. spinulosum and the related species P. purpurescens and P. montanense (Pitt et al. 1990). Colony diameters on Czapek yeast extract agar (CYA) and 25 % glycerol nitrate agar (G25N), conidial wall texture and width of the phialides proved to be valuable characters for the identification of these species. However, four of the 15 strains could not be identified, indicating the difficulty of a phenotype-based identification of these species and/or the presence of cryptic species. Although P. spinulosum, P. glabrum, P. purpurescens and P. montanense are difficult to distinguish phenotypically, Peterson (2000) could identify them based on nrDNA sequences. These species were closely related in their nrDNA (ITS barcode, including partial LSU) sequences, but displayed 4–8 nucleotide substitutions between each of the pairings. The taxonomy of the “Penicillium glabrum complex” was also studied using partial β-tubulin and calmodulin sequences (Barreto et al. 2011). Based on this data, P. glabrum and P. spinulosum could be clearly distinguished.

In this study, we delimitate Penicillium section Aspergilloides using a phylogenetic analysis of a combined data set of partial β-tubulin (BenA), calmodulin (CaM) and RNA polymerase II second largest subunit (RPB2) gene sequences. Subsequently, the phylogenetic relationships among species of section Aspergilloides were investigated and species limits were proposed based on the Genealogical Concordance Phylogenetic Species Recognition (GCPSR) concept (Taylor et al. 2000), supplemented with physiological and macro- and microscopic characters. We included 349 strains assigned to section Aspergilloides in our analyses, including type and freshly isolated strains. ITS barcodes were generated and investigated for their suitability for species identification.

Material and methods

Fungal strains

Isolates were obtained from different culture collections (CBS, CBS-KNAW Fungal Biodiversity Centre, Utrecht, the Netherlands; IBT, culture collection of the DTU Systems Biology, Lyngby, Denmark; and FRR, culture collection of CSIRO Animal, Food and Health Sciences, North Ryde, Australia). Fresh isolates deposited in the working collection of the Department of Applied and Industrial Mycology (DTO), housed at CBS, were also included in this study and a selection of those strains were accessioned to the CBS culture collection. An overview of strains is listed in Table 1.

Table 1.

Strains used in this study.

Species name Collection no. Substrate, location GenBank accession nr.
ITS BenA RPB2 CaM
P. ardesiacum DTO 093-C1 = CBS 497.73 = ATCC 24719 = FRR 1479 = IFO 30540 = IMI 174719 = VKM F-1749 Stems of Vitis vinifera during drying; Alma-Ata Region, Kazachstan; ex-neotype of P. ardesiacum KM189565 KM088805 KM089577 KM089190
P. armarii DTO 235-F1 = CBS 138171 House Dust; Hobart, Australia; ex-type of P. armarii KM189758 KM089007 KM089781 KM089394
DTO 235-F3 House Dust; Hobart, Australia KM189759 KM089008 KM089782 KM089395
DTO 236-D3 House Dust; Hobart, Australia KM189760 KM089009 KM089783 KM089396
P. athertonense DTO 030-C2 = CBS 138161 Forest soil (wet); Atherton Tableland, Queensland, Australia KM189462 KM088690 KM089462 KM089075
P. aurantioviolaceum DTO 225-E4 = CBS 137777 = NRRL 762 Unrecorded source; Puerto Rico; ex-neotype of P. aurantioviolaceum KM189756 KM089005 KM089779 KM089392
DTO 091-A1 = CBS 347.59 = FAT 340 = IFO 6031 = IMI 068221 Soil; Japan; ex-type of P. thomii var. flavescens nom. inval. KM189552 KM088791 KM089563 KM089176
DTO 085-A7 Soil, 2 mtr. from road; Ranoma fana, Madagascar KM189542 KM088780 KM089552 KM089165
DTO 253-H3 = CBS 137779 Leaves; Zambia KM189763 KM089012 KM089786 KM089399
P. austroafricanum DTO 133-G5 = CBS 137773 Leaf of Phaenocoma prolifera; Harold Porter Botanical Garden Western Cape, South Africa; ex-type of P. austroafricanum KM189610 KM088854 KM089628 KM089241
DTO 132-D6 Leaf of Phaenocoma prolifera; Harold Porter Botanical Garden Western Cape, South Africa KM189609 KM088853 KM089627 KM089240
DTO 180-E3 = CV 2851 = KAS 3946 Fynbos soil; Riverlands, South Africa KM189637 KM088881 KM089655 KM089268
DTO 182-B3 = CBS 137756 = CV 851 = KAS 4183 = DAOM 241138 Air sample from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189656 KM088900 KM089674 KM089287
DTO 182-C7 = CBS 137757 = CV 905 = KAS 4197 = DAOM 241141 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189660 KM088904 KM089678 KM089291
DTO 182-H2 = CBS 137758 = CV 1145 = KAS 3974 = DAOM 241140 Mite inside Protea repens infructescens; Riverlands, Malmesbury, Western Cape, South Africa KM189674 KM088919 KM089693 KM089306
DTO 182-H3 = CBS 137759 = CV 1148 = KAS 3975 = DAOM 241139 Mite inside Protea repens infructescens; Riverlands, Malmesbury, Western Cape, South Africa KM189675 KM088920 KM089694 KM089307
P. brunneoconidiatum DTO 182-E4 = CBS 137732 = CV 949 = KAS 4214 = DAOM 241359 Soil; Fynbos, Riverlands, Malmesbury, Western Cape, South Africa; ex-type of P. brunneoconidiatum KM189666 KM088911 KM089685 KM089298
DTO 182-B7 = CV 875 = KAS 4187 Fynbos soil; Riverlands, South Africa KM189657 KM088901 KM089675 KM089288
DTO 182-C6 = CV 901 = KAS 4196 Fynbos soil; Riverlands, South Africa KM189659 KM088903 KM089677 KM089290
DTO 182-D8 = CV 935 = KAS 4209 Fynbos soil; Riverlands, South Africa KM189663 KM088908 KM089682 KM089295
DTO 182-E2 = CV 946 = KAS 4212 Fynbos soil; Riverlands, South Africa KM189665 KM088910 KM089684 KM089297
DTO 182-F2 = CV 970 = KAS 4222 Fynbos soil; Riverlands, South Africa KM189670 KM088915 KM089689 KM089302
DTO 185-F4 = CV 915 Fynbos soil; Riverlands, South Africa KM189691 KM088937 KM089711 KM089324
DTO 185-F6 = CV 921 Fynbos soil; Riverlands, South Africa KM189692 KM088938 KM089712 KM089325
P. bussumense DTO 018-B2 = CBS 138160 Soil; Spanderswoud, Bussum, the Netherlands; ex-type of P. bussumense KM189458 KM088685 KM089457 KM089070
P. cartierense DTO 092-H9 = CBS 137956 Heathland soil; Cartier Heide, Eersel, the Netherlands; ex-type of P. cartierense KM189564 KM088804 KM089576 KM089189
DTO 091-A6 = CBS 863.71 Agricultural soil; Wageningen, the Netherlands KM189557 KM088796 KM089568 KM089181
P. clavistipitatum DTO 182-E5 = CBS 138650 = CV 951 = KAS 4216 = DAOM 241125 Soil; Fynbos, Riverlands, South Africa; ex-type of P. clavistipitatum KM189667 KM088912 KM089686 KM089299
DTO 182-E8 = CV 960 = KAS 4219 = DAOM 241128 Fynbos soil; Riverlands, South Africa KM189668 KM088913 KM089687 KM089300
DTO 182-E9 = CV 962 = KAS 4220 = DAOM 241126 Fynbos soil; Riverlands, South Africa KM189669 KM088914 KM089688 KM089301
P. contaminatum DTO 091-A3 = CBS 345.52 = IMI 049057 Contaminant; Surrey, Kew, UK; ex-type of P. contaminatum KM189554 KM088793 KM089565 KM089178
DTO 296-G9 = CBS 346.59 Acidic soil; Unknown location KM189782 KM089032 KM089806 KM089419
P. crocicola DTO 104-E2 = CBS 745.70 = ATCC 18313 = QM 7778 Corm of Crocus sativus; Japan; ex-isotype of P. crocicola KM189581 KM088824 KM089597 KM089210
DTO 082-A9 = CBS 137772 Archive; Den Bosch, the Netherlands KM189532 KM088770 KM089542 KM089155
DTO 086-C2 Swab sample taken in archive; Den Bosch, the Netherlands KM189545 KM088783 KM089555 KM089168
DTO 090-F5 Swab sample in archive; Asperen, the Netherlands KM189548 KM088786 KM089558 KM089171
DTO 181-G2 = CBS 137754 = CV 461 = KAS 4133 = DAOM 241137 Protea repens infructescens; Stellenbosch mountain, Western Cape, South Africa KM189651 KM088895 KM089669 KM089282
DTO 210-F5 = CBS 132168 = WSF 2215 Soil; A1 horizon Soil; S. Wisconsin maple-elm-ash forests, deciduous forest; Wisconsin; USA KM189750 KM088999 KM089773 KM089386
DTO 265-H7 Grapevine; Ajabshir, Iran KM189768 KM089018 KM089792 KM089405
DTO 266-A4 = CBS 137780 Grapevine; Malekan, Iran KM189769 KM089019 KM089793 KM089406
P. flavisclerotiatum DTO 180-I1 = CBS 137749 = CV 77 = KAS 4173 = DAOM 241158 Soil from Fynbos; Stellenbosch mountain, Western Cape, South Africa; ex-type of P. flavisclerotiatum KM189643 KM088887 KM089661 KM089274
DTO 180-I8 = CBS 137750 = CV 100 = KAS 3958 = DAOM 241157 Soil from Fynbos; Stellenbosch mountain, Western Cape, South Africa KM189644 KM088888 KM089662 KM089275
DTO 181-H7 = CBS 137748 = CV 537 = KAS 4149 = DAOM 241156 Soil from Fynbos; Stellenbosch mountain, Western Cape, South Africa KM189653 KM088897 KM089671 KM089284
DTO 182-B2 = CV 839 = KAS 4181 = DAOM 241155 Air sample; Riverlands, South Africa KM189655 KM088899 KM089673 KM089286
DTO 182-D3 = CV 924 = KAS 4203 = DAOM 241154 Fynbos soil; Riverlands, South Africa KM189661 KM088906 KM089680 KM089293
DTO 182-D4 = CBS 137751 = CV 925 = KAS 4204 = DAOM 241153 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189662 KM088907 KM089681 KM089294
DTO 182-D9 = CBS 137752 = CV 938 = KAS 4210 = DAOM 241152 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189664 KM088909 KM089683 KM089296
DTO 182-F3 = CBS 137753 = CV 971 = KAS 4223 = DAOM 241151 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189671 KM088916 KM089690 KM089303
DTO 184-D8 = CV 65 Fynbos soil; Stellenbosch, South Africa KM189686 KM088932 KM089706 KM089319
DTO 184-D9 = CV 76 Fynbos soil; Stellenbosch, South Africa KM189687 KM088933 KM089707 KM089320
DTO 184-E1 = CV 80 Fynbos soil; Stellenbosch, South Africa KM189688 KM088934 KM089708 KM089321
DTO 185-A5 = CV 545 Fynbos soil; Stellenbosch, South Africa KM189689 KM088935 KM089709 KM089322
DTO 185-B1 = CV 553 Fynbos soil; Stellenbosch, South Africa KM189690 KM088936 KM089710 KM089323
P. frequentans DTO 070-E4 = CBS 105.11 Unrecorded source; ex-type of P. frequentans KM189525 KM088762 KM089534 KM089147
DTO 070-E2 = CBS 229.28 = FRR 751 = IMI 092231 = MUCL 29111 = NRRL 751 Soil under conifer; Poland; ex-type of P. paczowskii KM189524 KM088761 KM089533 KM089146
DTO 053-F2 = IBT 5635 Citrus extract; Denmark KM189485 KM088722 KM089494 KM089107
DTO 053-F3 = IBT 6178 Unknown source; Denmark KM189486 KM088723 KM089495 KM089108
DTO 053-F4 = IBT 6422 Indoor air; Denmark KM189487 KM088724 KM089496 KM089109
DTO 053-F5 = IBT 6552 = NRRLA-23305 Barley; Denmark KM189488 KM088725 KM089497 KM089110
DTO 053-F6 = IBT 18381 = CCRC 32565 Melon seed; Hsinchu City, Taiwan KM189489 KM088726 KM089498 KM089111
DTO 053-F8 = IBT 23011 Air of margarin factory; Vejle, Denmark KM189491 KM088728 KM089500 KM089113
DTO 053-G1 = IBT 23188 Saltern; Secovlje salt pans, Slovenia KM189492 KM088729 KM089501 KM089114
DTO 053-G2 = IBT 23304 Artic soil; Svalbard, Norway KM189493 KM088730 KM089502 KM089115
DTO 053-G3 = IBT 24700 Air of factory; Sweden KM189494 KM088731 KM089503 KM089116
DTO 053-G4 = IBT 24773 Saltern; Secovlje salt pans, Slovenia KM189495 KM088732 KM089504 KM089117
DTO 053-G5 = IBT 24777 Saltern; Secovlje salt pans, Slovenia KM189496 KM088733 KM089505 KM089118
DTO 053-G6 = IBT 26406 Ice; Pakitsoq, Greenland KM189497 KM088734 KM089506 KM089119
DTO 053-G7 = IBT 26412 Ice; Pakitsoq, Greenland KM189498 KM088735 KM089507 KM089120
DTO 055-B9 Indoor enviroment; Munchen, Germany KM189499 KM088736 KM089508 KM089121
P. frequentans DTO 174-A2 = CBS 138169 Leaf of Eucalyptus species; Lavers hill, Tasmania, Australia KM189620 KM088864 KM089638 KM089251
DTO 249-D1 Artichoke; Finland KM189762 KM089011 KM089785 KM089398
P. fuscum DTO 111-B7 = CBS 127833 = HDAUPII-06-9026 Soil; Sichuan Prov., Kangding County; ex-type of Eladia inflata KM189586 KM088830 KM089603 KM089216
DTO 078-F6 = CBS 203.87 = IBT 16267 Sandy soil collected on the shore of the Beagle Channel; National Park of ‘Lapataya’ (Tierra del Fuego), Argentina; ex-type of P. lapatayae KM189531 KM088768 KM089540 KM089153
DTO 094-D7 = CBS 309.63 = ATCC 18322 Forest soil; Macedonia; ex-type of P. macedonense KM189566 KM088806 KM089578 KM089191
DTO 088-I6 = CBS 295.62 = ATCC 14770 = CCRC 31517 = DSM 2438 = IFO 7743 = IMI 094209 = MUCL 31196 = NRRL 3008 = WSF 15c Pine-birch forest soil; Vilas County, Wisconsin, USA; ex-type of P. pinetorum and E. pinetorum and ex-neotype of Citromyces fuscus KM189547 KM088785 KM089557 KM089170
DTO 097-F1 = CBS 235.60 = ATCC 18483 = QM 8040 Forest soil; Russia; ex-type of P. silvaticum KM189568 KM088811 KM089583 KM089196
DTO 006-I4 = CBS 139.72 Soil; Alaska, USA KM189452 KM088676 KM089448 KM089061
DTO 096-I5 = CBS 311.63 Forest soil; Netherlands KM189567 KM088809 KM089581 KM089194
DTO 181-H5 = CV 531 = KAS 4147 = DAOM 241356 Fynbos soil; Stellenbosch, South Africa KM189652 KM088896 KM089670 KM089283
DTO 202-C9 = CBS 129393 = WSF 15-C Soil; A1 horizon Soil; Wisconsin conifer-hardwood forests, mixed forest; Wisconsin; USA KM189724 KM088973 KM089747 KM089360
DTO 205-H9 = CBS 129541 = RMF 8868 Soil; A1 horizon Soil; 40 yr old eastern white pine plantation, conifer forest, plantation; Coweeta Long-term Ecological Research (LTER) site; near Otto; North Carolina; USA KM189730 KM088979 KM089753 KM089366
DTO 208-D6 = CBS 129806 = RMF 7991,GW 4-4 Soil; lodgepole pine forest, conifer forest; Yellowstone National Park; Wyoming; USA KM189737 KM088986 KM089760 KM089373
DTO 209-A9 = CBS 130039 = RMF 7778 Soil; A1 horizon Soil; lodgepole pine forest, conifer forest; adjacent to Cinnabar Park; Medicine Bow National Forest; Wyoming; USA KM189743 KM088992 KM089766 KM089379
DTO 209-F6 = CBS 130199 = RMF 201 Soil; A1 horizon Soil; lodgepole pine forest, conifer forest; T16N R81W S28; west slope of Snowy Range; Wyoming; USA KM189748 KM088997 KM089771 KM089384
DTO 290-I7 = CBS 138.72 Soil; Alaska, USA KM189778 KM089028 KM089802 KM089415
P. fusisporum DTO 228-I3 = CBS 137778 Protea roupelliae var. roupelliae; Buffelskloof, South Africa KM189757 KM089006 KM089780 KM089393
P. glabrum DTO 279-F2 = CBS 138433 = NRRL 766 Unrecorded source; Unknown; ex-neotype of P. aurantiobrunneum KM189775 KM089025 KM089799 KM089412
DTO 076-G8 = CBS 125543 = IMI 91944 = IBT 22658 = DAOM 227653 Unrecorded source; ex-neotype of P. glabrum KM189530 KM088767 KM089539 KM089152
DTO 265-A9 = CBS 171.81 = IJFM 5072 = IMI 253790 = VKM F-2186 Culture contaminant of CBS 171.81; Utrecht, the Netherlands; ex-type of P. aragonense KM189767 KM089017 KM089791 KM089404
DTO 301-I3 = CBS 260.29 = IMI 092242 = LSHB P79 = MUCL 28650 = MUCL 29119 = NRRL 774 Unrecorded source; Belgium; ex-type of P. flavidorsum KM189798 KM089048 KM089822 KM089435
DTO 301-H8 = CBS 213.28 = FRR 770 = IMI 092265 = IMI 092265ii = LSHB P89 = MUCL 29118 = NRRL 770 Soil under conifer ; Tatry Mountains, Poland; ex-type of P. oledzkii KM189795 KM089045 KM089819 KM089432
DTO 301-I9 = CBS 344.59 = ATCC 18486 = IFO 5359 = IMI 068617 = NRRL 3460 = QM 8152 Butter; Japan; ex-type of P. spinuloramigenum KM189803 KM089053 KM089827 KM089440
DTO 301-I1 = CBS 228.28 = ATHUM 2896 = FRR 752 = IMI 092232 = LSHB P63 = MUCL 29114 = NRRL 752 Soil under conifer ; Poznan area, Poland; ex-type of P. terlikowskii KM189797 KM089047 KM089821 KM089434
DTO 005-G6 Cork; Portugal KM189447 KM088671 KM089443 KM089056
DTO 012-D5 Wood; Unknown KM189453 KM088678 KM089450 KM089063
P. glabrum DTO 015-I6 Soil; Los Alerces National Park, Chubut, Argentina KM189454 KM088681 KM089453 KM089066
DTO 015-I7 Soil; Los Alerces National Park, Chubut, Argentina KM189455 KM088682 KM089454 KM089067
DTO 015-I9 Soil; Los Alerces National Park, Chubut, Argentina KM189456 KM088683 KM089455 KM089068
DTO 016-A5 Soil; Puerto Piramides, Valdez peninsula, Chubet, Argentina KM189457 KM088684 KM089456 KM089069
DTO 036-B5 = CBS 171.81 = IJFM 5072 = IMI 253790 = VKM F-2186 Air; Madrid, Spain KM189468 KM088700 KM089472 KM089085
DTO 039-F6 = CBS 115810 Indoor environment; Germany KM189477 KM088712 KM089484 KM089097
DTO 056-H9 = FRR 6092 Living leaf of Leptospermum polygofolium; Collaroy, NSW, Australia KM189500 KM088737 KM089509 KM089122
DTO 056-I1 = FRR 6093 Bark of Banksia ericifolia; Lane Cove National Park, NSW, Australia KM189501 KM088738 KM089510 KM089123
DTO 056-I2 = FRR 6094 Living leaf of Acacia suaveolans; Collaroy, NSW, Australia KM189502 KM088739 KM089511 KM089124
DTO 057-A4 = FRR 6095 Litter under Banksia integrifolia; Collaroy, NSW, Australia KM189513 KM088750 KM089522 KM089135
DTO 057-A5 = FRR 6096 Soil; Roadside near Lockhart, NSW, Australia KM189514 KM088751 KM089523 KM089136
DTO 057-A7 = FRR 6097 Tree root; Katandra Nature Reserve, NSW, Australia KM189515 KM088752 KM089524 KM089137
DTO 057-B1 = FRR 6098 Soil, Eucalyptus forest; near Hamilton, Tas, Australia KM189516 KM088753 KM089525 KM089138
DTO 057-B3 = FRR 6099 Living leaf of Leptospermum polygofolium; Collaroy, NSW, Australia KM189517 KM088754 KM089526 KM089139
DTO 057-B4 = FRR 6100 From highly disturbed soil under Banksia integrifolia; School grounds, Terrigal, NSW, Australia KM189518 KM088755 KM089527 KM089140
DTO 067-E8 Cork; Portugal KM189520 KM088757 KM089529 KM089142
DTO 067-F2 Cork; Portugal KM189521 KM088758 KM089530 KM089143
DTO 067-F4 Cork; Portugal KM189522 KM088759 KM089531 KM089144
DTO 084-F6 = CBS 127704 Cork; Portugal KM189533 KM088771 KM089543 KM089156
DTO 084-F7 = CBS 127703 Cork; Portugal KM189534 KM088772 KM089544 KM089157
DTO 084-G2 = CBS 126333 Cork; Portugal KM189536 KM088774 KM089546 KM089159
DTO 084-G3 = CBS 126336 Cork; Portugal KM189537 KM088775 KM089547 KM089160
DTO 084-G7 = CBS 127700 Cork; Portugal KM189540 KM088778 KM089550 KM089163
DTO 085-B1 = CBS 138164 Soil, 2 mtr. from road; Ranoma fana, Madagascar KM189544 KM088782 KM089554 KM089167
DTO 087-H6 = CBS 138165 Swab sample taken in warehouse for fruits; the Netherlands KM189546 KM088784 KM089556 KM089169
DTO 099-A6 Soil in oak forest, taken at 0–10 cm depth; Aîn Hamraia, Tunesia KM189571 KM088814 KM089586 KM089199
DTO 119-E6 Soil in oak forest, taken at 10–20 cm depth; Fej Errih, Tunesia KM189594 KM088838 KM089612 KM089225
DTO 121-B6 Soil in oak forest, taken at 0–10 cm depth; Ras Rajel, Tunesia KM189603 KM088847 KM089621 KM089234
DTO 121-D9 Soil in oak forest, taken at 10–20 cm depth; Ras Rajel, Tunesia KM189604 KM088848 KM089622 KM089235
DTO 123-G9 Inside of chestnut; the Netherlands KM189605 KM088849 KM089623 KM089236
DTO 134-B4 = CBS 138166 Stone inside nectarine; the Netherlands KM189611 KM088855 KM089629 KM089242
DTO 153-H2 Cork; Algeria KM189612 KM088856 KM089630 KM089243
DTO 153-H4 Cork; Algeria KM189613 KM088857 KM089631 KM089244
DTO 153-H7 Cork; Algeria KM189614 KM088858 KM089632 KM089245
DTO 154-A1 Cork; Algeria KM189615 KM088859 KM089633 KM089246
DTO 154-F2 Cork; Algeria KM189616 KM088860 KM089634 KM089247
DTO 154-H3 Cork; Algeria KM189617 KM088861 KM089635 KM089248
DTO 155-C8 Cork; Algeria KM189618 KM088862 KM089636 KM089249
DTO 174-A1 Leaf of Eucryphia cordifolia; Tasmania, Australia KM189619 KM088863 KM089637 KM089250
P. glabrum DTO 174-A3 Leaf of Eucalyptus sp.; Lavers hill, Tasmania, Australia KM189621 KM088865 KM089639 KM089252
DTO 174-A7 Leaf of Eucalyptus ovata; Snake Gully, Kangaroo Island, Australia KM189622 KM088866 KM089640 KM089253
DTO 174-D7 Leaf of Eucalyptus viminalis; Kangaroo Island, Australia KM189624 KM088868 KM089642 KM089255
DTO 174-D9 Leaf of Eucalyptus sp.; Kangaroo Island, Australia KM189626 KM088870 KM089644 KM089257
DTO 178-I9 = KAS 3838 House dust; Stellenbosch, South Africa KM189631 KM088875 KM089649 KM089262
DTO 180-F8 = CV 4 = KAS 4125 = DAOM 241361 Air sample; Stellenbosch, South Africa KM189639 KM088883 KM089657 KM089270
DTO 181-C4 = CV 188 = KAS 4054 = DAOM 241132 Protea repens infructescence bract; Stellenbosch, South Africa KM189647 KM088891 KM089665 KM089278
DTO 182-H6 = CV 1181 = KAS 3980 = DAOM 241365 Mite inside Protea repens infructescence; Riverlands, South Africa KM189677 KM088922 KM089696 KM089309
DTO 183-B7 = CV 1494 = KAS 4015 = DAOM 241364 Protea repens infructescence bract; Riverlands, South Africa KM189683 KM088929 KM089703 KM089316
DTO 189-H9 Soil ; Spanderswoud, the Netherlands KM189694 KM088941 KM089715 KM089328
DTO 197-F9 Air sample; Bakery, Tilburg, The Netherlands KM189718 KM088966 KM089740 KM089353
DTO 203-I4 Soil; Aspear Island, Iran KM189726 KM088975 KM089749 KM089362
DTO 206-B4 = CBS 129602 = RMF 9521 Soil; Iraq KM189732 KM088981 KM089755 KM089368
DTO 206-B6 = CBS 129606 = RMF 9242 Soil; A1 horizon Soil; maple woods, deciduous forest; Cedar Creek Long-term Ecological Research (LTER) site; near East Bethel; Minnesota; USA KM189733 KM088982 KM089756 KM089369
DTO 208-B4 = CBS 129784 = RMF 8573 = RMF 8026 Soil; A1 horizon Soil; tallgrass prairie, grassland; Konza Prairie Research Natural Area; Long-term Ecological Research site (LTER); near Manhattan; Kansas; USA KM189736 KM088985 KM089759 KM089372
DTO 259-C6 Pile of moss; Eindhoven, the Netherlands KM189764 KM089013 KM089787 KM089400
DTO 262-G8 Soft drink; the Netherlands KM189765 KM089014 KM089788 KM089401
DTO 266-A8 Grapevine; Maragheh, Iran KM189770 KM089020 KM089794 KM089407
DTO 269-E1 House dust; South Africa KM189771 KM089021 KM089795 KM089408
DTO 296-H5 = CBS 131040 = RMF WT 97 Soil; Near Zurich; Switzerland KM189785 KM089035 KM089809 KM089422
DTO 297-D1 = CBS 328.48 = ATCC 10444 = IMI 040234 = LSHB Ad6 = NRRL 1915 = QM 1924 Unrecorded source KM189790 KM089040 KM089814 KM089427
P. grancanariae DTO 076-F3 = CBS 687.77 = IJFM 3745 = IMI 253783 Air; Canary Islands, Gran Canaria, Spain; ex-type of P. grancanariae KM189529 KM088766 KM089538 KM089151
P. grevilleicola DTO 174-E6 = CBS 137775 Leaf of Grevillea ilicifolia; Kingscote, Kangaroo Island; Australia; ex-type of P. grevilleicola KM189630 KM088874 KM089648 KM089261
DTO 174-E4 Leaf of Grevillea ilicifolia; Kingscote, Kangaroo Island; Australia KM189629 KM088873 KM089647 KM089260
P. hoeksii DTO 192-H4 = CBS 137776 Soil under Compact Rush (Juncus conglomeratus); De Ronde Put, Postel, Belgium; ex-type of P. hoeksii KM189707 KM088954 KM089728 KM089341
DTO 068-D9 = CBS 137952 Air in factory; Goes, the Netherlands KM189523 KM088760 KM089532 KM089145
P. infra-aurantiacum DTO 183-C3 = CBS 137747 = CV 1518 = KAS 4022 = DAOM 241145 Bracts of Protea repens infructescens; Riverlands, Malmesbury, Western Cape, South Africa; ex-type of P. infra-aurantiacum KM189684 KM088930 KM089704 KM089317
DTO 181-F1 = CBS 137746 = CV 362 = KAS 4118 = DAOM 241146 Protea repens infructescens; Stellenbosch mountain, Western Cape, South Africa KM189650 KM088894 KM089668 KM089281
P. jejuense DTO 174-D3 = CBS 137774 Leaf of Eucalyptus sp.; Lavers hill, Tasmania, Australia KM189623 KM088867 KM089641 KM089254
DTO 182-H7 = CBS 137755 = CV 1189 = KAS 3981 = DAOM 241142 Mite inside Protea repens infructescens; Riverlands, Malmesbury, Western Cape, South Africa KM189678 KM088923 KM089697 KM089310
P. kananaskense DTO 296-G7 = CBS 530.93 = ATCC 90282 = DAOM 216105 = IBT 11775 = IMI 356791 Soil, FH horizon, in a Pinus contorta var. latifolia forest; Kananaskis Valley, Alberta, Canada; ex-type of P. kananaskense KM189780 KM089030 KM089804 KM089417
DTO 193-A3 Moses under Myrica gale (Bog Myrtle); De Ronde Put, Postel, Belgium KM189710 KM088957 KM089731 KM089344
P. kiamaense DTO 056-I6 = CBS 137947 = FRR 6087 Soil; Barren Grounds National Park, NSW, Australia; ex-type of P. kiamaense KM189506 KM088743 KM089515 KM089128
P. lividum DTO 105-H6 = CBS 347.48 = ATCC 14941 = FRR 3407 = IFO 7740 = IHEM 4375 = IMI 099468 = MUCL 31326 = NRRL 3407 = DAOM 226266 Unrecorded source; Scotland; ex-neotype of P. lividum KM189582 KM088825 KM089598 KM089211
DTO 006-H8 = CBS 287.65 Litter of Quercus sp.; Lancashire, Grange-over-Sands, Merlewood Res. Station, UK KM189450 KM088674 KM089446 KM089059
DTO 198-I2 = CBS 128415 = WSF 3528 Soil; amorphus peat; above water table; cedar-fir forests, wetland, conifer forest; Wisconsin; USA KM189720 KM088968 KM089742 KM089355
DTO 297-D8 = CBS 132166 = WSF 3895 Soil; Wisconsin; USA KM189794 KM089044 KM089818 KM089431
P. longicatenatum DTO 180-D9 = CBS 137735 = CV 2847 = KAS 3943 = DAOM 241119 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa; ex-type of P. longicatenatum KM189636 KM088880 KM089654 KM089267
DTO 099-C6 Soil in oak forest, taken at 10–20 cm depth; Aîn Hamraia, Tunesia KM189573 KM088816 KM089588 KM089201
DTO 120-H9 Soil in oak forest, taken at 0–10 cm depth; Ras Rajel, Tunesia KM189601 KM088845 KM089619 KM089232
DTO 174-D8 Leaf of Dodonea sp.; Australia KM189625 KM088869 KM089643 KM089256
DTO 174-E2 Fruiting body on leaf of unknown sp; Kangaroo Island, Australia KM189627 KM088871 KM089645 KM089258
DTO 174-E3 Fruiting body on leaf of unknown sp; Kangaroo Island, Australia KM189628 KM088872 KM089646 KM089259
DTO 180-C8 = CBS 137742 = CV 2829 = KAS 3957 = DAOM 241120 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189633 KM088877 KM089651 KM089264
DTO 180-D2 = CBS 137734 = CV 2840 = KAS 3935 = DAOM 241118 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189634 KM088878 KM089652 KM089265
DTO 180-D6CV 2843 = KAS 3940 Fynbos soil; Riverlands, South Africa KM189635 KM088879 KM089653 KM089266
DTO 181-C7 = CBS 137737 = CV 209 = KAS 4069 = DAOM 241122 Mite inside Protea repens infructescens; Stellenbosch mountain, Western Cape, South Africa KM189648 KM088892 KM089666 KM089279
DTO 181-C8 = CV 214 = KAS 4070 Protea repens infructescence bract; Stellenbosch, South Africa KM189649 KM088893 KM089667 KM089280
DTO 182-B8 = CBS 137738 = CV 885 = KAS 4188 = DAOM 241149 Soil from Fynbos; Stellenbosch mountain, Western Cape, South Africa KM189658 KM088902 KM089676 KM089289
DTO 182-G2 = CV 997 = KAS 4231 Mite inside Protea repens infructescence; Riverlands, South Africa KM189672 KM088917 KM089691 KM089304
DTO 182-G6 = CBS 137739 = CV 1036 = KAS 3964 = DAOM 241148 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189673 KM088918 KM089692 KM089305
DTO 182-I9 = CBS 137740 = CV 1300 = KAS 3995 = DAOM 241123 Protea repens infructescens; Riverlands, Malmesbury, Western Cape, South Africa KM189679 KM088925 KM089699 KM089312
DTO 183-A1 = CV 1301 = KAS 3996 Protea repens infructescence bract; Riverlands, South Africa KM189680 KM088926 KM089700 KM089313
DTO 183-A3 = CBS 137741 = CV 1335 = KAS 3999 = DAOM 241147 Soil from Fynbos; Riverlands, Malmesbury, Western Cape, South Africa KM189681 KM088927 KM089701 KM089314
DTO 183-C6 = CV 1585 = KAS 4025 Protea repens infructescence bract; Riverlands, South Africa KM189685 KM088931 KM089705 KM089318
DTO 216-B6 Foliar tissue of Populus angustifolia; Ogden, UT, USA KM189751 KM089000 KM089774 KM089387
P. malmesburiense DTO 182-H5 = CBS 137744 = CV 1180 = KAS 3979 = DAOM 241144 Mite inside Protea repens infructescens; Riverlands, Malmesbury, Western Cape, South Africa; ex-type of P. malmesburiense KM189676 KM088921 KM089695 KM089308
P. malmesburiense DTO 183-A6 = CBS 137745 = CV 1422 = KAS 4003 = DAOM 241143 Protea repens infructescens; Riverlands, Malmesbury, Western Cape, South Africa KM189682 KM088928 KM089702 KM089315
P. montanense DTO 090-I6 = CBS 310.63 = ATCC 14941 = FRR 3407 = IFO 7740 = IHEM 4375 = IMI 099468 = MUCL 31326 = NRRL 3407 = DAOM 226282 Coniferous forest soil; Ravalli Co., Montana, USA; ex-type of P. montanense KM189551 KM088789 KM089561 KM089174
DTO 041-D7 Soil; Poland KM189482 KM088718 KM089490 KM089103
DTO 196-B6 = CBS 126808 = WSF 2021 Soil; amorphus peat; above water table; spruce-larch forests, wetland, conifer forest; Wisconsin; USA KM189713 KM088961 KM089735 KM089348
DTO 196-D2 = CBS 126824 = WSF 3733 = WSF 2021 Soil; amorphus peat; above water table; cedar-fir forests, wetland, conifer forest; Wisconsin; USA KM189714 KM088962 KM089736 KM089349
DTO 196-D4 = CBS 126826 = WSF 3952 Soil; amorphus peat; above water table; open bogs, wetland, shrubland; Wisconsin; USA KM189715 KM088963 KM089737 KM089350
DTO 196-E1 = CBS 126832 = WSF 3124 Soil; amorphus peat; above water table; spruce-larch forests, wetland, conifer forest; Wisconsin; USA KM189716 KM088964 KM089738 KM089351
DTO 196-E2 = CBS 126833 Culture contaminant of WSF 2127 KM189717 KM088965 KM089739 KM089352
DTO 198-I4 = CBS 128418 = WSF 3450 Soil; amorphus peat; above water table; cedar-fir forests, wetland, conifer forest; Wisconsin; USA KM189721 KM088969 KM089743 KM089356
DTO 198-I6 = CBS 128426 = WSF 3315 Soil; amorphus peat; above water table; spruce-larch forests, wetland, conifer forest; Wisconsin; USA KM189722 KM088970 KM089744 KM089357
DTO 208-F3 = CBS 129881 = RMF 8750 Soil; A1 horizon Soil; coniferous forest ecosystem, conifer forest; Andrews Long-term Ecological Research (LTER) site; Willamette National Forest; near Blue River; Oregon; USA KM189740 KM088989 KM089763 KM089376
DTO 208-I7 = CBS 130027 = RMF 7785 Soil; A1 horizon Soil; lodgepole pine forest, conifer forest; adjacent to Cinnabar Park; Medicine Bow National Forest; Wyoming; USA KM189742 KM088991 KM089765 KM089378
DTO 209-F4 = CBS 130197 = RMF 199 Soil; A1 horizon Soil; lodgepole pine forest, conifer forest; T16N R81W S28; west slope of Snowy Range; Wyoming; USA KM189747 KM088996 KM089770 KM089383
DTO 209-F9 = CBS 130202 = RMF 204 Soil; A1 horizon Soil; lodgepole pine forest, conifer forest; T16N R81W S28; west slope of Snowy Range; Wyoming; USA KM189749 KM088998 KM089772 KM089385
DTO 263-I9 Pseudotsuga menziesii var. glauca; White Pass, Cascade Mts. Washington, USA KM189766 KM089015 KM089789 KM089402
P. odoratum DTO 290-I9 = CBS 432.65 = FAT 1138 = IFO 6039 Soil ; Japan; ex-syntype of P. trzebinskianum KM189779 KM089029 KM089803 KM089416
DTO 205-B7 = CBS 294.62 = CBS 129423 = WSF 2000 = DAOM 226269 = ATCC 14769 = DSM 2419 = IFO 7741 = IMI 094208ii = NRRL 3007 = DAOM 226269 Soil; amorphus peat; above water table; spruce-larch forests, wetland, conifer forest; Wisconsin; USA; ex-type of P. odoratum KM189727 KM088976 KM089750 KM089363
DTO 296-H8 = CBS 431.65 = FAT 728 = IAM 7193 = IFO 6038 Soil; Japan; ex-type of P. trzebinskianum KM189788 KM089038 KM089812 KM089425
DTO 198-H8 = CBS 128282 = WSF 3201 Soil; amorphus peat; above water table; spruce-larch forests, wetland, conifer forest; Wisconsin; USA KM189719 KM088967 KM089741 KM089354
DTO 201-B2 = CBS 128274 = WSF 3200 Soil; amorphus peat; above water table; spruce-larch forests, wetland, conifer forest; Wisconsin; USA KM189723 KM088972 KM089746 KM089359
DTO 205-C5 = CBS 129440 = WSF 2002 Soil; amorphus peat; above water table; spruce-larch forests, wetland, conifer forest; Wisconsin; USA KM189728 KM088977 KM089751 KM089364
P. odoratum DTO 206-B7 = CBS 129607 = RMF 9241 Soil; A1 horizon soil; maple woods, deciduous forest; Cedar Creek Long-term Ecological Research (LTER) site; near East Bethel; Minnesota; USA KM189734 KM088983 KM089757 KM089370
DTO 208-E5 = CBS 129874 = RMF 8759 Soil; A1 horizon soil; coniferous forest ecosystem, conifer forest; Andrews Long-term Ecological Research (LTER) site; Willamette National Forest; near Blue River; Oregon; USA KM189739 KM088988 KM089762 KM089375
DTO 296-H7 = CBS 129135 = WSF 3894 Soil; Wisconsin; USA KM189787 KM089037 KM089811 KM089424
DTO 301-H9 = CBS 217.30 = NRRL 2062 Unrecorded source KM189796 KM089046 KM089820 KM089433
P. palmense DTO 076-E2 = CBS 336.79 = ATCC 38669 = IJFM 3840 = VKM F-2181 Air; Canary Islands, Gran Canaria, Spain; ex-type of P. palmense KM189528 KM088765 KM089537 KM089150
P. pulvis DTO 180-B7 = CBS 138432 = KAS 3924 House dust; South Africa; ex-type of P. pulvis KM189632 KM088876 KM089650 KM089263
DTO 180-F9 = CV 7 = KAS 4166 = DAOM 241133 Air sample; Stellenbosch, South Africa KM189640 KM088884 KM089658 KM089271
DTO 180-G2 = CV 15 = KAS 4017 = DAOM 241135 Air sample; Stellenbosch, South Africa KM189641 KM088885 KM089659 KM089272
P. purpurescens DTO 091-D2 = CBS 366.48 = ATCC 10485 = IMI 039745 = NRRL 720 = QM 1959 Soil; Canada; ex-neotype of P. purpurescens KM189561 KM088801 KM089573 KM089186
DTO 091-D3 = CBS 126.64 Soil; Erzurum, Turkey KM189562 KM088802 KM089574 KM089187
P. quercetorum DTO 091-A5 = CBS 417.69 = ATCC 48727 = CCRC 31668 = FRR 516 = IFO 31749 = IMI 140342 = MUCL 31203 = VKM F-1074 Soil; Es-Euveida, Syria; ex-isotype of P. quercetorum KM189556 KM088795 KM089567 KM089180
DTO 208-D9 = CBS 129869 = RMF 8789 Soil; A1 horizon soil; coniferous forest ecosystem, conifer forest; Andrews Long-term Ecological Research (LTER) site; Willamette National Forest; near Blue River; Oregon; USA KM189738 KM088987 KM089761 KM089374
P. ranomafanaense DTO 085-A5 = CBS 137953 Soil, 2 mtr. from road; Ranoma fana, Madagascar; ex-type of P. ranomafanaense KM189541 KM088779 KM089551 KM089164
DTO 085-A8 = CBS 137954 Soil, 2 mtr. from road; Ranoma fana, Madagascar KM189543 KM088781 KM089553 KM089166
P. roseomaculatum DTO 290-I6 = CBS 137254 = IMI 92236 Unrecorded source; ex-type of P. baiiolum KM189777 KM089027 KM089801 KM089414
DTO 225-E3 = CBS 137962 = NRRL 728 = FRR 0728 = IMI 189696 = MUCL 29101 Unrecorded source; ex-type of P. roseomaculatum KM189755 KM089004 KM089778 KM089391
DTO 084-F8 = CBS 125096 Cork; Portugal; ex-type of P. subericola KM189535 KM088773 KM089545 KM089158
DTO 035-A1 = CBS 137944 Soil; New Zealand KM189465 KM088697 KM089469 KM089082
DTO 035-A3 Soil; New Zealand KM189466 KM088698 KM089470 KM089083
DTO 053-F7 = CBS 125097 = IBT 23009 Air; Vejle, Denmark KM189490 KM088727 KM089499 KM089112
DTO 057-A2 = CBS 125100 = FRR 4914 Dried grapes (sultanas) (Vitis vinifera); Mildura, Vic, Australia KM189511 KM088748 KM089520 KM089133
DTO 098-E2 = CBS 127706 = KAS 1289 Lumber; BC, Vancouver, Canada KM189570 KM088813 KM089585 KM089198
DTO 100-A7 = CBS 125099 = IBT 20217 Acified lake; Butte, Montana, USA KM189579 KM088822 KM089595 KM089208
DTO 100-A8 = CBS 125098 = IBT 20218 Acified lake; Butte, Montana, USA KM189580 KM088823 KM089596 KM089209
P. roseoviride DTO 090-I2 = CBS 267.35 = ATCC 10412 = IFO 6089 = IMI 039740ii = NRRL 760 = QM 7485 Soil in a beech forest; Germany; ex-type of P. roseoviride KM189549 KM088787 KM089559 KM089172
P. rudallense DTO 209-C1 = CBS 130049 = RMF 7766 Soil (beehives); USA; ex-type of P. rudallense KM189744 KM088993 KM089767 KM089380
DTO 030-G5 Soil; Barron falls, Queensland, Australia KM189463 KM088692 KM089464 KM089077
DTO 056-I4 = CBS 138162 = FRR 6085 Soil; Rudall River National Park, WA, Australia KM189504 KM088741 KM089513 KM089126
DTO 057-B5 = FRR 6091 Soil; Rudall River National Park, WA, Australia KM189519 KM088756 KM089528 KM089141
DTO 180-G4 = CBS 138558 = CV 26 = KAS 4104 = DAOM 241136 Air sample; Stellenbosch, South Africa KM189638 KM088882 KM089656 KM089269
P. saturniforme DTO 105-I8 = CBS 122276 = AS 3.6886 = HMAS 130355-1-4 Soil; Little Peony Forest Reserve, Dunhua, Jiling Province, China ; ex-type of E. saturniforme KM189585 KM088828 KM089601 KM089214
Penicillium sp. DTO 181-I3 = CBS 137729 = CV 550 = KAS 4156 = DAOM 241129 Soil from Fynbos; Stellenbosch mountain, Western Cape, South Africa KM189654 KM088898 KM089672 KM089285
P. spinulosum DTO 006-H1 = CBS 374.48 = ATCC 10498 = FRR 1750 = IMI 024316 = MUCL 13910 = MUCL 13911 = NCTC 591 = NRRL 1750 = QM 7654 = DAOM 226267 Culture contaminant; Hannover, Germany; ex-neotype of P. spinulosum KM189448 KM088672 KM089444 KM089057
DTO 296-G8 = CBS 348.59 = ATCC 22346 = FAT 24 = FRR 3406 = IFO 6239 = IMI 068222 = MUCL 13555 = NRRL 3406 = DAOM 226268 Soil; Ukaku, Japan; ex-type of P. abeanum and P. trzebinskii var. magnum KM189781 KM089031 KM089805 KM089418
DTO 279-F1 = CBS 137964 = NRRL 2051 Unrecorded source; ex-type of P. flavocinereum KM189774 KM089024 KM089798 KM089411
DTO 301-I5 = CBS 269.35 Forest litter; Germany; ex-type of P. mucosum KM189800 KM089050 KM089824 KM089437
DTO 301-I6 = CBS 271.35 Forest leaf litter; Germany; ex-type of P. tannophilum KM189801 KM089051 KM089825 KM089438
DTO 290-I3 = CBS 137257 = IMI 190575 Unrecorded source; Probably ex-type of P. brunneoviride (Pitt 1980: 180) KM189776 KM089026 KM089800 KM089413
DTO 279-E9 = CBS 137963 = NRRL 727 Unrecorded source; Representative of P. pfefferianum KM189773 KM089023 KM089797 KM089410
DTO 056-I8 = CBS 137948 Bark of Banksia ericifolia; Lane Cove National Park, NSW, Australia KM189508 KM088745 KM089517 KM089130
DTO 084-G5 = CBS 127698 Cork; Portugal KM189538 KM088776 KM089548 KM089161
DTO 084-G6 = CBS 127699 Cork; Portugal KM189539 KM088777 KM089549 KM089162
P. sterculiniicola DTO 031-A4 = CBS 122426 Spawn run compost; USA; ex-type of P. sterculiniicola KM189464 KM088693 KM089465 KM089078
DTO 004-B8 = CBS 117778 Potting soil; the Netherlands KM189446 KM088670 KM089442 KM089055
DTO 035-A4 Soil; New Zealand KM189467 KM088699 KM089471 KM089084
DTO 216-I4 = CBS 137960 Root tissue of Pinus ponderosa; University of Idaho greenhouse, USA KM189753 KM089002 KM089776 KM089389
DTO 216-I8 = CBS 137961 Root tissue of Pinus ponderosa; University of Idaho greenhouse, USA KM189754 KM089003 KM089777 KM089390
P. sublectaticum DTO 076-C5 = CBS 138163 Unknown marine source; New Zealand; ex-type of P. sublectaticum KM189527 KM088764 KM089536 KM089149
DTO 244-G2 = CBS 138217 House dust; New Zealand KM189761 KM089010 KM089784 KM089397
P. subspinulosum DTO 018-C8 Log of Pinus sp.; Spanderswoud, Bussum, the Netherlands KM189459 KM088686 KM089458 KM089071
DTO 038-G1 Forest soil; Rijnsweerd, Utrecht, the Netherlands KM189476 KM088711 KM089483 KM089096
DTO 040-E6 Soil; Poland KM189478 KM088713 KM089485 KM089098
DTO 041-F2 = CBS 137946 Soil; Poland KM189483 KM088719 KM089491 KM089104
DTO 042-F7 Soil; Poland KM189484 KM088720 KM089492 KM089105
DTO 056-I9 = CBS 137949 = FRR 4882 Roots of Wollemi Pine (Wollemia nobilis); Wollemi National Park, NSW, Australia KM189509 KM088746 KM089518 KM089131
DTO 057-A1 = CBS 137950 = FRR 4872 Roots of Wollemi Pine (Wollemia nobilis); Wollemi National Park, NSW, Australia KM189510 KM088747 KM089519 KM089132
DTO 057-A3 = CBS 137951 = FRR 6090 Soil; Barren Grounds National Park, NSW, Australia KM189512 KM088749 KM089521 KM089134
DTO 092-G4 = CBS 137955 Soil under Betula sp.; Cartier Heide, Eersel, the Netherlands KM189563 KM088803 KM089575 KM089188
DTO 189-H2 Soil; Spanderswoud, the Netherlands KM189693 KM088940 KM089714 KM089327
DTO 189-I3 Soil; Spanderswoud, the Netherlands KM189695 KM088942 KM089716 KM089329
DTO 190-A1 Soil; Spanderswoud, the Netherlands KM189696 KM088943 KM089717 KM089330
DTO 190-C8 Soil; Spanderswoud, the Netherlands KM189698 KM088945 KM089719 KM089332
DTO 190-D2 = CBS 137957 Soil; Spanderswoud, the Netherlands KM189699 KM088946 KM089720 KM089333
DTO 190-D4 Soil; Spanderswoud, the Netherlands KM189700 KM088947 KM089721 KM089334
P. subspinulosum DTO 190-D5 = CBS 137958 Soil; Spanderswoud, the Netherlands KM189701 KM088948 KM089722 KM089335
DTO 190-D9 Soil; Spanderswoud, the Netherlands KM189702 KM088949 KM089723 KM089336
DTO 206-C4 = CBS 129613 = RMF 9368 = RMF 8940 Soil; A1 horizon Soil; abandoned agricultural fields; aged 1–10 years, agriculture; Cedar Creek Long-term Ecological Research (LTER) site; near East Bethel; Minnesota; USA KM189735 KM088984 KM089758 KM089371
DTO 208-H6 = CBS 129906 = RMF 8736 Soil; A1 horizon Soil; coniferous forest ecosystem, conifer forest; Andrews Long-term Ecological Research (LTER) site; Willamette National Forest; near Blue River; Oregon; USA KM189741 KM088990 KM089764 KM089377
DTO 296-H2 = CBS 345.51 = ATCC 11080 = IMI 046814 = NRRL 2298 = QM 6901 = UPSC 3182 Soil; England, UK KM189783 KM089033 KM089807 KM089420
DTO 297-D5 = CBS 290.53 Unrecorded source KM189792 KM089042 KM089816 KM089429
DTO 297-D6 = CBS 128281 = WSF 3202 Soil; Wisconsin; USA KM189793 KM089043 KM089817 KM089430
P. thiersii DTO 037-I9 = CBS 117503 = IBT 27050 = NRRL 28162 Old black stroma of Hypoxylon encrusting the surface of a dead maple ; New Glarus Woods State Park, Wisconsin, USA; ex-type of P. thiersii KM189474 KM088709 KM089481 KM089094
P. thomii DTO 091-A9 = CBS 225.81 = IMI 189694 = NRRL 2077 Pine cone; Spaulding, Georgia, USA; ex-neotype of P. thomii KM189560 KM088799 KM089571 KM089184
DTO 036-C3 = CBS 257.87 = FRR 2676 Dried fish, Decapterus sp.; Indonesia; ex-type of P. corynephorum KM189469 KM088701 KM089473 KM089086
DTO 105-I6 = CBS 260.87 = FRR 2662 Dried fish; Rastrelliger kanagurta, Indonesia; ex-type of P. patens KM189584 KM088827 KM089600 KM089213
DTO 202-E5 = CBS 129408 = WSF 2003 Soil; amorphus peat; above water table; spruce-larch forests, wetland, conifer forest; Wisconsin; USA KM189725 KM088974 KM089748 KM089361
DTO 205-H3 = CBS 129534 = RMF 8828 Soil; A1 horizon Soil; native deciduous forest, deciduous forest; Coweeta Long-term Ecological Research (LTER) site; near Otto; North Carolina; USA KM189729 KM088978 KM089752 KM089365
P. trzebinskii DTO 301-I4 = CBS 268.35 Forest litter; Germany; ex-type of P. mediocre KM189799 KM089049 KM089823 KM089436
DTO 301-I7 = CBS 289.36 Tannin solution; Germany; ex-type of P. tannophagum KM189802 KM089052 KM089826 KM089439
DTO 006-H2 = CBS 351.51 Rice; Japan; ex-type of P. toxicarium KM189449 KM088673 KM089445 KM089058
DTO 296-H3 = CBS 382.48 = ATCC 10507 = FRR 731 = IFO 6110 = IMI 039749 = MUCL 29102 = NRRL 731 = QM 7678 Forest soil; Dluga Goslina, Poznan area, Poland; ex-type of P. trzebinskii KM189784 KM089034 KM089808 KM089421
DTO 036-E1 Soil; Poland KM189470 KM088703 KM089475 KM089088
DTO 040-F3 Soil; Poland KM189479 KM088714 KM089486 KM089099
DTO 040-H8 = CBS 137945 Soil; Poland KM189480 KM088716 KM089488 KM089101
DTO 040-I8 Soil; Poland KM189481 KM088717 KM089489 KM089102
DTO 190-G2 Soil; Spanderswoud, the Netherlands KM189703 KM088950 KM089724 KM089337
DTO 209-D5 = CBS 130062 = RMF 7822 Soil; rhizosphere of onion; onion field, agriculture; University of Idaho Experiment Station; Parma; Idaho; USA KM189745 KM088994 KM089768 KM089381
DTO 297-D3 = CBS 128424 = WSF 3448 Soil; Wisconsin; USA KM189791 KM089041 KM089815 KM089428
P. tsitsikammaense DTO 006-I3 = CBS 328.71 = CSIR 1092 Forest soil; Tsitsikama Forest near Knysna, Cape Province, South-Africa KM189451 KM088675 KM089447 KM089060
P. turcosoconidiatum DTO 181-A3 = CBS 138557 = CV 110 = KAS 3970 = DAOM 241130 Fynbos soil; Stellenbosch, South Africa; ex-type of P. turcosoconidiatum KM189645 KM088889 KM089663 KM089276
DTO 181-A4 = CBS 137733 = CV 111 = KAS 3971 = DAOM 241131 Soil from Fynbos; Stellenbosch mountain, Western Cape, South Africa KM189646 KM088890 KM089664 KM089277
P. vagum DTO 180-G3 = CBS 137728 = CV 25 = KAS 4100 = DAOM 241357 Air sample from Fynbos; Stellenbosch mountain, Western Cape, South Africa; ex-type of P. vagum KM189642 KM088886 KM089660 KM089273
DTO 038-E7 Forest soil; Rijnsweerd, Utrecht, the Netherlands KM189475 KM088710 KM089482 KM089095
DTO 056-I3 = FRR 4783 Fresh currants (Vitis vinifera); Mildura, Vic, Australia KM189503 KM088740 KM089512 KM089125
P. vagum DTO 056-I5 = FRR 6086 Soil; Katandra Nature Reserve, NSW, Australia KM189505 KM088742 KM089514 KM089127
DTO 056-I7 = FRR 6088 Soil; Roadside north of Urana, NSW, Australia KM189507 KM088744 KM089516 KM089129
DTO 099-A7 Soil in oak forest, taken at 0–10 cm depth; Aîn Hamraia, Tunesia KM189572 KM088815 KM089587 KM089200
DTO 099-D6 Soil in oak forest, taken at 0–10 cm depth; Aîn Hamraia, Tunesia KM189574 KM088817 KM089589 KM089202
DTO 099-F7 Soil in oak forest, taken at 0–10 cm depth; Aîn Hamraia, Tunesia KM189576 KM088819 KM089591 KM089204
DTO 099-G7 Soil in oak forest, taken at 10–20 cm depth; Aîn Hamraia, Tunesia KM189577 KM088820 KM089592 KM089205
DTO 099-I6 Soil in oak forest, taken at 0–20 cm depth; Aîn Hamraia, Tunesia KM189578 KM088821 KM089594 KM089207
DTO 119-A8 Soil in oak forest, taken at 10–20 cm depth; Fej Errih, Tunesia KM189588 KM088832 KM089606 KM089219
DTO 119-C2 Soil in oak forest, taken at 0–10 cm depth; Fej Errih, Tunesia KM189589 KM088833 KM089607 KM089220
DTO 119-C8 Soil in oak forest, taken at 0–10 cm depth; Fej Errih, Tunesia KM189590 KM088834 KM089608 KM089221
DTO 119-D6 Soil in oak forest, taken at 10–20 cm depth; Fej Errih, Tunesia KM189591 KM088835 KM089609 KM089222
DTO 119-D7 Soil in oak forest, taken at 10–20 cm depth; Fej Errih, Tunesia KM189592 KM088836 KM089610 KM089223
DTO 119-E2 Soil in oak forest, taken at 10–20 cm depth; Fej Errih, Tunesia KM189593 KM088837 KM089611 KM089224
DTO 119-G4 Soil in oak forest, taken at 0–10 cm depth; Fej Errih, Tunesia KM189595 KM088839 KM089613 KM089226
DTO 119-H7 Soil in oak forest, taken at 0–20 cm depth; Ras Rajel, Tunesia KM189596 KM088840 KM089614 KM089227
DTO 120-B1 Soil in oak forest, taken at 0–20 cm depth; Ras Rajel, Tunesia KM189597 KM088841 KM089615 KM089228
DTO 120-B4 Soil in oak forest, taken at 0–20 cm depth; Ras Rajel, Tunesia KM189598 KM088842 KM089616 KM089229
DTO 120-C1 Soil in oak forest, taken at 0–20 cm depth; Ras Rajel, Tunesia KM189599 KM088843 KM089617 KM089230
DTO 120-C7 Soil in oak forest, taken at 0–20 cm depth; Ras Rajel, Tunesia KM189600 KM088844 KM089618 KM089231
P. valentinum DTO 090-I3 = CBS 172.81 = IJFM 5071 Air; Madrid, Spain; ex-type of P. valentinum KM189550 KM088788 KM089560 KM089173
DTO 091-A4 = CBS 381.48 = ATCC 10506 = DSM 2214 = IMI 040027 = NRRL 1640 = QM 8002 Air; Natick, Massachusetts, USA KM189555 KM088794 KM089566 KM089179
DTO 205-I6 = CBS 129547 = RMF 9020 Soil; A1 horizon Soil; oak savanna, savanna; Cedar Creek Long-term Ecological Research (LTER) site; near East Bethel; Minnesota; USA KM189731 KM088980 KM089754 KM089367
DTO 296-H6 = CBS 131033 = RMF 2158 Soil; Grand Teton National Park; T44N R113W S5&6; Wyoming; USA KM189786 KM089036 KM089810 KM089423
P. verhagenii DTO 193-A1 = CBS 137959 Moses under Myrica gale (Bog Myrtle); De Ronde Put, Postel, Belgium; ex-type of P. verhagenii KM189708 KM088955 KM089729 KM089342
DTO 023-E1 = CBS 146.83 Isolated from CBS 145.83 on a synthetic medium; Spain KM189460 KM088688 KM089460 KM089073
DTO 028-G1 Indoor air of house; Eindhoven, the Netherlands KM189461 KM088689 KM089461 KM089074
DTO 192-G4 Soil under Compact Rush (Juncus conglomeratus); De Ronde Put, Postel, Belgium KM189704 KM088951 KM089725 KM089338
DTO 192-G7 Soil under Compact Rush (Juncus conglomeratus); De Ronde Put, Postel, Belgium KM189705 KM088952 KM089726 KM089339
DTO 193-A2 Moses under Myrica gale (Bog Myrtle); De Ronde Put, Postel, Belgium KM189709 KM088956 KM089730 KM089343
DTO 193-A5 Moses under Myrica gale (Bog Myrtle); De Ronde Put, Postel, Belgium KM189711 KM088958 KM089732 KM089345
P. yezoense DTO 091-A2 = CBS 350.59 = ATCC 18333 = FRR 3395 = IFO 5362 = IMI 068615 Butter; Japan; ex-type of P. yezoense KM189553 KM088792 KM089564 KM089177
DTO 001-G9 = CBS 117276 Soil; Alpujarras, Spain KM189445 KM088669 KM089441 KM089054
DTO 091-A7 = CBS 140.72 Soil; Alaska, USA KM189558 KM088797 KM089569 KM089182
DTO 091-A8 = CBS 347.78 Soil under Picea glauca, containing 400 ppm Ni and Cu; 29.3 km SE of Sudbury, Ontario, Canada KM189559 KM088798 KM089570 KM089183
DTO 099-E2 Soil in oak forest, taken at 10–20 cm depth; Aîn Hamraia, Tunesia KM189575 KM088818 KM089590 KM089203
DTO 118-E5 Soil in oak forest, taken at 0–20 cm depth; Fej Errih, Tunesia KM189587 KM088831 KM089604 KM089217
DTO 121-A4 Soil in oak forest, taken at 10–20 cm depth; Ras Rajel, Tunesia KM189602 KM088846 KM089620 KM089233
DTO 190-B7 Soil; Spanderswoud, the Netherlands KM189697 KM088944 KM089718 KM089331
DTO 192-G8 Soil under Compact Rush (Juncus conglomeratus); De Ronde Put, Postel, Belgium KM189706 KM088953 KM089727 KM089340
DTO 193-G2 Moses under Myrica gale (Bog Myrtle); De Ronde Put, Postel, Belgium KM189712 KM088959 KM089733 KM089346
DTO 209-F1 = CBS 130194 = RMF 157 Soil; A1 horizon Soil; narrowleaf cottonwood, deciduous forest; Fort Steele Road; 2 miles south of Interstate 80; 9 miles east of Sinclair; Wyoming; USA KM189746 KM088995 KM089769 KM089382
DTO 216-B7 Foliar tissue of Populus trichocarpa; Nisqually River, WA, USA KM189752 KM089001 KM089775 KM089388
DTO 270-H9 Air in nickelsulfate production facility; Belgium KM189772 KM089022 KM089796 KM089409

DNA extraction, PCR and sequencing

Strains were grown for 3–14 d on MEA prior to DNA extraction. DNA was extracted using the Ultraclean™ Microbial DNA isolation Kit (MoBio, Solana Beach, U.S.A.) and the extracted DNA was stored at −20 °C. The nuclear ribosomal internal transcribed spacer regions (ITS1-5.8S-ITS2) and parts of the BenA, CaM and RPB2 genes were amplified and sequenced using methods previously described (Houbraken & Samson 2011, Houbraken et al. 2012a, b, Frisvad et al. 2013).

Phylogenetic analysis

Section Aspergilloides was delimitated using a data set combining BenA, CaM and RPB2. The ITS sequences had a low phylogenetic signal and this data was only examined for its applicability in species recognition in the context of DNA barcoding. The phylogeny of individual clades within section Aspergilloides was studied both by comparing single gene phylogenies, to determine whether groups of strains could be recognised as independent evolutionary lineages, and by concatenated analyses of the three genes to resolve relationships among the species. Maximum likelihood (ML) and Maximum Parsimony (MP) analyses were performed using MEGA5 and were applied to most individual BenA, CaM and RPB2 data sets. Exceptions were the P. spinulosum- and P. glabrum-clade data sets, where ML and Bayesian analysis was applied. The robustness of tree topology for each analysis was evaluated by 1 000 bootstrap replicates. All combined data sets were analysed using the RAxML (randomised accelerated maximum likelihood) (Stamatakis et al. 2008) and Bayesian tree inference (BI) analyses using MrBayes v3.1.2 (Ronquist & Huelsenbeck 2003). Prior to analyses, the most suitable substitution model was determined using MrModeltest v. 3.1.2 (Nylander 2004), utilising the Akaike information criterion (AIC). Bayesian analyses were performed with two sets of four chains (one cold and three heated) and the STOPRULE option, stopping analyses at an average standard deviation of split frequencies of 0.01. The sample frequency was set to 100 and the first 25 % of trees were removed as burn-in. The different loci within the combined data sets were analysed as separate partitions. Penicillium expansum ATCC 24692, a member of subgenus Penicillium section Penicillium, was used as outgroup for all analyses. The phylograms were redrawn and annotated using Adobe Illustrator CS5. BI posterior probabilities (pp) values and bootstrap (bs) percentages of the maximum likelihood (ML) analysis are presented at the nodes. Values less than 0.95 pp and less than 70 % bs are not shown. Branches with more than 95 % bs and 1.00 pp are thickened. Newly obtained sequences were deposited in GenBank under accession numbers KM088669–KM089827.

ITS barcoding

The ITS sequence diversity of strains belonging to section Aspergilloides was assessed by determining the number of haplotypes among the ITS sequences. The software programme DnaSP v. 5.10 (Librado & Rozas 2009) was used to find the different haplotypes in the alignment. Gaps and missing data were included in this calculation. ITS sequences were deposited in GenBank under accession numbers KM189445–KM189803.

Phenotypic examination

Macroscopic characters were studied on the agar media Czapek yeast extract agar (CYA), malt extract agar (MEA; Oxoid), creatine sucrose agar (CREA), dichloran 18 % glycerol agar (DG18), yeast extract sucrose agar (YES), oatmeal agar (OA) and CYA supplemented with 5 % NaCl (Samson et al. 2010). Growth of the isolates was also examined on CYA at 15, 30 and 37 °C (CYA15°C, CYA30°C and CYA37°C, respectively). Strains were inoculated at three points onto media in 90 mm Petri dishes and incubated for 7 d in darkness. After incubation, colony diameters on each agar medium were measured. In addition, degree of sporulation, obverse and reverse colony colours, colony shape and texture, and the production of soluble pigments were determined. Acid production on CREA was indicated by a change in the pH sensitive bromocresole purple dye from purple to yellow around growing colonies. Colonies were photographed with a Canon EOS 400D. Species were characterised microscopically by preparing slides from MEA. Lactic acid was used as mounting fluid and a drop of alcohol was added to remove air bubbles and excess conidia. Specimens were examined using a Zeiss AxioSkop2 plus microscope. Strains were also examined for production of alkaloids reacting with Ehrlich reagent using a filter paper method (Lund 1995). The appearance of a violet ring within 10 min was regarded as a positive reaction; all other colours were considered as a negative reaction.

Results and discussion

Overview of section Aspergilloides

The phylogenetic relationships among species belonging to section Aspergilloides were studied using concatenated sequence data of three loci, BenA, CaM and RPB2. In total, 112 mostly ex-type strains were included in the analysis and the total length of the aligned data set was 2 049 characters. The length and the best substitution model for each partition are summarised in Table 2. Members of section Aspergilloides formed a well-supported lineage in the phylogram (100 % ML, 1.00 pp) and section Sclerotiora species form a sister clade to Aspergilloides, although with low statistical support (77 % ML, <0.95 pp). These results largely correspond with those of Houbraken & Samson (2011); however, there are two main differences. In Houbraken & Samson (2011), Penicillium thiersii CBS 117503 occupied a well-supported basal position in section Aspergilloides based on a combined analysis of four genes (Cct8, Tsr1, RPB1 and RPB2). In our phylogeny, this species is basal to section Aspergilloides without statistical support. This species could represent a separate section close to sections Aspergilloides and Sclerotiora, but based on Houbraken & Samson (2011), we opt to provisionally maintain its classification in section Aspergilloides. The other difference is the placement of P. georgiense in section Aspergilloides (Houbraken & Samson 2011). Our data show that this species does not belong to this section and Fig. 1 indicates a relationship with P. ramusculum (CBS 251.56T) in section Ramigena.

Table 2.

Overview details of sequence data sets used in this study.

Clade Description data set No. isolates Data sets
BenA Substitution model CaM Substitution model RPB2 Substitution model
Overview Aspergilloides 112 541 GTR+G+I 620 GTR+G+I 888 GTR+G+I
1 P. spinulosum-clade 73 438 K2+G 520 GTR+G 888 GTR+G+I
2 P. thomii-clade 43 439 HKY+G 527 GTR+G 764 GTR+G
3 P. glabrum-clade 104 438 K2P+G 501 GTR+G 887 GTR+G
4 P. vagum-clade 44 469 K2+G 524 K2+I 866 GTR+G
5 P. fuscum-clade 62 471 K2+G 527 GTR+G 755 GTR+G
6 P. sublectaticum-clade 7 460 HKY+I 524 GTR+G 888 GTR+G
7 P. verhagenii-clade 11 481 K2+G 513 GTR+G+I 928 GTR+G
9 P. lividum-clade 20 487 K2+G 509 K2+I 937 K2+G
10 P. hoeksii-clade 10–11 473 GTR+I 539 GTR+G 930 GTR+G+I

Fig. 1.

Fig. 1

Fig. 1

Phylogenetic tree inferred from the concatenated nucleotide matrix (partial BenA, CaM and RPB2 sequences) using Bayesian inference showing the relationship of species accommodated in section Aspergilloides. With exception of P. thiersii, all species of section Aspergilloides for a well-supported lineage. The bar indicates the number of substitutions per site. The phylogram is rooted with Penicillium expansum (ATCC 24692).

Fig. 1 reveals the presence of 12 well-supported lineages in section Aspergilloides. All lineages were fully supported (100 % ML, 1.00 pp) with exception of the P. thiersii (<70 % ML; <0.95 pp) and P. vagum-clades (81 % ML, 0.96 pp). All accepted species, except P. kiamaense, could be assigned to one of the delineated lineages. Bayesian analysis showed that this species is basal to the P. spinulosum- and P. thomii-clade (0.99 pp); however, this was not supported in the ML analysis. Most species of section Aspergilloides share phenotypic characters such as vesiculate, monoverticillate conidiophores, a moderate to fast growth rate on CYA and/or MEA, and a negative Ehrlich reaction. Furthermore, many species of section Aspergilloides produce crusts of conidia on MEA that either shift or fall off in mass, similar to the characteristic colonies of P. crustosum (sect. Penicillium). This feature is most pronounced on DG18. Each clade is treated in detail below. Clades containing multiple species are analysed separately using BenA, CaM and RPB2 sequences, and this data is often supported by phenotypic characters.

Clade 1: Penicillium spinulosum-clade

Species belonging to the P. spinulosum-clade are phenotypically similar to those of the P. glabrum-clade. Both clades contain species that grow rapidly on CYA, YES and MEA. Furthermore, they predominantly produce monoverticillate conidiophores with an inflated apex, and have globose to subglobose conidia that are finely to distinctly roughened, or spirally banded. No consistent phenotypic characters were found to distinguish the two clades. Generally, species that belong to the P. glabrum-clade produce velvety colonies and have darker green conidia on MEA and often an orange-brown reverse on YES, while species of the P. spinulosum-clade are more floccose, produce conidia in shades of pure or dull green and the reverse on YES lacks orange shades. Furthermore, the species of the P. glabrum-clade produce acid on CREA, a feature often absent in species of the P. spinulosum-clade, which grow poorly on CREA.

Eighteen species were placed in synonymy with P. spinulosum by Pitt (1980). Phylogenetically, eleven of these taxa belong to the P. spinulosum-clade: P. abeanum, P. baiiolum, P. brunneoviride, P. flavocinereum, P. mediocre, P. mucosum, P. roseomaculatum, P. trzebinskii, P. trzebinskii var. magnum, P. tannophagum and P. tannophilum. Four of the remaining species belong to other clades of section Aspergilloides: P. paczowskii, P. terlikowskii and P. spinuloramigenum belong to the P. glabrum-clade and P. ardesiacum (CBS 497.73T) is a member of the P. fuscum-clade. Two species are phylogenetically unrelated to section Aspergilloides: P. viridorsum (CBS 269.29T) is close to P. cyclopium and P. citreovirens (CBS 320.59T) is close to P. corylophilum. The type culture of P. janthocitrinum (CBS 268.29T) is dead in the CBS collection and we did not include this strain in our study. We follow Pitt (1980) and treat this species as a synonym of P. spinulosum. Subsequent to Pitt's monograph, P. subericola was described as a new species closely related to P. spinulosum (Barreto et al. 2011).

The type strains of the species that belong to the P. spinulosum-clade, together with freshly isolated strains from various substrates and localities, were subjected to a phylogenetic study. Combined analysis of three genes (BenA, CaM and RPB2) revealed the presence of three well-supported lineages in the P. spinulosum-clade (Fig. 3). One lineage is centred on the type of P. spinulosum (97 % ML, 1.00 pp). Basal to this lineage is a set of strains that is described below as P. sterculiniicola (100 % BS, 1.00 pp). The third lineage comprises P. palmense and P. grancanariae and has a basal position relative to the P. spinulosum and P. sterculiniicola lineages (100 % ML, 1.00 pp).

Fig. 3.

Fig. 3

Phylogenetic trees showing the relationship among strains belonging to the P. spinulosum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

The clade containing many other strains previously identified as P. spinulosum, including the ex-neotype of P. spinulosum (CBS 374.48NT) is subdivided into five well-supported lineages (>95 % ML, 1.00 pp) in the combined analysis, which are labelled clades 1–5. The topologies of the single gene phylograms are congruent with the combined phylogram. However, they are generally poorly resolved and only three of the five lineages have support (>70 % and >0.95 pp) (Figs 2, 3). No ex-type strains of any described species occur in clade 1 and 2. The single and combined sequence analysis (Figs 2, 3) shows that the two lineages are related, but distinct. No diagnostic phenotypic differences were observed among strains in these clades. Based on this data, we decided to describe these strains as a single species, P. subspinulosum. The type strains of P. roseomaculatum (CBS 137962), P. baiiolum (CBS 137254) and P. subericola (CBS 125096) belong to clade 5. Barreto et al. (2011) described P. subericola but the types of P. roseomaculatum and P. baiiolum were not included in that study. The latter two species were described by Biourge (1923) and predate P. subericola. As both were described in the same publication, neither has priority. We chose P. roseomaculatum, because the type strain of this species is in better condition than that of P. baiiolum and better resembles the other freshly isolated strains of this species. Clade 4 contains P. spinulosum and the ex-types of P. tannophilum (CBS 271.35T), P. brunneoviride (CBS 137257; probably type, Pitt (1980: 180)), P. mucosum (CBS 269.35T), P. flavocinereum (CBS 137964 = NRRL 2051), P. abeanum and P. trzebinskii var. magnum (CBS 348.59). In addition, NRRL 727 (= CBS 137963), a strain identified as P. pfefferianum by Westling belongs to this clade, confirming the conclusions of Raper & Thom (1949: 184) and Pitt (1980: 177). Pitt (1980) discussed in detail the differences between Citromyces pfefferianus Wehmer and P. pfefferianum (Wehmer) Westling and we follow his conclusions by maintaining C. pfefferianus a synonym of P. glabrum. Penicillium tannophagum (CBS 289.36T), P. mediocre (CBS 268.35T), P. trzebinskii (CBS 382.48T) and P. toxicarium fide Ramírez (CBS 351.51T) belong to the same lineage (clade 3). Penicillium toxicarium Miyake was described without a Latin diagnosis but was validated by Ramírez (1982) based on CBS 351.51. However, Miyake's description of P. toxicarium does not correspond with that of Ramírez, making this validation problematic. Penicillium trzebinskii was described by Zaleski (1927) and predates Penicillium tannophagum and P. mediocre, which were both described in 1935.

Fig. 2.

Fig. 2

Phylogenetic trees showing the relationship among strains belonging to the P. spinulosum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Thus, seven species are accepted in the P. spinulosum-clade: P. sterculiniicola, P. grancanariae, P. palmense, P. roseomaculatum, P. spinulosum, P. subspinulosum and P. trzebinskii. A summary of their phenotypic characters is given in Table 3. Penicillium spinulosum, P. roseomaculatum, P. trzebinskii and P. subspinulosum are phylogenetically and phenotypically closely related. These species can be differentiated by growth characters on CYA, CREA and MEA. On CYA and MEA, P. spinulosum generally grows faster than the other species; however, there is an overlap in diameters (Table 3). Penicillium spinulosum and P. subspinulosum have similar cream or (pale) brown reverse colours on CYA. In comparison, reverse colours of P. trzebinskii are yellow or light orange-brown in the centre. The reverse of the investigated P. roseomaculatum strains vary and can be cream coloured as in P. spinulosum and P. subspinulosum, but can also be in shades of light brown or yellow. The colony texture on CYA and MEA differentiates P. subspinulosum from the other species. Colonies of P. subspinulosum have a velvety texture on CYA and are velvety with a floccose centre on MEA. The other species have floccose colonies on CYA and MEA. Growth on CREA distinguishes P. subspinulosum and P. trzebinskii from P. spinulosum. The latter grows well on CREA and produces acidic compounds followed by base (delayed reaction, 11 d), while P. subspinulosum and P. trzebinskii grew poorly on CREA and did not produce acidic compounds. Strains belonging to P. roseomaculatum had variable growth characters on CREA. Growth was either poor (n = 2) or good (n = 6). The strains with poor growth on CREA (DTO 035-A1, DTO 057-A2) also did not produce acidic compounds; the others were poor or moderate acid producers. The colony diameter on CYA incubated at 30 °C was informative because P. spinulosum and P. trzebinskii generally have larger colonies than P. subspinulosum. As with its growth on CREA, there was also a large variation among strains of P. roseomaculatum on CYA. Growth at 30 °C was slow (8–12 mm) in some strains, while others grew fast (22–29 mm).

Table 3.

Overview of diagnostic characters of species belonging to the P. spinulosum-clade.

Species name Colony diam on CYA (mm) Sporulation on CYA Colony diam on MEA (mm) Colony texture on MEA Growth on CREA Acid / base production on CREA CYA30°C Conidial ornamentation
P. grancanariae 34–38 Poor 42–46 Floccose Poor Poor 16–21 Finely rough
P. palmense 31–34 Good 35–41 Velvety Poor Absent 24–26 Finely rough
P. spinulosum (34–)39–52 Variable: poor to good (41–)46–52 Floccose Good Poor to moderate 20–30 Rough
P. sterculiniicola (27–)40–45 Absent (39–)43–53 Variable: velvety to floccose Good Moderate (29–)39–44 Distinctly rough
P. trzebinskii (25–)37–41 Variable: absent to moderate (26–)30–39(–42) Floccose Variable: poor or good Variable: absent to moderate Two groups: 8–12 or 22–29 Finely rough
P. subspinulosum (24–)36–41 Variable: absent to moderate (28–)35–42 Floccose at centre, velvet at edge Poor Absent 4–18(–22) Finely to distinctly rough
P. tannophagum (25–)42–51 Variable: poor to moderate 35–45 Floccose Poor Absent (10–)17–26(–34) Finely rough

Penicillium grancanariae and P. palmense were both isolated from air in Gran Canaria, Spain. These species produce ellipsoidal and finely roughened conidia, while the other P. spinulosum-clade species have globose or subglobose conidia which are (distinctly) spirally banded. Penicillium grancanariae was placed in synonymy with P. thomii, and P. palmense was accepted in the list of accepted Penicillium species (Frisvad et al. 1990, Pitt et al. 2000). Based on CaM and BenA sequences, these species were considered conspecific in the study of Barreto et al. (2011). We treat these species as distinct based on our combined BenA, CaM and RPB2 sequence analysis in combination with phenotypic characteristics (Table 3). Penicillium sterculiniicola is phylogenetically and phenotypically distinct. It differs from other P. spinulosum-clade species by its high growth rate on CYA when incubated at 30 °C ((29–)37–47 mm) and 33 °C (15–24 mm) (Table 3, Fig. 4).

Fig. 4.

Fig. 4

Overview of growth characters of P. spinulosum and related species. Columns, left to right: P. spinulosum, P. roseomaculatum DTO 084-F8, P. roseomaculatum DTO 057-A2, P. trzebinskii, P. subspinulosum. Rows, top to bottom: CYA30°C reverse, CYA obverse, CYA reverse, MEA obverse, CREA obverse.

Clade 2: Penicillium thomii-clade

Species that belong to the P. thomii-clade are phylogenetically related to species of the P. spinulosum-clade (Fig. 1; 74 % ML, 0.96 pp), and basal to these two lineages is the P. glabrum-clade. Species belonging to the P. thomii-clade share characters with species of the P. glabrum- and P. spinulosum-clades such as a fast growth on CYA, MEA and YES, growth on CYA incubated at 30 °C ((5–)15–35(–45) mm) and conidiophores that are predominantly monoverticillate with a vesiculate apex. There are also phenotypic differences among these clades. Species of the P. thomii-clade differ from most other species of section Aspergilloides by the production of hard, gritty sclerotia, which are often in shades of pink on OA (orange-pink, brownish pink). The conidiophores are 200–400 μm long, with roughened walls and conidia are (broadly) ellipsoidal or fusiform. Our description of the P. thomii-clade corresponds with Pitt's description of the morphospecies P. thomii (Pitt 1980).

Based on the presented phylogenies, 12 species are accepted in the P. thomii-clade (Figs 5, 6). Seven species were previously described (P. aurantioviolaceum, P. crocicola, P. fusisporum, P. roseoviride, P. thomii, P. valentinum, P. yezoense), one is in the process of being described elsewhere (P. jejuense, M.S. Park et al. submitted) and four are described here as new (P. austroafricanum, P. cartierense, P. contaminatum, P. grevilleicola). Pitt (1980) synonymised six species and one variety with P. thomii. Penicillium aurantioviolaceum, P. crocicola, P. roseoviride, P. valentinum and P. yezoense were treated as synonyms of P. thomii by Pitt (1980) and are accepted as distinct species in this study. Penicillium yezoense was described without a Latin description and is validated in the taxonomy section below. Penicillium parallelosporum and P. thomii var. flavescens were also regarded as synonyms of P. thomii (Pitt 1980). The type culture of P. parallelosporum (CBS 159.69) is dead in the CBS collection and could not be included in our study. However, this name does not compete with the other names because it was invalidly described, lacking a Latin diagnosis. Penicillium thomii var. flavescens was also described without a Latin diagnosis and the type strain of this species (CBS 347.59T) is placed in synonymy with P. aurantioviolaceum. The accepted species P. valentinum was described in 1980, after the publication of Pitt's monograph. The species was synonymised with P. thomii (Frisvad et al. 1990), but has distinct BenA, CaM and RPB2 sequences. Our phylogenies show that P. patens (CBS 260.87T) is a synonym of P. thomii. It was placed near P. donkii based on its non-vesiculate conidiophores and soft, pale brown sclerotia (Pitt & Hocking 1985), but Frisvad et al. (1990) already noted a close relation of this species with P. thomii.

Fig. 5.

Fig. 5

Phylogenetic trees showing the relationship among strains belonging to the P. thomii-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Fig. 6.

Fig. 6

Phylogenetic trees showing the relationship among strains belonging to the P. thomii-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

The result of the combined analysis of BenA, CaM and RPB2 sequences of isolates belonging to the P. thomii-clade is shown in Fig. 6. The deeper nodes of this phylogeny are poorly resolved. Penicillium crocicola, P. austroafricanum, P. jejuense and P. grevilleicola form well-supported lineages on a well-supported branch (0.97 pp, >95 % ML). The other species are resolved in one clade in Fig. 1; however, this is not observed in the combined analysis of the P. thomii-clade (Fig. 6). Penicillium yezoense and P. contaminatum are sister species in Fig. 1, as are P. aurantioviolaceum, P. roseoviride and P. valentinum. No statistical support for this observation is found in Fig. 6. The phylogenies based on the individual data sets are congruent. Sequence variation is present within P. crocicola and P. jejuense. The P. crocicola lineage has no support in the BenA and CaM phylograms and weak support in the RPB2 analysis (82 % ML, 77 % MP). In the individual phylogenies, CBS 132168, CBS 137754 and CBS 745.70 (ex-type strain of P. crocicola) sit outside the main P. crocicola clade. These single strains have slightly different phenotypes than the strains belonging to the main clade. For example, CBS 745.70 grows quickly on CYA30°C (40–45 mm) and does not produce acidic compounds on CREA, and CBS 132168 differs by the formation of light yellow mycelium on YES and a slower lower growth rate on CYA30°C (15–20 mm vs 25–35 mm by the main group of P. crocicola isolates). These isolates might represent new species, but their description is deferred until more strains are collected and examined. Similarly, sequence variation is observed in P. jejuense. In the CaM and RPB2 data sets, CBS 137774 and CBS 137755 cluster together on a well-supported branch, separate from the type of the species. This grouping is not observed in the BenA data set; however, the bootstrap value was low in the MP analysis. The type strain of P. jejuense was unavailable for examination and no phenotypic comparison among the P. jejuense isolates was undertaken. The new species P. austroafricanum, P. cartierense, P. contaminatum and P. grevilleicola are described in the taxonomy part of this paper and phenotypic characters to differentiate between those species and their closest relatives are provided there.

Clade 3: Penicillium glabrum-clade

As mentioned above, species belonging to the P. glabrum-clade are phenotypically closely related to those of the P. spinulosum-clade. A high degree of sequence variation was observed in the BenA, CaM and RPB2 data sets. Based on the phylogenies, combined with phenotypic observations, this study focus on seven lineages (Figs 7, 8). Six of the seven lineages are well-supported in the combined analysis and the lineage containing isolate CBS 138160 is only supported in the ML analysis (82 % ML). The two main lineages in our analysis of the P. glabrum-clade are centred on the ex-types of P. glabrum (CBS 125543NT) and P. frequentans (CBS 105.11T). Another lineage includes the type of P. purpurescens (CBS 366.48T). The remaining lineages are described here as new species, namely P. armarii, P. bussumense, P. pulvis and P. rudallense. Analysis of the individual BenA, CaM and RPB2 partitions resulted in poorly resolved phylograms with many polytomies and generally lacking branch support (Figs 7, 8). In the BenA and CaM phylograms, the P. frequentans and P. glabrum strains do not resolve in two lineages. On the other hand, because of the lack of support of the nodes, this does not result in incongruency between the phylograms, hence the recognition of the two distinct species. In contrast, both species are resolved in the RPB2 phylogram with moderate to good support (80 % ML, 1.00 pp for P. glabrum; 70 % ML, 1.00 pp for P. frequentans). A large sequence variation is present in the currently proposed delineation of P. glabrum. A variation of 4.0 % was observed among the BenA sequences. Less variation is detected in the CaM data set (2.0 %) and the least variation was present in the RPB2 data set (1.4 %). This high degree of sequence variation is not reported in other Penicillium sections. In contrast, some species (e.g. P. commune, P. camemberti and P. caseifulvum) share BenA sequences or can only be differentiated by one base pair difference (Samson et al. 2004, Houbraken et al. 2011a, b). The phylogenetic placement of P. bussumense (CBS 138160T) also needs further attention. Strain CBS 138160T takes a distinct position in the BenA phylogram, and it is among the P. frequentans strains in the CaM analysis. Similarly as in P. glabrum/P. frequentans, both phylograms lack statistical support and this strain is resolved in the RPB2 data set.

Fig. 7.

Fig. 7

Phylogenetic trees showing the relationship among strains belonging to the P. glabrum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Fig. 8.

Fig. 8

Phylogenetic trees showing the relationship among isolates belonging to the P. glabrum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Two species belonging to the P. glabrum-clade, P. glabrum and P. purpurescens, were accepted in previous studies (Pitt 1980, Pitt et al. 2000, Barreto et al. 2011). Citromyces purpurescens, Citromyces virido-albus, Penicillium virido-album, P. internascens and P. resinae are synonyms of P. purpurescens (see Taxonomy). Houbraken & Samson (2011) incorrectly used CBS 324.83 as a representative of P. asperosporum; this strain is actually the ex-type of P. resinae. Comparison of the RPB2 sequence of this strain deposited in GenBank (JN406574) with sequences generated in this study shows that CBS 324.83 is actually P. purpurescens. Several species were previously placed in synonymy with P. glabrum and one, P. frequentans, is re-introduced here. Based on our sequence data, P. paczowskii (CBS 229.28T) is a synonym of P. frequentans (Figs 7, 8). The name P. frequentans was used by Raper & Thom (1949), but this name is predated by P. glabrum (Subramanian 1971, Pitt 1980). Interestingly, Raper & Thom's concept of P. frequentans was not based on the type strain of P. frequentans, but on NRRL 1915 (= CBS 328.48). This strain is currently identified as P. glabrum and this indicates that Raper & Thom's description of P. frequentans and Pitt's concept of P. glabrum are based on a similar set of isolates that differs from our concept. Recently, a strain identified as P. glabrum (DAOM 239074) had its genome sequenced and this isolate is re-identified here as P. frequentans.

Penicillium aurantiobrunneum (CBS 138433NT), P. flavidorsum (CBS 260.29T), P. oledskii (CBS 213.28T) remain synonyms of P. glabrum. Penicillium terlikowskii (CBS 228.28T) and P. spinuloramigenum (CBS 344.59T), previously listed as synonyms of P. spinulosum, are treated here as synonyms of P. glabrum. Remarkably, combined sequence analysis (Fig. 8) shows that all the ex-type strains of P. glabrum and related synonyms belong to the same lineage, indicating a high genetic similarity. The reason for this bias remains unknown, but could be due to the fact that this sequence-type predominates in nature. Penicillium candidofulvum was listed by Pitt (1980) as a synonym of P. glabrum and a BLAST search with the ITS sequence of the ex-type strain for this species (CBS 254.37T) has 100 % homology with the type strain of P. corylophilum (FRR 802NT; AY373906). No type culture is available of P. fluitans. We follow Raper & Thom (1949) and Pitt (1980) and treat this species as a synonym of P. glabrum. Penicillium trzebinskii was treated as a synonym of P. glabrum by Barreto et al. (2011), but this was based on an incorrectly identified strain (CBS 328.48). Our results shows that the type of P. trzebinskii (CBS 382.48T) is a distinct species belonging to the P. spinulosum-clade.

In this study we accept seven species in the P. glabrum-clade: P. glabrum, P. purpurescens, P. frequentans, P. armarii, P. pulvis, P. rudallense and P. bussumense. These species are phenotypically similar and an overview of characters to differentiate them is given in Fig. 9 and Table 4. Penicillium purpurescens and P. armarii differ from the other species by their conidial size (3.2–4.0 μm vs 2.5–3.2(–3.5) μm in other P. glabrum-clade species) and they differ from each other by their colony diameters on CYA and CYA30°C, and the degree of growth on CREA. Penicillium glabrum and P. frequentans are phylogenetically and phenotypically closely related. Penicillium frequentans strains have a (yellow) brown reverse on CYA incubated at 27 °C and 30 °C, while those of P. glabrum are in shades of beige-brown resulting in less warm colours. Furthermore, strains of P. glabrum tend to have a higher growth rate on CYA30°C, but there is an overlap in colony diameters. These observations are supported by extrolite data. The extrolite profiles of these two species differ and P. frequentans strains produce 6-methylisocoumarin and a compound with the same chromophore as pyranonigrin, while P. glabrum isolates are characterised by the production of citromycetin, fulvic acid, asterric acid, bisdechlorgeodin, geodin, sulochrin, and similar polyketides (Hetherington & Raistrick 1931, Mahmoodian & Stickings 1964). Penicillium bussumense can be differentiated from other related species by a CYAS:CYA ratio of 0.95–1.05 and smaller colonies on CYA. Penicillium pulvis has a (dark) brown reverse on CYA and YES, and brown soluble pigments on CYA; a feature not observed in any of the closely related species. Penicillium rudallense has distinctly ornamented dark green conidia which measure 3.0–3.5 μm diam.

Fig. 9.

Fig. 9

Overview of growth characters of P. glabrum-clade species. Columns, left to right: P. glabrum, P. frequentans, P. pulvis, P. rudallense, P. bussumense, P. armarii, P. purpurescens. Rows, top to bottom: CYA30°C reverse, CYA obverse, CYA reverse, YES obverse, YES reverse, MEA obverse, CREA obverse, DG18 reverse, conidia. Scale bar = 10 μm.

Table 4.

Overview of diagnostic characters of species belonging to the P. glabrum-clade.

Species name CYA MEA YES CYA30°C CYAS:CYA Growth on CREA Conidial size (μm) Conidial ornamentation
P. armarii 50–56 54–60 51–57 46–52 0.60–0.70 Good 3.2–4.0 Rough
P. bussumense 31–37 38–44 40–45 15–20 0.95–1.05 Weak 2.7–3.2 Finely rough
P. frequentans (33–)38–50 38–51 40–53 21–32 0.80–0.95 Weak (occasionally good) 2.5–3.0 Finely rough to rough
P. glabrum (30–)35–48 (30–)38–50 40–59 25–43 0.75–0.85 Weak 2.5–3.0 Finely rough
P. pulvis 26–32 37–43 39–45 24–30 0.75–0.90 Weak 2.7–3.2 Finely rough
P. purpurescens 31–37 40–50 42–50 22–28 0.92–0.97 Weak 3.2–4.0 Rough
P. rudallense 35–46 39–46 48–54 25–37 0.80–0.92 Weak 3.0–3.5 Rough

Clade 4: Penicillium vagum-clade

The P. vagum-clade forms a well-supported lineage (>95 % ML; 1.00 pp) together with the P. glabrum, P. thomii, P. spinulosum and P. fuscum-clade. The relation between the isolates belonging to the P. vagum-clade is moderately supported (Fig. 1; 81 % ML; 0.96 pp). The isolates that belong to this clade can be divided in two lineages (Figs 10, 11). These two lineages are phenotypically unrelated and share characters such as monoverticillate conidiophores and the production of globose and subglobose conidia; characters that are also observed in many other section Aspergilloides species. The moderate support in the phylogenetic analysis, combined with the phenotypic differences, indicate that these species are only loosely related. Based on the unique phylogenetic placement of these isolates, combined with phenotypic differences, these two lineages are described as new species: P. vagum and P. longicatenatum.

Fig. 10.

Fig. 10

Phylogenetic trees showing the relationship among strains belonging to the P. vagum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Fig. 11.

Fig. 11

Phylogenetic trees showing the relationship among strains belonging to the P. vagum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Based on the single gene phylogenies, the isolates that belong to the P. vagum-clade can be divided into two supported lineages (Figs 10, 11). The only strongly supported branch contradictory to this arrangement is the position of DTO 056-I5 in the CaM analysis. This isolate is basal to the P. vagum and P. longicatenatum clades in the CaM analysis, but belongs to the P. vagum-clade in the BenA and RPB2 analysis. Penicillium vagum produces thick walled, spiny conidia and has a moderate acid production on CREA. In contrast, conidia of P. longicatenatum are finely roughened and isolates do not produce acidic compounds on CREA. A typical feature of P. longicatenatum is the abundant production of sclerotia on CYA and MEA. A detailed description of both species is given in the taxonomy section below.

Clade 5: Penicillium fuscum-clade

The P. fuscum-clade is phylogenetically related to the P. spinulosum-, P. thomii-, P. glabrum- and P. vagum-clades (>1.00 pp, >95 % ML) (Fig. 1). Species of the P. fuscum-clade differ from other species of sect. Aspergilloides by a slow or moderate growth rate on CYA [(10–)15–25(–30) mm] and CYAS (<15 mm), short stipes [10–80(–150) μm] and distinctly roughened, thick walled, globose to subglobose conidia.

The analysis of the separate BenA and CaM data sets resulted in poorly supported phylograms, while better support was obtained in the RPB2 phylogram (Figs 12, 13). The phylograms are not congruent. In the RPB2 phylogram, the isolates CBS 127833 (ex-type of Eladia inflata), CBS 130199 and CBS 129806 (indicated with ♣ symbol) group together with two other species on a branch with statistical support (86 % ML; 82 % MP) closer to P. brunneoconidiatum and P. flavisclerotiatum. In the BenA and CaM phylogenies, these isolates cluster with P. fuscum (BenA: 84 % ML, 82 % MP; CaM: 74 % ML, 82 % MP). The reason for this inconsistency is unknown, but it might indicate undersampling. The previously mentioned isolates are basal to P. fuscum in the combined analysis of the BenA, CaM and RPB2 data sets (0.99 pp; >95 % ML) and we therefore tentatively identified all of these strains as P. fuscum.

Fig. 12.

Fig. 12

Phylogenetic trees showing the relationship among strains belonging to the P. fuscum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Fig. 13.

Fig. 13

Phylogenetic trees showing the relationship among strains belonging to the P. fuscum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Stolk (1968) found ascospores in an old culture of the type strain of P. pinetorum (CBS 295.62T) and described this strain as Eupenicillium pinetorum. Penicillium fuscum was linked to E. pinetorum based on original descriptions and illustrations of Citromyces fuscus (Stolk & Samson 1983). This name predates P. pinetorum and was therefore accepted by Houbraken & Samson (2011). The species P. silvaticum, P. macedonense (Pitt 1980), P. asperosporum (≡ P. echinosporum G. Sm., non Nehira) and P. montanense were treated as synonyms of P. fuscum (Stolk & Samson 1983). Penicillium macedonense (CBS 309.63T) and P. silvaticum (CBS 235.60T) reside with P. fuscum (CBS 295.62NT) in all phylogenies (Figs 12, 13) confirming their synonymy with P. fuscum. Penicillium montanense was placed in synonymy with P. fuscum by Stolk & Samson (1983), while other studies accepted this species as distinct (Pitt 1980, Pitt et al. 2000). The type strain of P. montanense (CBS 310.63T) is distinct in our phylogenies of the P. fuscum-clade. Penicillium asperosporum was synonymised with P. fuscum by Stolk & Samson (1983), but was considered distinct in other studies (NRLL 3411T = IMI 080450; Peterson 2000). Sequence analysis shows that this species is a synonym of P. montanense (see Taxonomy). The phylogenetic position of ex-type strain of Eladia inflata (CBS 127833T) is uncertain (see above). We tentatively treat this species as a synonym of P. fuscum.

Based on our multigene phylogenies, nine species are accepted in the P. fuscum-clade. Three species were previously described (P. fuscum, P. montanense and P. ardesiacum) and six are newly introduced here: P. athertonense, P. brunneoconidiatum, P. clavistipitatum, P. flavisclerotiatum, P. tsitsikammaense and P. turcosoconidiatum. Conidiophore morphology is diagnostic for distinguishing these species. For example, P. clavistipitatum produces rough-walled stipes and P. brunneoconidiatum and P. turcosoconidiatum produce very short stipes. Penicillium fuscum is the only species in the clade producing ascospores and sclerotia are observed in P. flavisclerotiatum and P. tsitsikammaense. These species can be differentiated by the growth rate on CYA incubated at 25 and 30 °C. An overview of growth characters is given in Table 5.

Table 5.

Overview of diagnostic characters of species belonging to the P. fuscum-clade.

Species name CYA MEA YES CYA30 °C Stipe length (μm) Stipe ornamentation Conidial size (μm) Sclerotia/cleistothecia
P. ardesiacum 27–33 32–38 30–40 25–30 75–250 Smooth to finely roughened 2.5–3.5 Absent
P. athertonense 27–31 27–33 27–31 20–25 (30–)60–200 Smooth 3.5–4.0 Absent
P. brunneoconidiatum 18–24 10–17 20–25 (0–)10–18 7.5–30 Smooth 3.5–4.5 Absent
P. clavistipitatum 17–23 20–25 18–27 0–15 20–120 Rough 2.5–3.0 Absent
P. flavisclerotiatum 23–26 23–28 30–35 18–21 20–80 Smooth 2.0–3.5 Sclerotia; yellow
P. fuscum 31–37 30–36 31–37 0–10 15–120 Smooth 2.5–4.0(–5.5) Cleistothecia; yellow and becoming avellaneous to reddish brown
P. montanense 15–25 20–35 (19–)25–30 (0–)3–13 20–100(–150) Smooth Variable: (2.5–)4.0–4.5(–5.5) Absent
P. tsitsikammaense 10–15 19–23 20–25 5–10 25–50 Smooth 2.7–3.3(–5.5) Sclerotia1; white
P. turcosoconidiatum 15–20 18–25 20–25 7–10 6–30 Smooth 2.0–2.5 Absent
1

Sclerotia on MEA. Stolk & Samson (1983: 127) reported ascospores in the type strain of P. tsitsikammaense (CBS 328.71).

Clade 6: Penicillium sublectaticum-clade

A set of six strains formed a discrete clade within section Aspergilloides, here named the P. sublectaticum-clade. These species are phylogenetically related to the P. verhagenii and P. saturniforme-clade (76 % ML; 1.00 pp) (Fig. 1). The species of the P. sublectaticum-clade are predominantly monoverticillate while those of the latter two clades have a biverticillate branching pattern. Additionally, all isolates of this clade are able to grow on CYA incubated at 30 °C, a feature not observed in the P. verhagenii and P. saturniforme-clades. Phylogenetic analysis of the individual BenA, CaM and RPB2 data sets divided these strains into three well-supported lineages that are described here as new species: P. infra-aurantiacum, P. malmesburiense and P. sublectaticum (Fig. 14). The combined analysis of the BenA, CaM and RPB2 genes indicated that P. sublectaticum and P. malmesburiense are sister species, although with poor statistical support (0.96 pp, <70 % ML) (Fig. 14). Phenotypically, P. sublectaticum differs from P. malmesburiense in having a pale reverse on CYA, CYAS and DG18, and from P. infra-aurantiacum by having irregular margins on CYA and a dark brown reverse on CYA with (yellow) brown margins.

Fig. 14.

Fig. 14

Phylogenetic trees showing the relationship among strains belonging to the P. sublectaticum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Clade 7: Penicillium verhagenii-clade

Isolates belonging to the P. verhagenii-clade are phylogenetically most closely related to P. saturniforme (Fig. 1; 1.00 pp; 88 % ML), and differ from all species in section Aspergilloides by their biverticillate conidiophores. These isolates are characterised by a unique mode of conidiophore development. The conidiophores are initially biverticillate, but can be become divaricate following sympodial branching of the stipe at the apex. Furthermore, the conidia of these species are blue-green or have a blue shade on MEA. Two clades are consistently present in the separate analysis of the BenA, CaM and RPB2 sequences and are treated here as the new species P. verhagenii and P. ranomafanaense (Fig. 15). These two species can be recognised by their reverse colour on CYA, YES and DG18. Penicillium ranomafanaense has orange or reddish reverse colours on CYA and YES and smooth to finely roughened conidiophore stipes, while P. verhagenii isolates have a yellow or yellow-brown reverse and distinctly rough walled stipes.

Fig. 15.

Fig. 15

Phylogenetic trees showing the relationship among strains belonging to the P. verhagenii-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Clade 8: Penicillium saturniforme-clade

Penicillium saturniforme (CBS 122276T) occupies a unique and isolated position in the phylogeny of section Aspergilloides (Fig. 1). Phylogenetically, it is most closely related to species of the P. verhagenii-clade (1.00 pp; 88 % ML). Species of the P. verhagenii-clade and P. saturniforme are predominantly biverticillate, a unique feature in section Aspergilloides. Penicillium verhagenii and P. ranomafanaense have divaricate conidiophores following secondary, sympodial growth at the apex of the stipe, a feature not reported in P. saturniforme (Wang & Zhuang, 2009). Furthermore, P. saturniforme produces ascospores and these are not observed in cultures of P. verhagenii and P. ranomafanaense.

Clade 9: Penicillium lividum-clade

The Penicillium lividum-clade is most closely related to the P. hoeksii-clade (1.00 pp; >95 % ML) and basal to these two clades is the P. quercetorum-clade (0.99 pp; 89 % ML). The species of the P. lividum-clade produce (dark) blue-green conidia on MEA, grow moderately fast on CYA (25–35 mm) and very poorly on CREA, without the production of acidic compounds. Furthermore, the conidiophores are densely packed with phialides and the conidia are broadly ellipsoidal or ellipsoidal and distinctly roughened, often striate. Most of these characters are shared with P. hoeksii. The main differences between both the two clades are the absence of growth of species of the P. hoeksii-clade on CYA30°C and the finely roughened conidia produced by P. hoeksii.

Fig. 16 shows the phylogenetic relationships among species of the P. lividum-clade. Three species are accepted: P. lividum, P. odoratum and P. kananaskense. These species are resolved in well-supported lineages, but the relationship among the species is incongruent in the individual BenA, CaM and RPB2 phylogenies. In the CaM data set, P. kananaskense is a sister species of P. odoratum, but with low statistical support (<70 % ML; 73 % MP). In contrast, P. kananaskense and P. lividum are sister species with high bootstrap support (>95 % in ML and MP) in the RPB2 analysis.

Fig. 16.

Fig. 16

Phylogenetic trees showing the relationship among strains belonging to the P. lividum-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Penicillium lividum was accepted by Pitt (1980) and P. odoratum and P. trzebinskianum were regarded as synonyms. Our phylogenies (Fig. 16) place P. odoratum in a distinct clade separate from P. lividum. Penicillium trzebinskianum (CBS 530.93T) was invalidly described (without a Latin diagnosis) and was subsequently validated by Ramírez (1982). Our data show that this species is a synonym of P. odoratum.

Penicillium kananaskense (CBS 530.93T) was described as a pink-spored Penicillium species (Seifert et al. 1994). An additional strain of this species was examined (DTO 193-A3), which produced dark blue-green conidia on MEA. Although CBS 530.93T and DTO 193-A3 differ in conidial colour, they share some characters that are not observed in other species of the P. lividum-clade. For example, both strains grow slowly on CYA30°C (5–10 mm) and have a vivid yellow or orange reverse on CYA and YES with yellow pigments diffusing into the agar. Penicillium odoratum grows well on CYA30°C (28–35 mm) while P. lividum grows slowly (12–17 mm). The reverse colours on CYA and YES between these two species are similar (pale, beige, pale brown). The colony texture could also be used to distinguish these three species. Penicillium kananaskense produces velvety colonies on MEA, P. odoratum floccose colonies and the colonies of P. lividum have a lanose texture.

Clade 10: Penicillium hoeksii-clade

Seven strains (DTO 006-D8; DTO 068-D9; DTO 192-G9; CBS 137776T, DTO 192-H6; DTO 193-A4; DTO 199-G6) clustered together in our survey of section Aspergilloides isolates. Fig. 1 shows that two representatives of this group included in this analysis (DTO 068-D9, CBS 137776T) form a distinct clade within section Aspergilloides. This unique clade, here named the P. hoeksii-clade, is closely related to the P. lividum- and P. quercetorum-clades (Fig. 1; 0.99 pp; 89 % ML). Species of the P. hoeksii-clade differ from those of the P. lividum-clade by shorter stipes (less than 250 μm), which are smooth-walled. The recently described P. zhuangii belongs to the P. hoeksii-clade (Wang et al. 2014). Our set of isolates is phylogenetically (Fig. 17) and phenotypically distinct from P. zhuangii. We therefore describe this set of seven isolates as a new species, P hoeksii. Phenotypically, P. hoeksii and P. zhuangii share features such as moderate growth on CYA (15–28 mm), absence of growth on CYA incubated at 30 °C and the production of (broadly) ellipsoidal conidia. The species differ mainly in their response to temperatures. Penicillium zhuangii grows faster on CYA incubated at 15 °C than on 25 °C (22–24 vs 15–18 mm), while P. hoeksii isolates grow slower at 15 °C (12–18 mm vs 20–28 mm).

Fig. 17.

Fig. 17

Phylogenetic trees showing the relationship among strains belonging to the P. hoeksii-clade. The bar indicates the number of substitutions per site. The phylogram is rooted with P. expansum (ATCC 24692).

Clade 11: Penicillium quercetorum-clade

Penicillium quercetorum is the only species of the P. quercetorum-clade. Pitt (1980) noted similarities between P. quercetorum and P. thomii, but accepted P. quercetorum based on a slower growth, smooth walled stipes and spheroidal rather than ellipsoidal conidia. However, in other studies, this species was placed in synonymy with P. thomii (Ramírez 1982, Pitt et al. 2000). Our data show that this species is phylogenetically related to the P. hoeksii- and P. lividum-clades (Fig. 1; 0.99 pp; 89 % BS) and more distant from the P. thomii-clade.

Clade 12: Penicillium thiersii-clade

Based on a four gene phylogeny, P. thiersii was convincingly placed in section Aspergilloides by Houbraken & Samson (2011). The phylogenetic placement of this species within section Aspergilloides could not be confirmed in our study because of a lack of statistical support (Fig. 1). Penicillium thiersii is resolved on its own, basal to other species of section Aspergilloides. The long, vesiculate, rough-walled stipes and ellipsoidal conidia suggest a relationship with species of the P. thomii-clade. In contrast, P. thiersii has a slower growth rate than species of the P. thomii-clade (Peterson et al. 2004). No sclerotia or cleistothecia were reported in the original description of P. thiersii. However, macro- and microscopic examination of CBS 117503T showed presence of pale brown cleistothecia on MEA, CYA and DG18. The ascospores of P. thiersii are ellipsoidal, measure 1.7–2.5 × 2.5–3.5 μm, and have an equatorial ridge and smooth to finely roughened valves. P. thiersii produce a series of different extrolites, making it chemically very distinctive: thiersinines, thiersindoles, decaturins and oxalicins (Li et al. 2002, 2003, 2005).

ITS barcoding and identification

The ITS locus is the accepted barcode for fungal identification (Schoch et al. 2012). Sixteen of 51 Aspergilloides species (31.3 %) could be identified using ITS sequences and therefore this locus cannot be used alone for species level identification in this group. This confirms previously published data on the use of the ITS barcodes for species recognition in Penicillium (e.g. Skouboe et al. 1999, Houbraken et al. 2011b, 2012a, b).

ITS sequences were generated from the majority of the strains used in the phylogenies described above. Fifty haplotypes were detected among the 365 investigated ITS sequences. An overview of the various haplotypes is given in Table 6. Fifteen species did not share ITS sequences with other species of sect. Aspergilloides. Among those fifteen species were P. longicatenatum, P. hoeksii, P. quercetorum, P. saturniforme and P. thiersii, species that were also phylogenetically very distinct (Fig. 1). Penicillium ardesiacum and P. tsitsikammaense were represented by only one strain and multiple strains of P. ranomafanaense and P. armarii were included in the analysis; however, these strains were isolated from the same substrate and location. We speculate that these species might also share ITS sequences with other species of sect. Aspergilloides when a more diverse set of isolates can be analysed. Interestingly, the investigated P. subspinulosum isolates had unique ITS sequences, although the species is closely related to P. roseomaculatum, P. trzebinskii and P. spinulosum in our analyses of the BenA, CaM and RPB2 genes. Penicillium trzebinskii could also be distinguished from those species based on its ITS barcode; however, this species also shared sequences with the phenotypically distinct P. grancanariae and P. palmense.

Table 6.

Overview of ITS sequences types of section Aspergilloides species. The GenBank numbers and haplotype numbers in bold font are shared among other species, and those in regular font are species specific. The species in pale yellow can be identified based on ITS sequences only, species in olive green share sequences with other Aspergilloides members.

graphic file with name fx1.jpg

Some haplotypes were predominantly present. Haplotype 11 contained only species of the P. lividum-clade and none of P. lividum-clade species belonged to another haplotype. With the exception of P. crocicola and P. austroafricanum, all P. thomii-clade species are represented by haplotype 18 and 23. However, these haplotypes do not exclusively accommodate P. thomii-clade species and can therefore not be used for “clade” level identification. Other P. thomii-clade species have haplotypes 25 (P. austroafricanum) and 26 (P. austroafricanum and P. crocicola). Eighty-one isolates have haplotype 30. All P. frequentans and the majority of P. glabrum share this haplotype. The only other species with this haplotype is P. pulvis (two of the three examined sequences).

BenA is recommended as a general purpose secondary barcode for precise species identification in Penicillium (Samson et al. 2010, Visagie et al. 2014). Either partial CaM, BenA and RPB2 sequences can be used for identification purposes in section Aspergilloides and all sequences obtained were species specific. The use of BenA might be hampered by a high intra-specific variation in P. glabrum (4.0 %) and P. frequentans (3.0 %). It is unclear whether this variation is only present in these two species. Perhaps it occurs in other species of sect. Aspergilloides, but we may not have observed it because of our limited sample size. Alternatively, it is feasible that there are additional phylogenetic species, or incipient speciation, in P. glabrum and P. frequentans that are only hinted at by our data. The difficulties of correct identification linked to a high intra-specific variation will be solved by continued sampling of BenA sequences to assay intra-species diversity, leading to higher similarity matches.

Phenotypic and physiologic characters can be used for species identification. Although there are differences in phenotype, identification based on these features remains difficult for non-specialists and a sequence-based approach is recommended, followed by assessment of confirmatory phenotypic characters. Various factors can hinder a phenotype-based identification, including lab-to-lab or batch-to-batch differences in agar media, degeneration of strains and subjective interpretation of structures and colours. If only a phenotype-based identification is possible, then it is of major importance to follow the recommendations listed in Visagie et al. 2014.

Taxonomy

Our phylogenetic analysis revealed that section Aspergilloides currently contains 51 species. The 26 new species that belong to this section are described below.

Penicillium armarii Houbraken, Visagie, Samson & Seifert, sp. nov. MycoBank MB809955. Fig. 18.

Fig. 18.

Fig. 18

Penicillium armarii, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Named after the collection site, in a closet.

Diagnosis: This species belongs to the P. glabrum-clade and can be differentiated by its fast growth rate on CYA (25 and 30 °C) and MEA, and good growth on CREA.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium glabrum-clade.

Typus: Australia, Tasmania, Hobart, house dust, collected by G. Gates, 2009, isolated by E. Whitfield and K. Mwange (holotype CBS H-21870, culture ex-type CBS 138171 = DTO 235-F1).

Barcode and molecular based ID: ITS barcode: KM189758 (alternative markers: BenA = KM089007; CaM = KM089394; RPB2 = KM089781).

Description: Colony diam, 7 d, in mm: CYA 50–56 CYA15°C 25–31; CYA30°C 46–52; CYA37°C no growth; MEA 54–60; YES 51–57; DG18 34–40; CYAS 31–37; ratio CYAS:CYA 0.60–0.70; CREA 25–31, good growth, moderate acid production, followed by base production.

Sporulation on CYA moderate to good, colony texture weakly floccose, light radially sulcate; conidia dark dull green; mycelium inconspicuous; exudate present in the centre as large clear exudate droplets; soluble pigments absent; margin entire; reverse pale yellow. Sporulation on YES absent or very poor, mycelium white; soluble pigments absent; reverse yellow with orange centre. Good sporulation on DG18, colony texture crustose; conidia dull green; reverse pale with orange-brown centre. Good sporulation on MEA, colony texture floccose; conidia dark green in the centre, dull green toward the edge; exudate present as large clear droplets; reverse colour not affecting medium. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 50–300 μm long, apices vesiculate, especially in older parts of the colony, up to 5.5 μm, smooth walled, predominantly monoverticillate, sometimes with divergent additional branch up to 15 μm long, stipe 2.0–3.5 μm wide. Phialides ampulliform with distinct neck, 6–14 per stipe, 8.5–10.5 × 2.5–3.0 μm. Conidia in long distorted chains, globose, distinctly ornamented 3.2–4.0 μm diam.

Penicillium athertonense Houbraken, sp. nov. MycoBank MB809956. Fig. 19.

Fig. 19.

Fig. 19

Penicillium athertonense, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Referring to Atherton Tablelands, the location of the type strain.

Diagnosis: The species is phylogenetically distinct from other species of the P. fuscum-clade. Phenotypically, it can be distinguished by a fast growth rate on CYA at 30 °C (20–25 mm).

In: subgenus Aspergilloides, section Aspergilloides, Penicillium fuscum-clade.

Typus: Australia, Queensland, Atherton Tableland, forest soil, isolated by J. Houbraken & R. van Leeuwen (holotype CBS H-21874, culture ex-type CBS 138161 = DTO 030-C2).

Barcode and molecular based ID: ITS barcode: KM189462 (alternative markers: BenA = KM088690; CaM = KM089075; RPB2 = KM089462).

Description: Colony diam, 7 d, in mm: CYA 27–31; CYA15°C 9–13; CYA30°C 20–25; CYA37°C no growth; MEA 27–33; YES 27–31; DG18 17–21; CYAS 15–20; ratio CYAS:CYA 0.6–0.65; CREA 8–12, weak growth and no acid production.

Sporulation on CYA strong; colony texture velvety, radially sulcate, low; conidia dark green; mycelium white; exudate absent; soluble pigment not produced; margin entire; reverse pale yellow to yellow in colony centre, pale beige at the margin. Sporulation on YES poor, conidia pale green; mycelium white; soluble pigment not produced; reverse pale yellow. Moderate to good sporulation on DG18, colony texture velvety; conidia dark green in the centre, dull blue-green on the edge of colony; mycelium white; reverse pale. Sporulation on MEA moderate to good; colony texture velvety; conidia pure (dark) green; exudate present as small, pale droplets; reverse centre brown, reverse of not affecting; Ehrlich reaction negative.

Sclerotia absent. Conidiophores, (30–)60–200 μm long, smooth walled; slightly vesiculate up to 5 μm wide; frequently with an additional branch, 13–19 μm long. Phialides divergently arranged, widest above the middle and with a short neck, 4–14 per stipe, 8.0–9.0 × 2.5–3.0 μm. Conidia in long distorted chains, globose, distinctly roughened, spinose, 3.5–4.0 μm diam.

Penicillium austroafricanum Houbraken & Visagie, sp. nov. MycoBank MB809957. Fig. 20.

Fig. 20.

Fig. 20

Penicillium austroafricanum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B, C. Sclerotia. D–I. Conidiophores. J. Conidia. Scale bars = 10 μm.

Etymology: Named after South Africa, the origin of the type strain.

Diagnosis: This species is phylogenetically related to P. crocicola and both species have a strong acid production on CREA. Penicillium austroafricanum has a pale yellow or pale brown reverse colour on DG18, while P. crocicola has a pale or a pinkish-brown reverse colour.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium thomii-clade.

Typus: South Africa, Western Cape, Harold Porter Botanical Garden, leaf of Phaenocoma prolifera, isolated by J. Houbraken & P. Crous (holotype CBS H-21864, culture ex-type CBS 137773 = DTO 133-G5).

Barcode and molecular based ID: ITS barcode: KM189610 (alternative markers: BenA = KM088854; CaM = KM089241; RPB2 = KM089628).

Description: Colony diam, 7 d, in mm: CYA 51–62; CYA15°C 23–35; CYA30 °C 30–50; CYA37°C no growth; MEA 40–55; YES 45–55; DG18 27–45; CYAS 35–42; ratio CYAS:CYA 0.67–0.77; CREA 30–35, poor growth, strong acid and no base production.

Sporulation on CYA moderately dense to dense; conidia dull green to greyish green, colony texture velutinous and floccose, low, sulcate, creamish sclerotia produced; mycelium white; exudate clear, sometimes absent; soluble pigment not produced; margin low, wide, entire; reverse greenish white to light yellow to light brown, more yellowish in some isolates. Sporulation on YES moderately dense; conidia dull green, colony texture velutinous, moderately deep, sulcate, greyish colour in non-sporulating areas; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse light yellow to dull yellow greyish yellow. Sporulation on DG18 strong; conidia dull green to greyish green, colony texture velvety or floccose, low; mycelium white; exudate absent; soluble pigment not produced; reverse pale yellow, pale brown, greenish white. Sporulation on MEA moderately dense to dense; conidia dull green to greyish green, colony texture velutinous, low, plane, creamish sclerotia produced; mycelium white; exudate clear; soluble pigment not produced; margin low, wide, entire; reverse brownish yellow to yellowish brown. Ehrlich reaction negative.

Sclerotia on MEA, hard, consisting of polygonal cells, 200–400 × 150–250 μm. Conidiophores monoverticillate; stipes distinctly roughened, 45–220 × 2–3.5 μm, vesicles 4–7.5 μm diam. Phialides 13–24 per stipe, ampulliform, 8–10.5 × 2.5–3.5 μm. Conidia smooth to finely rough walled, broadly ellipsoidal or ellipsoidal, 2.5–4 × 2.5–3 μm.

Penicillium brunneoconidiatum Visagie, Houbraken & K. Jacobs, sp. nov. MycoBank MB809958. Fig. 21.

Fig. 21.

Fig. 21

Penicillium brunneoconidiatum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B, C. Colony texture. D–I. Conidiophores. J. Conidia. Scale bars = 10 μm.

Etymology: Referring to the brown conidia of the species.

Diagnosis: Penicillium brunneoconidiatum differs from the other species belonging to the P. fuscum-clade by its restricted growth on CYA, YES and MEA, short stipes, large conidia (3.5–4.5 μm) and dark green to olive green conidia that become dark brown with age (Table 5).

In: subgenus Aspergilloides, section Aspergilloides, Penicillium fuscum-clade.

Typus: South Africa, Western Cape, Malmesbury, Riverlands, Fynbos, soil, isolated by C.M. Visagie (holotype CBS H-21873, culture ex-type CBS 137732 = DTO 182-E4 = CV 949 = DAOM 241359).

Barcode and molecular based ID: ITS barcode: KM189666 (alternative markers: BenA = KM088911; CaM = KM089298; RPB2 = KM089685).

Description: Colony diam, 7 d, in mm: CYA 18–24; CYA15°C 7–15; CYA30°C (0–)10–18; CYA37°C no growth; MEA 10–17; YES 20–25; DG18 21–24; CYAS 6–10; ratio CYAS:CYA 0.3–0.4; CREA 3–6, weak growth, no acid production.

Sporulation on CYA moderately dense to dense; conidia dull green to dark green, becoming brown with age, colony texture velutinous, low to moderately deep, plane to slightly sulcate in some strains; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to greyish green to dull green. Sporulation on YES absent to sparse; conidia greenish white, colony texture floccose, deep, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse pale yellow to light yellow to olive. Sporulation on DG18 absent to sparse; conidia greenish white, colony texture velutinous, low, slightly sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to greyish yellow. Sporulation on MEA dense; conidia dull green, becoming brown with age, colony texture velutinous, moderately deep, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish brown. Ehrlich reaction negative.

Conidiophores monoverticillate; stipes smooth walled, 7.5–30 × 1.5–2.5 μm, with a minor proportion up to 120 μm long, vesicles 2.5–5 μm diam. Phialides ampulliform, 3–6 per stipe, 5–7.5 × 2.5–3.5 μm. Conidia thick and rough walled, globose, 3.5–4.5 μm.

Penicillium bussumense Houbraken, sp. nov. MycoBank MB809959. Fig. 22.

Fig. 22.

Fig. 22

Penicillium bussumense, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Referring to Bussum, the location of the type strain.

Diagnosis: This species belongs to the P. glabrum-clade and can be differentiated by its CYAS:CYA ratio between 0.99–1.02 and the production of dark green conidia, floccose colonies and with the broad non-sporulating margin on MEA.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium glabrum-clade.

Typus: the Netherlands, Bussum, Spanderswoud, soil, isolated by J. Houbraken (holotype CBS H-21869, culture ex-type CBS 138160 = DTO 018-B2).

Barcode and molecular based ID: ITS barcode: KM189458 (alternative markers: BenA = KM088685; CaM = KM089070; RPB2 = KM089457).

Description: Colony diam, 7 d, in mm: CYA 31–37; CYA15°C 22–26; CYA30°C 15–20; CYA37°C no growth; MEA 38–44; YES 40–45; DG18 30–35; CYAS 34–39; ratio CYAS:CYA 0.95–1.05; CREA 18–23, poor growth, weak acid production.

Sporulation on CYA absent; radially sulcate, deep; mycelium white; exudate sparsely produced as yellow droplets; soluble pigments present, weak, yellow-brown; margin entire; reverse pale beige at the margin, dark brown in the centre. Sporulation on YES poor; conidia pale grey-green; mycelium white; soluble pigments absent; reverse yellow-brown. Good sporulation on DG18, colony texture velvety; conidia dark green; reverse pale in the centre, transparent at the margin. Good sporulation on MEA, colony texture floccose; conidia dark green; exudate present as small clear droplets; reverse colour not affecting medium. Ehrlich reaction negative.

Sclerotia absent. Conidiophores short, 50–250 μm long, stipes vesiculate up to 5.5 μm diam, finely to distinctly rough-walled, predominantly monoverticillate, sometimes with divergent additional branch up to 20 μm long, stipe 2.5–3.5 μm wide. Phialides ampulliform, densely packed, 6–20 per stipe, 8.0–10.0 × 2.5–3.0 μm. Conidia in long distorted chains, globose, finely ornamented, 2.7–3.2 μm diam.

Penicillium cartierense Houbraken, sp. nov. MycoBank MB809960. Fig. 23.

Fig. 23.

Fig. 23

Penicillium cartierense, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–C, F. Sclerotia. D–E, G. Conidiophores. H. Conidia. Scale bars = 10 μm.

Etymology: Named after Cartierheide, the Netherlands, origin of the type strain.

Diagnosis: The species is phylogenetically unique and similar to other species of the P. thomii-clade, differing by the production of reddish brown sclerotia.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium thomii-clade.

Typus: the Netherlands, Eersel, Cartierhiede, soil, isolated by J. Houbraken (holotype CBS H-21861, culture ex-type CBS 137956 = DTO 092-H9).

Barcode and molecular based ID: ITS barcode: KM189564 (alternative markers: BenA = KM088804; CaM = KM089189; RPB2 = KM089576).

Description: Colony diam, 7 d, in mm: CYA 42–49; CYA15°C 23–29; CYA30°C 17–32; CYA37°C no growth; MEA 46–50; YES 51–55; DG18 28–34; CYAS 30–37; ratio CYAS:CYA 0.66–0.81; CREA 13–19, weak growth and no or very poor acid production.

Weak sporulation on CYA and only in the centre; colony texture floccose, radial sulcate; conidia pale dull green or dull green; mycelium white; exudate absent or present as small pale yellow droplets; soluble pigments absent; margin entire; reverse pale brown with dark brown centre becoming reddish brown in time (CBS 863.71). Sporulation on YES absent or poor, conidia dull grey green; mycelium white or very pale crème; soluble pigments absent; reverse yellow-brown. Strong sporulation on DG18, conidia dull green; reverse pale to pale brown or yellow-brown. Moderate to good sporulation on MEA, colony texture floccose; conidia dull green; sclerotia abundantly present, pale brown when young becoming red-brown at age; exudate present as large, clear to light brown droplets; colony reverse yellow in centre, colour medium under colony margins not affected. Ehrlich reaction negative.

Sclerotia pale brown when young, becoming reddish brown after three weeks of incubation at RT on MEA, 250–500(–650) μm; hard; consisting of polygonal cells; no asci or ascospores observed. Conidiophores 150–250 μm long, vesicles 4–7 μm diam, (finely) roughened with ornamentation up to apex, monoverticillate; stipe 3.0–4.0 μm wide. Phialides ampulliform, 10–14 per vesicle, 9–11 × 2.5–3.5 μm. Conidia in long irregular columns, broadly ellipsoidal, smooth to finely roughened, 3.0–4.0 μm.

Penicillium clavistipitatum Visagie, Houbraken & K. Jacobs, sp. nov. MycoBank MB809961. Fig. 24.

Fig. 24.

Fig. 24

Penicillium clavistipitatum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B. Colony texture. C–H. Conidiophores. I. Conidia. Scale bars = 10 μm.

Etymology: Referring to the vesiculate stipe apices of the species.

Diagnosis: Penicillium clavistipitatum grows restrictedly on CYA and MEA and has rough walled stipes that end in vesicles up to 10 μm diam.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium fuscum-clade.

Typus: South Africa, Malmesbury, Riverlands, Fynbos, soil, isolated by C.M. Visagie (holotype CBS H-21882, culture ex-type CBS 138650 = DTO 182-E5 = CV 336 = KAS 4112 = DAOM 241092).

Barcode and molecular based ID: ITS barcode: KM189667 (alternative markers: BenA = KM088912; CaM = KM089299; RPB2 = KM089686).

Description: Colony diam, 7 d, in mm: CYA 17–23; CYA15°C 11–13; CYA30°C no growth to 15 mm; CYA37°C no growth; MEA 20–25; YES 18–27; DG18 18–20; CYAS 6–9; ratio CYAS:CYA 0.35–0.4; CREA 7–10, weak growth, no acid production.

Sporulation on CYA dense; conidia greenish grey to dark green, colony texture velutinous, low, plane; mycelium white; exudate absent; soluble pigment not produced; margin subsurface, narrow, entire; reverse yellowish white to greyish green to olive grey. Sporulation on YES moderately dense; conidia dull green, colony texture velutinous, low, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish grey to light yellow to olive brown. Sporulation on DG18 absent to sparse; conidia greyish green, colony texture velutinous, low, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to olive. Sporulation on MEA dense; conidia greyish green to dark green, colony texture velutinous, low, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse light yellow to yellowish brown. Ehrlich reaction negative.

Sclerotia absent. Conidiophores monoverticillate; stipes rough walled, 20–120 × 2.5–3.5 μm, vesicles 5.5–10 μm diam. Phialides ampulliform, 22–35 per stipe, 7–9 × 2.5–3.5 μm. Conidia globose, distinctly rough walled, 2.5–3 × 2.5–3 μm.

Penicillium contaminatum Houbraken, sp. nov. MycoBank MB809962. Fig. 25.

Fig. 25.

Fig. 25

Penicillium contaminatum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Named after the origin of the type strain, a culture contaminant.

Diagnosis: The species is phylogenetically closely related to P. yezoense, but differs by more restricted growth on DG18 (21–25 vs 30–39 mm) and CYAS (30–35 vs 37–47 mm), less sporulation on YES and CYAS and conidia that are broadly ellipsoidal compared to the ellipsoidal conidia of P. yezoense. The reverse of P. contaminatum on YES is in shades of yellow, while that of P. yezoense is often in brown shades.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium thomii-clade.

Typus: United Kingdom, Kew, Surrey, culture contaminant (holotype CBS H-21866, culture ex-type CBS 345.52 = DTO 091-A3 = IMI 049057).

Barcode and molecular based ID: ITS barcode: KM189554 (alternative markers: BenA = KM088793; CaM = KM089178; RPB2 = KM089565).

Description: Colony diam, 7 d, in mm: CYA 42–55; CYA15°C 16–22; CYA30°C 28–38; CYA37°C no growth; MEA 46–50; YES 51–57; DG18 21–25; CYAS 30–35; ratio CYAS:CYA 0.61–0.73; CREA 11–17, weak growth and no acid production.

Weak sporulation on CYA; colony texture velvety, radially sulcate, deep; conidia grey green; mycelium white; exudate absent or present in the centre as small clear droplets; soluble absent or brown (CBS 346.59); margin entire to slightly irregular; reverse cream or brown. Sporulation on YES absent or poor, conidia dull grey green; mycelium white; soluble pigments absent; reverse yellow. Moderate sporulation on DG18, conidia dull green; reverse (bright) yellow. Weak sporulation on MEA, colony texture velvety to slightly floccose; conidia dull green; exudate absent; reverse with yellow centre, colour medium under margins unaffected. Ehrlich reaction yellow.

Sclerotia absent. Conidiophores 150–250 μm long, apices vesiculate 4–7 μm diam, roughened, monoverticillate; stipe 2.5–3.5 μm wide. Phialides ampulliform with short narrow neck, 10–14(–16) per stipe, 8.5–11.5 × 2.5–3.5 μm. Conidia in long irregular columns, broadly ellipsoidal, smooth when young, finely roughened in older parts of the colony.

Penicillium flavisclerotiatum Visagie, Houbraken & K. Jacobs, sp. nov. MycoBank MB809963. Fig. 26.

Fig. 26.

Fig. 26

Penicillium flavisclerotiatum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B. Colony texture showing sclerotia. C–I. Conidiophores. J. Conidia. Scale bars = 10 μm.

Etymology: Referring to the yellow sclerotia produced by this species.

Diagnosis: This species belongs to the P. fuscum-clade and is characterised by a slow growth rate on CYA, YES and MEA and the production of (pale) yellow sclerotia.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium fuscum-clade.

Typus: South Africa, Western Cape, Stellenbosch mountain, Fynbos soil, isolated by C.M. Visagie (holotype CBS H-21879, culture ex-type CBS 137750 = DTO 180-I8 = CV 100 = DAOM 241157).

Barcode and molecular based ID: ITS barcode: KM189644 (alternative markers: BenA = KM088888; CaM = KM089275; RPB2 = KM089662).

Description: Colony diam, 7 d, in mm: CYA 23–26; CYA15°C 10–18; CYA30°C 18–21; CYA37°C no growth; MEA 23–28; YES 30–35; DG18 25–27; CYAS 9–10; ratio CYAS:CYA 0.4; CREA 7–8, weak growth, acid not produced.

Sporulation on CYA moderately dense; conidia greyish green to dull green, colony texture velutinous and floccose, low, sulcate, cream to light yellow sclerotia produced; mycelium white; exudate clear; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to greyish orange. Sporulation on YES absent; conidia , colony texture floccose, moderately deep, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to light yellow. Sporulation on DG18 very sparse; conidia white to greenish white, colony texture floccose, low, lightly sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to light yellow. Sporulation on MEA moderately dense; conidia greyish green to dull green, colony texture floccose, low, sulcate, yellow sclerotia sometimes present; mycelium white; exudate absent to clear; soluble pigment not produced; margin low, narrow, entire; reverse brownish yellow to yellowish brown. Ehrlich reaction negative.

Sclerotia produced on CYA and MEA, 80–160 × 70–150 μm. Conidiophores monoverticillate; stipes smooth walled, 23–80 × 2–3.5 μm, vesicles 4–5.5 μm diam. Phialides ampulliform, 8–20 per stipe, 6–9 × 2.5–3.5 μm. Conidia heavy rough to spiny walls, some strains only finely rough walled, globose to somewhat subglobose, 2–3.5 × 2–3.5 μm.

Penicillium grevilleicola Houbraken & Quaedvlieg, sp. nov. MycoBank MB809964. Fig. 27.

Fig. 27.

Fig. 27

Penicillium grevilleicola, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B, C. Sclerotia. D–G. Conidiophores. H. Conidia. Scale bars = 10 μm.

Etymology: Referring to the host from which the type strain was isolated, Grevillea ilicifolia.

Diagnosis: The species has dark pure green conidia on MEA, whereas the phylogenetically related species P. crocicola, P. austroafricanum, P. jejuense have dull or dull grey-green conidia. Furthermore, P. grevilleicola has strongly floccose colonies and broadly ellipsoidal conidia.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium thomii-clade.

Typus: Australia, Kangaroo Island, Kingscote, leaf of Grevillea ilicifolia, isolated by J. Houbraken & W. Quaedvlieg (holotype CBS H-21871, culture ex-type CBS 137775 = DTO 174-E6).

Barcode and molecular based ID: ITS barcode: KM189630 (alternative markers: BenA = KM088874; CaM = KM089261; RPB2 = KM089648).

Description: Colony diam, 7 d, in mm: CYA 44–48; CYA15°C 26–30; CYA30°C 18–22; CYA37°C no growth; MEA 43–47; YES 48–52; DG18 26–30; CYAS 33–37; ratio CYAS:CYA 0.74–0.78; CREA 18–22, weak growth and no acid production.

Weak sporulation on CYA and only in the centre; colony texture floccose, radially sulcate, deep; mycelium white; exudate present in the centre as small clear droplets; soluble pigments absent; margin entire; reverse pale crème brown with. Sporulation on YES absent or very poor, mycelium white; soluble pigments absent; reverse orange-yellow. Strong sporulation on DG18, conidia dark green; reverse yellow. Moderate to good sporulation on MEA, colony texture floccose; conidia pure green; few exudate droplets, small, pale yellow; reverse with yellow centre, colour medium under margins unaffected; sclerotia present under mycelium and becoming visible after 14 d incubation. Ehrlich reaction negative.

Sclerotia present, orange-brown, 200–350 μm; hard; consisting of polygonal cells; no asci or ascospores observed. Conidiophores 200–400 μm long, stipes strongly vesiculate, 5–8 μm diam, roughened, monoverticillate; stipe 3.0–4.0 μm wide. Phialides ampulliform with short neck, densely packed, up to 18 per stipe, 10–12 × 3.0–3.5 μm. Conidia in long irregular columns, broadly ellipsoidal, smooth to finely roughened.

Penicillium hoeksii Houbraken, sp. nov. MycoBank MB809965. Fig. 28.

Fig. 28.

Fig. 28

Penicillium hoeksii, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Named after Toon Hoeks, who assisted during the collection of the soil sample from which the type strain was isolated.

Diagnosis: The species is characterised by the production of brown soluble pigments on CYA, OA and/or CYAS, smooth walled stipes, finely roughened (broadly) ellipsoidal conidia and no growth on CYA at 30 °C. This species grows better on CYA at 25 °C than at 15 °C, in contrast to P. zhuangii.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium hoeksii-clade.

Typus: Belgium, Postel, soil under Compact Rush (Juncus conglomeratus), isolated by J. Houbraken (holotype CBS H-21860, culture ex-type CBS 137776 = DTO 192-H4).

Barcode and molecular based ID: ITS barcode: KM189707 (alternative markers: BenA = KM088954; CaM = KM089341; RPB2 = KM089728).

Description: Colony diam, 7 d, in mm: CYA 20–28; CYA15°C 12–18; CYA30°C no growth; CYA37°C no growth; MEA 20–28; YES 26–33; DG18 18–26; CYAS 13–20; ratio CYAS:CYA 0.60–0.67(–0.85); CREA 2–7, weak growth and no acid production.

Sporulation on CYA absent or weak; colony texture velvety, radially sulcate, deep; conidia grey green; mycelium white; exudate absent or present in the centre as small clear or yellow droplets; soluble pigment production strong, brown; margin entire; reverse in shades of brown, sometimes with dark brown centre. Sporulation on YES absent or poor, conidia grey green; mycelium white or pale crème; soluble pigment production weak, brown; reverse brown with dark brown centre. Good sporulation on DG18, colony texture floccose to slightly funiculose; conidia dull green; reverse transparent, pale brown or brown. Moderate sporulation on MEA, colony texture velvety, sometimes with slightly floccose centre; conidia greyish blue green; exudate absent; reverse in shades of brown. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 50–250 μm long, stipes slightly vesiculate up to 5.0 μm diam, smooth walled, monoverticillate, in older parts divaricate with metulae in intercalary positions, intergrading with monoverticillate conidiophores; stipe 3.0–3.5 μm wide. Phialides ampulliform, (1–)2–5(–8) per stipe, 9.0–11.5 × 2.5–3.5 μm. Conidia in short distorted chains, (broadly) ellipsoidal, finely roughened, 3.0–3.7 × 2.5–3.0 μm.

Penicillium infra-aurantiacum Visagie, Houbraken & K. Jacobs, sp. nov. MycoBank MB809966. Fig. 29.

Fig. 29.

Fig. 29

Penicillium infra-aurantiacum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B, C. Sclerotia. D–I. Conidiophores. J. Conidia. Scale bars = 10 μm.

Etymology: Referring to the orange reverse pigmentation that is diagnostic for the species.

Diagnosis: This species is phylogenetically related to P. sublectaticum and P. malmesburiense. Penicillium infra-aurantiacum differs from P. sublectaticum having irregularly shaped colonies on CYA, while those of P. malmesburiense are polygonal in outline.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium sublectaticum-clade.

Typus: South Africa, Western Cape, Malmesbury, Riverlands, bracts of Protea repens infructescence, isolated by C.M. Visagie (holotype CBS H-21880, culture ex-type CBS 137747 = DTO 183-C3 = CV 1518 = DAOM 241145).

Barcode and molecular based ID: ITS barcode: KM189684 (alternative markers: BenA = KM088930; CaM = KM089317; RPB2 = KM089704).

Description: Colony diam, 7 d, in mm: CYA 30–34; CYA15°C 21–23; CYA30°C 12–15; CYA37°C no growth; MEA 30–33; YES 33–35; DG18 25–30; CYAS 18–21; ratio CYAS:CYA 0.6; CREA 15–16, weak growth, no acid production.

Sporulation on CYA moderately dense; conidia greyish turquoise, colony texture velutinous and floccose, low, sulcate; margin slightly polygonal; mycelium white; exudate clear to orange; soluble pigment yellow, inconspicuous; margin low, narrow, polygonal in face view; reverse yellowish white to brownish orange to yellowish brown to brown. Sporulation on YES moderately dense; conidia greyish green, colony texture velutinous and floccose, moderately deep, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to yellowish grey to olive to greyish orange. Sporulation on DG18 dense; conidia dark green, colony texture velutinous and floccose, low, slightly sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to greyish green to light yellow to orange. Sporulation on MEA moderately dense; conidia greyish green, colony texture velutinous and floccose, low, sulcate; mycelium white; exudate clear; soluble pigment not produced; margin low, narrow, entire; reverse light yellow to yellowish brown to brown. Ehrlich reaction negative.

Conidiophores monoverticillate; stipes smooth walled, 100–230 × 2–3 μm, vesicles 4.5–6 μm diam. Phialides ampulliform, 10–18 per stipe, 8.5–11 × 2.5–3 μm. Conidia rough walled, globose, 2.5–3.5 μm.

Penicillium kiamaense Houbraken & Pitt, sp. nov. MycoBank MB809967. Fig. 30.

Fig. 30.

Fig. 30

Penicillium kiamaense, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Named after Kiama, the location of the type strain of this species.

Diagnosis: This species is phylogenetically unique and most closely related to species of the P. glabrum- and P. thomii-clades. Phenotypically is most closely related to P. subspinulosum, but can be differentiated by the production of dark (dull) green conidia on OA and MEA and a reverse on YES in shades of orange.

In: subgenus Aspergilloides, section Aspergilloides, undefined clade (basal to P. glabrum and P. thomii-clade).

Typus: Australia, NSW, Barren Grounds Nature Reserve, near Kiama, soil, isolated by J.I. Pitt (holotype CBS H-21857, culture ex-type CBS 137947 = FRR 6087 = DTO 056-I6).

Barcode and molecular based ID: ITS barcode: KM189506 (alternative markers: BenA = KM088743; CaM = KM089128; RPB2 = KM089515).

Description: Colony diam, 7 d, in mm: CYA 33–37; CYA15°C 22–26; CYA30°C 12–16; CYA37°C no growth; MEA 33–37; YES 37–41; DG18 23–27; CYAS 24–28; ratio CYAS:CYA 0.73–0.75; CREA 18–22, weak growth and no acid production.

Sporulation on CYA weak, only in the centre; colony texture velvety, radially sulcate, deep; conidia dull grey-green; mycelium white; exudate present in the centre as small pale yellow droplets; soluble pigment production weak, yellow-brown; colony in face view polygonal; reverse yellowish brown in the centre, brown at the margins. Sporulation on YES poor; mycelium white to pale cream; soluble pigment production strong, orange-brown; reverse orange with an orange-brown centre. Good sporulation on DG18, colony texture crustose; conidia dull green; reverse yellow. Good sporulation on MEA, colony texture velvety; conidia dark green; exudate present, pale; reverse with yellow centre, colour medium under margins unaffected. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 50–250 μm long, stipes vesiculate up to 6.0 μm diam, finely rough walled, predominantly monoverticillate, sometimes with a short branch up to 14 μm long, stipe 3.0–4.0 μm wide. Phialides ampulliform, 5–12 per stipe, 9.0–11.0 × 2.5–3.5 μm. Conidia in moderately long chains, globose to subglobose, distinctly ornamented with striations, 3.0–3.5 μm.

Penicillium longicatenatum Visagie, Busby, Houbraken & K. Jacobs, sp. nov. MycoBank MB809968. Fig. 31.

Fig. 31.

Fig. 31

Penicillium longicatenatum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B. Colony texture. C–I. Conidiophores. J. Conidia. Scale bars = 10 μm.

Etymology: Referring to the long chains of conidia produced by this species in culture.

Diagnosis: This species is phylogenetically unique and in common with other species of the P. thomii-clade, it produces sclerotia on CYA and MEA and grows well on CYA at 30 °C. Conidia are subglobose.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium vagum-clade.

Typus: South Africa, Western Cape, Malmesbury, Riverlands, Fynbos, soil, isolated by C.M. Visagie (holotype CBS H-21875, culture ex-type CBS 137735 = DTO 180-D9 = CV 2847 = DAOM 241119).

Barcode and molecular based ID: ITS barcode: KM189636 (alternative markers: BenA = KM088880; CaM = KM089267; RPB2 = KM089654).

Description: Colony diam, 7 d, in mm: CYA 40–45; CYA15°C 23–27; CYA30°C 25–35; CYA37°C no growth; MEA 35–45; YES 45–50; DG18 30–35; CYAS 35–45; ratio CYAS:CYA 0.9–1; CREA 15–20, weak growth, acid not produced.

Sporulation on CYA moderately dense; conidia greyish green to dull green to greyish green, colony texture velutinous and floccose, low, sulcate, cream to light brown sclerotia produced; mycelium white; exudate clear to yellow; soluble pigment yellow to yellowish brown; margin low, narrow, entire; reverse greyish yellow near margin, elsewhere brown. Sporulation on YES moderately dense; conidia greyish green to dull green, colony texture velutinous, low to moderately deep, sulcate; mycelium white; exudate absent; soluble pigment yellow; margin low, narrow, entire; reverse light yellow to greyish yellow. Sporulation on DG18 moderately dense to dense; conidia greyish green to dull green to greyish green, colony texture velutinous, low, slightly sulcate; mycelium white; exudate absent; soluble pigment yellow; margin low, narrow, entire; reverse light yellow to greyish green. Sporulation on MEA moderately dense; conidia greyish green to dull green to greyish green, colony texture velutinous and floccose, low to moderately deep, sulcate, cream to greyish brown sclerotia present; mycelium white; exudate clear to yellow; soluble pigments not produced; margin low, narrow to wide, entire; reverse greyish orange to brownish yellow to yellowish brown. Ehrlich reaction negative.

Sclerotia produced on CYA and MEA, 50–250 × 40–250 μm. Conidiophores monoverticillate; stipes smooth walled, 60–330 × 2.5–3.5 μm, vesicles 4–9 μm diam. Phialides ampulliform, 12–25 per stipe, 7–11 × 2.5–4 μm. Conidia finely rough walled, subglobose, 2.5–3.5 × 2–3 μm.

Penicillium malmesburiense Visagie, Houbraken & K. Jacobs, sp. nov. MycoBank MB809969. Fig. 32.

Fig. 32.

Fig. 32

Penicillium malmesburiense, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B. Colony texture. C–H. Conidiophores. I. Conidia. Scale bars = 10 μm.

Etymology: Referring to the collection site of the type strain, Malmesbury.

Diagnosis: The species is phylogenetically closely related to P. infra-aurantiacum and P. sublectaticum, but differs by its pale reverse on CYA, CYAS and DG18.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium sublectaticum-clade.

Typus: South Africa, Western Cape, Malmesbury, Riverlands, mite from Protea repens infructescence, isolated by C.M. Visagie (holotype CBS H-21872, culture ex-type CBS 137744 = DTO 182-H5 = CV 1180 = DAOM 241144).

Barcode and molecular based ID: ITS barcode: KM189676 (alternative markers: BenA = KM088921; CaM = KM089308; RPB2 = KM089695).

Description: Colony diam, 7 d, in mm: CYA 34–35; CYA15°C 20–23; CYA30°C 20–22; CYA37°C no growth; MEA 30–33; YES 34–35; DG18 24–26; CYAS 24–28; ratio CYAS:CYA 0.7–0.8; CREA 15–20, weak growth, acid not produced.

Sporulation on CYA moderately dense; conidia dull green to greyish green, colony texture velutinous, low, sulcate; mycelium white; exudate clear; soluble pigment not produced; margin low, narrow, entire; reverse greenish grey to greyish yellow, with dark olive spots at centre. Sporulation on YES moderately dense; conidia dull green to dark green, colony texture velutinous, moderately deep, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to olive. Sporulation on DG18 moderately dense; conidia dull green to dark green, colony texture velutinous with some floccose areas, low, slightly sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse greenish grey to greyish yellow, with dark olive spots at centre. Sporulation on MEA moderately dense to dense; conidia greyish green to dark green, colony texture velutinous, low, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish brown to brown. Ehrlich reaction negative.

Conidiophores monoverticillate; stipes smooth walled, 35–115 × 2–3 μm, vesicles 4–6.5 μm diam. Phialides ampulliform, 10–20 per stipe, 8.5–10 × 3–3.5 μm. Conidia finely rough walled, subglobose, 2.5–3.5 × 2.5–3 μm.

Penicillium pulvis Houbraken, Visagie, Samson & Seifert, sp. nov. MycoBank MB809970. Fig. 33.

Fig. 33.

Fig. 33

Penicillium pulvis, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Referring to dust, the substrate from which the type strain was isolated.

Diagnosis: This species grows more restrictedly on CYA than other species of the P. glabrum-clade. It has a (dark) brown reverse on CYA, YES and DG18 and produces brown soluble pigment on CYA.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium glabrum-clade.

Typus: South Africa, Kuils River, house dust, collected by K. Jacobs, isolated by E. Whitfield & K. Mwange (holotype CBS H-21878, culture ex-type CBS 138432 = DTO 180-B7).

Barcode and molecular based ID: ITS barcode: KM189632 (alternative markers: BenA = KM088876; CaM = KM089263; RPB2 = KM089650).

Description: Colony diam, 7 d, in mm: CYA 26–32; CYA15°C 22–28; CYA30°C 24–30; CYA37°C no growth; MEA 37–43; YES 39–45; DG18 23–29; CYAS 21–27; ratio CYAS:CYA 0.75–0.90; CREA 19–25, weak growth and moderate acid production.

Sporulation on CYA weak; radially sulcate, deep; mycelium pale beige; exudate present as small orange-yellow droplets; soluble pigment production strong, brown; margin irregular; reverse brown, with dark brown centre. Sporulation on YES absent weak, mycelium white; conidia grey green; soluble pigment not produced; reverse dark brown. Moderate to good sporulation on DG18; colony texture velvety to slightly floccose; conidia dull green; reverse dark brown. Good sporulation on MEA, colony texture velvety; conidia dull green; exudate absent; reverse dark brown in the centre, reverse colour not affecting medium. Ehrlich reaction negative.

Sclerotia absent. Conidiophores, 100–300 μm long, apices vesiculate up to 6.5 μm wide, smooth to finely walled, strictly monoverticillate, stipe 2.5–3.5 μm wide. Phialides ampulliform, 4–16 per stipe, 9.0–10.0 × 2.5–3.0 μm. Conidia in long well-defined chains, globose to subglobose, finely ornamented, 2.7–3.2 μm.

Penicillium ranomafanaense Houbraken & Hagen, sp. nov. MycoBank MB809971. Fig. 34.

Fig. 34.

Fig. 34

Penicillium ranomafanaense, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Named after Ranoma fana, the location of the type specimen.

Diagnosis: The species is phylogenetically related to P. verhagenii, but differs in having an orange reverse on DG18 and smooth to finely roughened stipes.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium verhagenii-clade.

Typus: Madagascar, Ranoma fana, soil, isolated by F. Hagen & J. Houbraken (holotype CBS H-21862, culture ex-type CBS 137953 = DTO 085-A5).

Barcode and molecular based ID: ITS barcode: KM189541 (alternative markers: BenA = KM088779; CaM = KM089164; RPB2 = KM089551).

Description: Colony diam, 7 d, in mm: CYA 26–33; CYA15°C 20–26; CYA30°C no growth; CYA37°C no growth; MEA 25–33; YES 33–43; DG18 22–30; CYAS 12–27; ratio CYAS:CYA 0.50–0.85; CREA 5–10, weak growth and no acid production.

Sporulation on CYA weak to moderate; colony texture velvety, radially sulcate, deep; conidia dull green becoming dark green in the centre; mycelium white; exudate absent; soluble pigment production strong, yellow to orange; margin entire or slightly polygonal in face view; reverse yellow-orange with orange-red centre. Sporulation on YES absent; mycelium pale crème; soluble pigment not produced; reverse orange. Good sporulation on DG18, colony texture slightly floccose; conidia dull to dark green; mycelium white, reverse orange. Good sporulation on MEA, colony texture velvety; conidia dark green in the centre, towards dull green at the edge, always with a blue element; exudate absent; reverse not affecting the medium. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 100–250 μm long, with smooth or finely roughened stipes; irregularly branched, predominantly symmetrically biverticillate, older conidiophores becoming divaricate due to having secondary growth of the stipe by proliferation at the apex, stipe 2.5–3.5 μm wide. Metulae in terminal whorl of 3–6, of unequal length, (9.0–)11.0–16.5(–22) × 2.5–3.5 μm. Phialides, two types present, predominantly ampulliform, short, 8.5–9.5 × 2.5–3.5 μm, also larger phialides present, cylindrical, (9–)10.5 × 14(–16) μm, (2–)4–10(–14) per metulae. Conidia in short distorted chains, roughened, occasionally with striations, variable in shape: subglobose to broadly ellipsoidal in DTO 085-A5, 2.5–3.0 μm in size, (broadly) ellipsoidal in DTO 085-A8 2.5–3.0 × 2.0–2.7 μm.

Penicillium rudallense Houbraken, Visagie & Pitt, sp. nov. MycoBank MB809972. Fig. 35.

Fig. 35.

Fig. 35

Penicillium rudallense, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Referring to the location of the type strain, Rudall River National Park.

Diagnosis: This species belongs phylogenetically to the P. glabrum-clade and can be differentiated by the production of distinctly ornamented, dark green conidia on CYA and MEA, and good growth on CYA.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium glabrum-clade.

Typus: Australia, WA, Rudall River National Park, soil, isolated by A.D. Hocking (holotype CBS H-21867, culture ex-type CBS 138162 = FRR 6085 = DTO 056-I4).

Barcode and molecular based ID: ITS barcode: KM088741 (alternative markers: BenA = KM089126; CaM = KM189504; RPB2 = KM089513).

Description: Colony diam, 7 d, in mm: CYA 35–46; CYA15°C 22–28; CYA30°C 25–37; CYA37°C 0–7; MEA 39–46; YES 48–54; DG18 35–43; CYAS 35–40; ratio CYAS:CYA 0.80–0.92; CREA 18–32, poor growth and moderate acid production.

Sporulation on CYA good; radially sulcate, deep; colony texture velvety; conidia dark green; mycelium white; exudate absent or present as yellow droplets; soluble pigment absent or light brown; margin slightly polygonal; reverse (pale) orange-brown or brown with dark brown centre. Sporulation on YES strong; conidia dark dull green, mycelium beige; soluble pigments absent; reverse yellow, orange-yellow or crème with brown centre. Good sporulation on DG18, colony texture granular or floccose; conidia dull green; reverse pale or orange. Good sporulation on MEA, colony texture velvety, sometimes slightly floccose; conidia dark green; exudate absent. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 150–400 μm long, stipes slightly vesiculate in young parts of the colony, inflated in older parts, up to 6.0 μm, smooth or finely rough walled, predominantly monoverticillate, sometimes symmetrically biverticillate or with additional branch, stipe 2.0–3.0 μm wide. Phialides ampulliform with short neck, 6–14 per stipe, 8.0–10.0 × 2.5–3.5 μm. Conidia in long well-defined chains, globose, distinctly ornamented, slightly striated and inner and outer cell wall visible, 3.0–3.5 μm.

Penicillium sterculiniicola Houbraken, sp. nov. MycoBank MB809973. Fig. 36.

Fig. 36.

Fig. 36

Penicillium sterculiniicola, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Named after compost (sterculinium), the substrate from which the type was isolated.

Diagnosis: This species grows well on CREA, colonies at CYA at 30 °C after 7 d (29–) are 37–47 mm diam, and no sporulation occurs on CYA and YES. Stipes are rough walled and the conidia 2.7–3.7 μm diam.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium spinulosum-clade.

Typus: USA, spawn run compost (holotype CBS H-21877, culture ex-type CBS 122426 = DTO 031-A4).

Barcode and molecular based ID: ITS barcode: KM189464 (alternative markers: BenA = KM088693; CaM = KM089078; RPB2 = KM089465).

Description: Colony diam, 7 d, in mm: CYA (25–)39–45; CYA15°C 17–22; CYA30°C (29–)37–47; CYA37°C no growth; MEA 37–55; YES 35–45; DG18 22–35; CYAS 20–28; ratio CYAS:CYA 0.55–0.63(–0.84); CREA 24–34, good growth and weak to moderate acid production, followed by a delayed base production.

Sporulation on CYA absent or very weak; radially sulcate, deep; mycelium white; exudate absent; soluble pigment not produced; margin entire, irregular in DTO 216-I4; reverse in shades of brown, pale brown, crème or brown. Sporulation on YES absent, mycelium white; soluble pigment not produced; reverse yellow-brown. Good sporulation on DG18, colony texture crustose; conidia dull green; reverse pale or transparent. Good sporulation on MEA, colony texture floccose, occasionally velvety to floccose; conidia dark green or dark dull green; exudate present as large droplets, clear or pale brown. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 50–250 μm long, apices vesiculate in older parts of the colony, less pronounced in younger parts, up to 6.5 μm diam, stipe finely roughened to distinct rough walled, predominantly monoverticillate, sometimes with divergent additional branch up to 15 μm long, stipe 2.5–3.5 μm wide. Phialides ampulliform, 6–14 per stipe, 9.0–11.0 × 2.5–3.5 μm. Conidia in long distorted chains, globose, distinctly ornamented with striations, 2.5–4.0 μm.

Penicillium sublectaticum Houbraken, Frisvad, Samson & Seifert, sp. nov. MycoBank MB809974. Fig. 37.

Fig. 37.

Fig. 37

Penicillium sublectaticum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Referring to “under the bed”, the location from where the type strain was isolated from.

Diagnosis: The species is phylogenetically closely related to P. infra-aurantiacum and P. malmesburiense. Phenotypically, it is most similar to P. infra-aurantiacum and differs by irregular margins on CYA and a dark brown reverse on CYA with (yellow) brown margins.

In: subgenus Aspergilloides, section Aspergilloides, P. sublectaticum-clade.

Typus: New Zealand, Dunedin, house dust, collected by T. Atkinson, 2009, isolated by E. Whitfield and K. Mwange (holotype CBS H-21955, culture ex-type: CBS 138217 = DTO 244-G2).

Barcode and molecular based ID: ITS barcode: KM189761 (alternative markers: BenA = KM089010; CaM = KM089397; RPB2 = KM089784).

Description: Colony diam, 7 d, in mm: CYA 25–35; CYA15°C 17–25; CYA30°C 5–15; CYA37°C no growth; MEA 27–35; YES 30–37; DG18 23–30; CYAS 18–25; ratio CYAS:CYA 0.67–0.73; CREA 8–17, weak growth and no acid production.

Moderate sporulation on CYA and only in the centre; colony texture velvety; conidia grey green; radially sulcate, deep; mycelium white; exudate present as red-brown droplets; soluble pigments present, poor, red-brown; margin irregular; reverse brown or dark brown centre with (yellow-)brown edge. Sporulation on YES absent, mycelium white; soluble pigments absent; reverse reddish brown. Good sporulation on DG18; colony texture floccose; conidia dull green; reverse red-brown. Moderate sporulation on MEA, colony texture floccose; conidia dark dull green; few exudate droplets, small, pale yellow or clear; reverse brown. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 40–250 μm long, stipes predominantly non-vesiculate, occasionally slightly vesiculate in older parts of the colony, up to 4.0 μm, smooth walled, predominantly monoverticillate, occasionally with additional monoverticillate branch; stipe 2.5–3.5 μm wide. Phialides ampulliform to cylindrical, (2–)4–12 per stipe, 8–10 × 2.0–3.0 μm. Conidia in moderate to long well-defined columns, globose to subglobose, distinctly ornamented with striations, 3.0–3.5 μm.

Penicillium subspinulosum Houbraken, sp. nov. MycoBank MB809975. Fig. 38.

Fig. 38.

Fig. 38

Penicillium subspinulosum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Referring to the close relationship with P. spinulosum.

Diagnosis: The species is phylogenetically close to P. spinulosum and related species, but differs by its poor on CREA, velvety colonies on CYA and restricted growth on CYA30°C (4–18(–22) mm).

In: subgenus Aspergilloides, section Aspergilloides, Penicillium spinulosum-clade.

Typus: Poland, soil, isolated by J. Houbraken & B. Byskal (holotype CBS H-21856, culture ex-type CBS 137946 = DTO 041-F2).

Barcode and molecular based ID: ITS barcode: KM189483 (alternative markers: BenA = KM088719; CaM = KM089104; RPB2 = KM089491).

Description: Colony diam, 7 d, in mm: CYA (24–)36–41; CYA15°C 18–30; CYA30°C 4–18(–22); CYA37°C no growth; MEA (28–)35–42; YES 35–45; DG18 22–35; CYAS 25–35; ratio CYAS:CYA 0.65–0.90; CREA 10–18, poor growth and no acid production.

Sporulation on CYA poor; colony texture velvety, radially sulcate, deep; conidia pure green or dull green; mycelium white; exudate present, clear or pale yellow; soluble pigment absent except in DTO 297-D5 and then pale yellow; margin entire, occasionally lobate; reverse generally in shades of pale brown or cream (pale yellow). Sporulation on YES absent or poor, conidia pale dull green; mycelium white; soluble pigment not produced; reverse cream or pale brown. Good sporulation on DG18, colony texture velvety; conidia dull green; mycelium inconspicuous. Good sporulation on MEA, colony texture floccose in the centre, velvety at the edge; conidia pure green or pure to dull green; exudate if present as clear or pale yellow droplets; reverse brown or not affecting the medium. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 200–400 μm long, with finely roughened stipes, apices vesiculate up to 7 μm diam, predominantly monoverticillate, occasionally with additional branch up to 20 μm long, stipe 2.5–3.5 μm wide. Phialides ampulliform, densely packed, 6–16 per stipe, 7.5–9.5 × 2.0–3.0 μm. Conidia in moderately long, distorted chains, roughened, sometimes with striation or bars, globose, 2.5–3.3 μm.

Penicillium tsitsikammaense Houbraken, sp. nov. MycoBank MB809976. Fig. 39.

Fig. 39.

Fig. 39

Penicillium tsitsikammaense, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–C. Sclerotia. D–G. Conidiophores. H. Conidia. Scale bars = 10 μm.

Etymology: Named after the collection site of the type strain, Tsitsikamma forest, South Africa.

Diagnosis: The species belongs to the P. fuscum-clade and can be distinguished from the other species by the absence of or poor growth on CYAS (0–2 mm), slow growth rate on CYA and YES, with sporulation absent or poor on all media.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium fuscum-clade.

Typus: South Africa, Cape Province, Tsitsikamma Forest near Knysna, forest soil, isolated by D.B. Scott (holotype CBS H-21881, culture ex-type CBS 328.71 = DTO 006-I3 = CSIR 1092).

Barcode and molecular based ID: ITS barcode: KM189451 (alternative markers: BenA = KM088675; CaM = KM089060; RPB2 = KM089447).

Description: Colony diam, 7 d, in mm: CYA 10–15; CYA15°C 8–12; CYA30°C 5–10; CYA37°C no growth; MEA 19–23; YES 20–25; DG18 17–21; CYAS 0–2; ratio CYAS:CYA 0.15–0.2; CREA 3–5, weak growth and no acid production.

Sporulation on CYA absent; mycelium pale pink or pinkish-beige; exudate absent; soluble pigment not produced; margin lobate (irregular); reverse pale yellow in colony centre, pale beige at the margin. Sporulation on YES absent, mycelium white; soluble pigment not produced; reverse pale yellow. Poor sporulation on DG18; colony texture velvety to floccose; conidia pale green; mycelium white; reverse pale green in the centre, pale at the margins. Sporulation on MEA absent; mycelium white; conidia produced after prolonged incubation, brown-green; sclerotia visible on the edge of the colony periphery, white; exudate absent; reverse centre pale orange and pale yellow at edge; Ehrlich reaction negative.

Sclerotia present on MEA, white, soft, consisting of polygonal cells, (30–)50–120 μm. Conidiophores monoverticillate, short, 25–50 μm long, smooth walled; non-vesiculate. Phialides ampulliform, often with a conspicuous neck, 2–4 per stipe, 8.5–10.0(–13) × 2.5–3.5 μm. Conidia in short distorted chains, globose to subglobose, thick walled, distinctly roughened, a proportion smooth walled, 2.5–3.5 μm diam, a minor proportion larger, up to 5.5 μm.

Notes: Stolk & Samson (1983: 127) reported ascospores in CBS 328.71; however, we did not observe any ascospores on OA, MEA, CYA or YES after ten weeks incubation at room temperature. Cleistothecia of P. fuscum, a closely related species, mature slowly and a longer incubation time also might be needed for P. tsitsikammaense (Scott 1968). Another possibility might be that the strain is degenerated after prolonged maintenance.

Penicillium turcosoconidiatum Visagie, Houbraken & K. Jacobs, sp. nov. MycoBank MB809977. Fig. 40.

Fig. 40.

Fig. 40

Penicillium turcosoconidiatum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B, C. Colony texture. D–I. Conidiophores. J. Conidia. Scale bars = 10 μm.

Etymology: Named after the light blue turquoise conidia on MEA.

Diagnosis: Penicillium turcosoconidiatum differs from the other species of the P. fuscum-clade by its restricted growth on CYA, YES and MEA, short stipes, size of conidia (2–2.5 μm) and turquoise conidial colour (Table 5).

In: subgenus Aspergilloides, section Aspergilloides, Penicillium fuscum-clade.

Typus: South Africa, Stellenbosch, soil, isolated by C.M. Visagie (holotype CBS H-21876, culture ex-type CBS 138557 = DTO 181-A3 = CV 110 = DAOM 241130).

Barcode and molecular based ID: ITS barcode: KM189645 (alternative markers: BenA = KM088889; CaM = KM089276; RPB2 = KM089663).

Description: Colony diam, 7 d, in mm: CYA 15–20; CYA15°C 7–8; CYA30°C 7–10; CYA37°C no growth; MEA 18–25; YES 22–23; DG18 18–19; CYAS 6–8; ratio CYAS:CYA 0.4; CREA no growth, no acid production.

Sporulation on CYA sparse; conidia greyish green, colony texture velutinous, moderately deep, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to brownish orange. Sporulation on YES absent; colony texture floccose, moderately deep, sulcate, orange white colour; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to greyish yellow. Sporulation on DG18 very sparse; conidia greenish white, colony texture floccose, low, plane; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse pale to pale yellow. Sporulation on MEA absent after 7 d; conidia greyish turquoise after prolonged incubation, colony texture velutinous, low, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse yellowish white to brownish orange. Ehrlich reaction negative.

Sclerotia absent. Conidiophores monoverticillate, mycelia on which conidiophores are borne often rough walled; stipes smooth walled, 6–30 × 1.5–3 μm, vesicles 3–6 μm diam; phialides ampulliform, 12–18 per stipe, 5–6.5 × 2.5–3.5 μm; conidia rough walled, globose, 2–2.5 μm.

Penicillium vagum Houbraken, Pitt, Visagie & K. Jacobs, sp. nov. MycoBank MB809978. Fig. 41.

Fig. 41.

Fig. 41

Penicillium vagum, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B. Colony texture. C–I. Conidiophores. J. Conidia. Scale bars = 10 μm.

Etymology: Latin, vagum = meaning wanderer; named in reference to the phylogenetic relationships of this species, which change according to the different genes analysed.

Diagnosis: This species is phylogenetically distinct. It is characterised by floccose colony texture on CYA, dark green conidia on MEA and distinctly roughened globose conidia.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium vagum-clade.

Typus: South Africa, Western Cape, Stellenbosch mountain, air sample, isolated by C.M. Visagie (holotypus CBS H-21926, cultures ex-type: CBS 137728 = DTO 180-G3 = CV 25 = DAOM 241357).

Barcode and molecular based ID: ITS barcode: KM189642 (alternative markers: BenA = KM088886; CaM = KM089273; RPB2 = KM089660).

Description: Colony diam, 7 d, in mm: CYA 30–43; CYA15°C 14–22; CYA30°C 30–31; CYA37°C no growth, sometimes 4 mm; MEA 20–44; YES 34–54; DG18 27–30; CYAS 26–32; ratio CYAS:CYA 0.75–0.85; CREA 20–22, weak to good growth, moderate acid production, no base production.

Sporulation on CYA moderately dense; conidia dull or pure green, colony texture floccose, moderately deep, sulcate; mycelium white; exudate abundant, clear; soluble pigment absent or present, yellow-brown; margin low, narrow, entire; reverse yellowish white to greyish yellow, (yellow-) brown. Sporulation on YES poor to strong; conidia variable, greenish white, dull green or dark green, colony texture floccose, moderately deep, sulcate; mycelium white or yellow; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse light yellow to greyish yellow. Sporulation on DG18 dense; conidia dark green, colony texture velutinous, low, sulcate; mycelium white; exudate absent; soluble pigment not produced; margin low, narrow, entire; reverse transparent, greyish green, pale yellow or pale brown in the centre. Sporulation on MEA dense; conidia dark green (26F5–F8), colony texture velutinous, moderately deep, sulcate; mycelium white; exudate abundant clear; soluble pigment not produced; margin low, narrow, entire; reverse brownish yellow to yellowish brown (5C8–D8). Ehrlich reaction negative.

Sclerotia absent. Conidiophores monoverticillate. Stipes smooth walled, 36–310 × 2.5–3.5 μm, vesicles 4.5–7 μm diam. Phialides ampulliform, 15–20 per stipe, 8.5–11 × 3–4 μm. Conidia conspicuously spiny walled, globose, 2.5–3.5 μm.

Penicillium verhagenii Houbraken, sp. nov. MycoBank MB809979. Fig. 42.

Fig. 42.

Fig. 42

Penicillium verhagenii, A. 7 d old cultures, 25 °C, left to right; first row, all obverse, CYA, YES, DG18, MEA; second row, CYA reverse, YES reverse, DG18 reverse, CREA obverse. B–F. Conidiophores. G. Conidia. Scale bars = 10 μm.

Etymology: Named after Cor Verhagen, who assisted with the collection of the soil sample from which the type strain was isolated.

Diagnosis: The species is characterised by the production of long stipes, up to 400 μm, biverticillate conidiophores, restricted growth on CYA at 27 °C and CYAS and bluish green conidia on MEA.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium verhagenii-clade.

Typus: Belgium, Postel, mosses under Myrica gale (Bog Myrtle), isolated by J. Houbraken (holotype CBS H-21865, culture ex-type CBS 137959 = DTO 193-A1).

Barcode and molecular based ID: ITS barcode: KM189708 (alternative markers: BenA = KM088955; CaM = KM089342; RPB2 = KM089729).

Description: Colony diam, 7 d, in mm: CYA 20–27; CYA15°C 17–25; CYA30°C no growth; CYA37°C no growth; MEA 21–30; YES 28–35; DG18 18–25; CYAS 3–9; ratio CYAS:CYA 0.15–0.30(–0.40); CREA 2–7, weak growth and no acid production.

Sporulation on CYA absent or weakly present in the centre of colony; colony texture velvety to floccose, radially sulcate, deep; conidia pale grey green; mycelium white; exudate absent; soluble pigment absent or poor, pale yellow; margin entire or slightly polygonal in face view; reverse yellow or yellow-brown. Sporulation on YES absent or poor, conidia pale grey green; mycelium white or pale crème; soluble pigment not produced; reverse yellowish brown. Good sporulation on DG18, colony texture velvety; conidia dull green; mycelium inconspicuous in the centre, in some isolates pale yellow at the edge, reverse pale or pale yellow. Good sporulation on MEA, colony texture floccose; conidia blue-green or dull to blue-green; exudate present as pale or yellow droplets; colony reverse not affecting the medium colour, sometimes with yellow centre. Ehrlich reaction negative.

Sclerotia absent. Conidiophores 150–400 μm long, finely rough walled in young parts of the colony, distinctly rough walled in older parts; symmetrically biverticillate, some conidiophores becoming divaricate following having secondary growth of the stipe by sympodial branching at the apex, stipe 3.0–4.5 μm wide. Metulae in terminal whorl of 3–6, of unequal length, 13.0–16.5 × 3.0–4.0 μm. Phialides ampulliform, 2–8 per stipe, 9.0–10 × 3.0–3.5 μm. Conidia in short distorted chains, (broadly) ellipsoidal, roughened, slightly striate, 3.3–4.0 × 2.5–3.3 μm.

Notes: The type strain of P. rubefaciens (CBS 145.83T) and two substrains (CBS 146.83 and CBS 147.83) were deposited in the CBS collection by J.A. Quintanilla in 1983. Quintanilla (1982) noted that this species produced floccose sectors and one of the cultures derived from these sectors (CBS 146.83) is identified here as P. verhagenii.

Penicillium yezoense Hanzawa ex Houbraken, sp. nov. MycoBank MB809980.

= Penicillium yezoense Hanzawa, J. Agric. Chem. Soc. Japan: 774. 1943. MB335775 (nom. inval., Art. 39.1.).

Diagnosis: The species is phenotypically and phylogenetically related to P. contaminatum, but differs by a faster growth rate on DG18 (21–25 vs 30–39 mm) and CYAS (30–35 vs 37–47 mm) and a better sporulation on YES and CYAS. The conidia of P. yezoense are ellipsoidal while those of P. contaminatum are broadly ellipsoidal.

Typus: Japan, butter, isolated by Y. Sasaki (holotype CBS H-21863, culture ex-type CBS 350.59 = ATCC 18333 = FRR 3395 = IFO 5362 = IMI 068615).

In: subgenus Aspergilloides, section Aspergilloides, Penicillium thomii-clade.

Barcode and molecular based ID: ITS barcode: KM189553 (alternative markers: BenA = KM088792; CaM = KM089177; RPB2 = KM089564).

Notes: Penicillium yezoense was described without a Latin diagnosis. To validate the species an English diagnosis is given above, with the name of the original author maintained. This species was considered a synonym of P. thomii (Pitt 1980, Ramírez 1982, Pitt et al. 2000); however, this study shows that P. yezoense is phylogenetically unique (Figs 5, 6).

List of currently accepted species and their synonyms in Penicillium section Aspergilloides

The following list includes accepted species in sect. Aspergilloides and their synonyms.

Penicillium ardesiacum Novobr., Novosti Sist. Nizsh. Rast. 11: 228. 1974. MB319257.

= Penicillium thomii var. flavescens S. Abe, J. Gen. Appl. Microbiol. Tokyo 2: 50. 1956. MB347377 (nom. inval., Art. 39.1.).

In: Penicillium fuscum-clade

Typus: Kazachstan, Alma-Ata Region, Vitis vinifera, T.I. Novobranova. Culture ex-type: IMI 174719 = CBS 497.73 = ATCC 24719 = FRR 1479 = IFO 30540 = IMI 174719 = VKM F-1749.

Penicillium armarii Houbraken, Visagie, Samson & Seifert, this study. MycoBank MB809955.

In: Penicillium glabrum-clade

Typus: Australia, Tasmania, Hobart, house dust, collected by G. Gates, 2009, isolated by E. Whitfield and K. Mwange. Culture ex-type: CBS 138171 = DTO 235-F1.

Penicillium athertonense Houbraken, this study. MycoBank MB809956.

In: Penicillium fuscum-clade

Typus: Australia, Queensland, Atherton Tableland, forest soil, J. Houbraken & R. van Leeuwen. Culture ex-type: CBS 138161 = DTO 030-C2.

Penicillium aurantioviolaceum Biourge, Cellule 33: 282. 1923. MycoBank MB257885.

In: Penicillium thomii-clade

Neotypus: Puerto Rico, unrecorded source, R.A. Toro. Neotype, designated here: CBS H-21954; culture ex-neotype: CBS 137777 = NRRL 762.

Penicillium austroafricanum Houbraken & Visagie, this study. MycoBank MB809957.

In: Penicillium thomii-clade

Type: South Africa, Western Cape, Harold Porter Botanical Garden, leaf of Phaenocoma prolifera, J. Houbraken & P. Crous. Culture ex-types: CBS 137773 = DTO 133-G5.

Penicillium brunneoconidiatum Visagie, Houbraken & K. Jacobs, this study. MycoBank MB809958.

In: Penicillium fuscum-clade

Typus: South Africa, Western Cape, Malmesbury, Riverlands, Fynbos, soil, C.M. Visagie. Culture ex-type: CBS 137732 = DTO 182-E4 = CV 949 = DAOM 241359.

Penicillium bussumense Houbraken, this study. MycoBank MB809959.

In: Penicillium glabrum-clade

Typus: the Netherlands, Bussum, Spanderswoud, soil, J. Houbraken. Culture ex-type: CBS 138160 = DTO 018-B2.

Penicillium cartierense Houbraken, this study. MycoBank MB809960.

In: Penicillium thomii-clade

Typus: the Netherlands, Eersel, Cartierhiede, soil, J. Houbraken. Culture ex-type: CBS 137956 = DTO 092-H9.

Penicillium clavistipitatum Visagie, Houbraken & K. Jacobs, this study. MycoBank MB809961.

In: Penicillium fuscum-clade

Typus: South Africa, Malmesbury, Riverlands, Fynbos, soil, C.M. Visagie. Culture ex-type: CBS 138650 = DTO 182-E5 = CV 336 = KAS 4112 = DAOM 241092.

Penicillium contaminatum Houbraken, this study. MycoBank MB809962.

In: Penicillium thomii-clade

Typus: United Kingdom, Kew, Surrey, culture contaminant. Culture ex-type CBS 345.52 = DTO 091-A3 = IMI 049057.

Penicillium crocicola W. Yamam., Sci. Rep. Hyogo Univ. Agric. 2: 28. 1956. MycoBank MB302391.

In: Penicillium thomii-clade

Type: Japan, corm of Crocus sativus, W. Yamamoto. Culture ex-type: CBS H-7528 = CBS 745.70 = ATCC 18313 = QM 7778.

Penicillium flavisclerotiatum Visagie, Houbraken & K. Jacobs, this study. MycoBank MB809963.

In: Penicillium fuscum-clade

Typus: South Africa, Western Cape, Stellenbosch mountain, Fynbos, soil, isolated by C.M. Visagie. Culture ex-type: CBS 137750 = DTO 180-I8 = CV 100 = DAOM 241157.

Penicillium frequentans Westling, Ark. Bot. 11: 133. 1911. MycoBank MB152118.

= Penicillium paczoskii K.M. Zaleski, Bull. Int. Acad. Polon. Sci., Sér. B 1927: 505. 1927. MB273253.

In: Penicillium glabrum-clade

Typus: Unknown source, K. Westling. CBS 105.11.

Penicillium fuscum (Sopp) Biourge, Cellule 33: 103. 1923. MycoBank MB289082.

Citromyces fuscus Sopp, Skr. Vidensk.-Selsk. Christiana Math.-Nat. Kl. 11: 120. 1912. MB178643.

= Penicillium silvaticum Suprun, Byull. Mosk. Obshch. Ispyrt. Prir.: 90. 1956. MB492648.

= Penicillium pinetorum M. Chr. & Backus, Mycologia 53: 457. 1961. MB335758.

= Penicillium macedoniense Verona & Mick., Mycopathol. Mycol. Appl. 18: 289. 1962. MB335746.

= Eupenicillium pinetorum Stolk, Antonie van Leeuwenhoek 34: 37. 1968. MB330740.

= Penicillium lapatayae C. Ramírez, Mycopathologia 91: 96. 1985. MB105610.

= Eladia inflata Y.L. Jiang & T.Y. Zhang, Mycotaxon 108: 128. 2009. MB512859.

In: Penicillium fuscum-clade

Neotypus: USA, Wisconsin, pine-birch forest soil, Vilas County, M. Christensen. Culture ex-neotype: WSF 15-C = CBS 295.62 = ATCC 14770 = CCRC 31517 = DSM 2438 = IFO 7743 = IMI 094209 = MUCL 31196 = NRRL 3008.

Notes: The type culture of P. lapatayae maintained in the CBS collection (CBS 203.87) is dead. The IBT culture collection contains two ex-type isolates, one directly sent by C. Ramírez to the IBT collection (IJFM 19012 = IBT 10870 = DTO 297-C8) and another received the ATCC (ATCC 60197 = IBT 16267 = DTO 297-C9). IBT 16267 is identified here as P. fuscum (Figs 12, 13) and IBT 10870 as P. adametzioides. Neither strain formed the pink soft sclerotia described in the original description. However, IBT 16267 resembles the original description best because this isolate produces conspicuously ornamented subglobose conidia and pure to dark green conidia on MEA. In contrast, IBT 10870 produces broadly ellipsoidal, smooth to finely roughened conidia, and grey-green colonies on MEA. Based on this data, we consider P. lapatayae a synonym of P. fuscum.

Penicillium fusisporum L. Wang, PLoS ONE 9:e101454-P2. 2014. MB806119.

In: Penicillium thomii-clade

Typus: China, Shaanxi, Nangongshan Forest Park, leaves of Rhododendron sp., P-J Han. Culture ex-type: HMAS 244961 = CBS 137463 = AS3.15338 = NRRL 62805.

Penicillium glabrum (Wehmer) Westling, Ark. Bot. 11: 131. 1911. MB120545.

Citromyces glaber Wehmer, Beitr. Kenntn. Einh. Pilze 1: 24. 1893. MB178959.

= Citromyces pfefferianus Wehmer, Ber. Deutsch. Bot. Ges. 11: 333. 1893. MB157685.

= Penicillium aurantiobrunneum Dierckx, Ann. Soc. Sci. Bruxelles 25: 86. 1901. MB237393.

?= Penicillium fluitans Tiegs, Ber. Deutsch. Bot. Ges. 37: 500. 1919. MB151731; fide Raper & Thom (1949) and Pitt (1980). No culture examined.

= Penicillium flavidorsum Biourge, Cellule 33: 290. 1923. MB265032.

= Penicillium oledzkii K.M. Zaleski, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 499. 1927. MB272809.

= Penicillium terlikowskii K.M. Zaleski, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 501. 1927. MB280026.

= Penicillium spinuloramigenum Y. Sasaki, J. Appl. Mycol., Japan: 58. 1946. MB302426 (nom. inval., Art. 39.1.).

= Penicillium spinuloramigenum Y. Sasaki ex C. Ramírez, Manual and Atlas of the Penicillia: 162. 1982. MB115801.

In: Penicillium glabrum-clade

Neotypus: unrecorded source, K. Westling. Culture ex-neotype: IMI 91944 = IMI 91944 = CBS 125543.

Penicillium grancanariae C. Ramírez, A.T. Martínez & Ferrer, Mycopathologia 66: 79. 1978. MycoBank MB319273.

In: Penicillium spinulosum-clade

Typus: Spain, Canary Islands, Gran Canaria, air. Culture ex-type: IJFM 3745 = CBS 687.77 = IJFM 3745 = IMI 253783.

Penicillium grevilleicola Houbraken & Quaedvlieg, this study. MycoBank MB809964.

In: Penicillium thomii-clade

Typus: Australia, Kangaroo Island, Kingscote, leaf of Grevillea ilicifolia, J. Houbraken & W. Quaedvlieg. Culture ex-type: CBS 137775 = DTO 174-E6.

Penicillium hoeksii Houbraken, this study. MycoBank MB809965.

In: Penicillium hoeksii-clade

Typus: Belgium, Postel, soil under Compact Rush (Juncus conglomeratus), J. Houbraken. Culture ex-type: CBS 137776 = DTO 192-H4.

Penicillium infra-aurantiacum Visagie, Houbraken & K. Jacobs, this study. MycoBank MB809966.

In: Penicillium sublectaticum-clade

Typus: South Africa, Western Cape, Malmesbury, Riverlands, bracts of Protea repens infructescence, C.M. Visagie. Culture ex-type: CBS 137747 = DTO 183-C3 = CV 1518 = DAOM 241145.

Penicillium jejuense M.S. Park & Y.W. Lim, submitted. MycoBank MB808392.

In: Penicillium thomii-clade

Typus: Republic of Korea, Jeju Island, Pollicipes mitella. Culture ex-type: SFC20140101-M756T.

Penicillium kananaskense Seifert, Frisvad & McLean, Can. J. Bot. 72: 20. 1994. MB362160.

In: Penicillium lividum-clade

Typus: Canada, Alberta, Kananaskis Valley, soil, FH horizon, in a Pinus contorta var. latifolia forest, M.A. McLean. Culture ex-type: CBS 530.93 = ATCC 90282 = DAOM 216105 = IBT 11775 = IMI 356791.

Penicillium kiamaense Houbraken & Pitt, this study. MycoBank MB809967.

In: undefined clade (basal to P. glabrum and P. thomii-clade).

Typus: Australia, NSW, Barren Grounds Nature Reserve, near Kiama, soil, J.I. Pitt. Culture ex-type: CBS 137947 = FRR 6087 = DTO 056-I6.

Penicillium lividum Westling, Ark. Bot. 11: 134. 1911. MycoBank MB178817.

In: Penicillium lividum-clade

Neotypus: Unrecorded source, Scotland. Culture ex-neotype: IMI 39736 = CBS 347.48 = ATCC 10102 = CCRC 31286 = DSM 1180 = IFO 6102 = NRRL 754 = QM 1930 = VKM F-303.

Note: Some sub-cultures of the ex-neotype culture of P. lividum received from a few collections were contaminated with P. spinulosum. Through the courtesy of Dr. John David, former curator of IMI, we re-examined the neotype specimen IMI 39736 and confirmed that it conforms to the concept of this species proposed by Pitt (1980), and the more restricted concept adopted in this paper.

Penicillium longicatenatum Visagie, Busby, Houbraken & K. Jacobs, this study. MycoBank MB809968.

In: Penicillium vagum-clade

Typus: South Africa, Western Cape, Malmesbury, Riverlands, Fynbos, soil, C.M. Visagie. Culture ex-type: CBS 137735 = DTO 180-D9 = CV 2847 = DAOM 241119.

Penicillium malmesburiense Visagie, Houbraken & K. Jacobs, this study. MycoBank MB809969.

In: Penicillium sublectaticum-clade

Typus: South Africa, Western Cape, Malmesbury, Riverlands, mite from Protea repens infructescence, C.M. Visagie. Culture ex-type: CBS 137744 = DTO 182-H5 = CV 1180 = DAOM 241144.

Penicillium montanense M. Chr. & Backus, Mycologia 54: 574. 1962. MycoBank MB335752.

= Penicillium echinosporum G. Sm., Trans. Brit. Mycol. Soc. 45: 387. 1962. MB335724 (nom. illeg., Art. 53).

= Penicillium asperosporum G. Sm., Trans. Brit. Mycol. Soc. 48: 275. 1965. MB335714.

In: Penicillium fuscum-clade

Typus: USA, Montana, Ravalli County Lodgepole, pine-Douglas fir soil. Culture ex-type: CBS 310.63 = ATCC 14941 = FRR 3407 = IFO 7740 = IHEM 4375 = IMI 099468 = MUCL 31326 = NRRL 3407.

Notes: There is some taxonomic confusion around P. echinosporum and P. asperosporum. Penicillium echinosporum Nehira was described in 1933 without a Latin diagnosis. The name was incorrectly validated by Ramírez (1982) but Latin descriptions were compulsory only after 1935. Samson et al. (2011) showed that the type of this species (CBS 344.51T) belongs to Talaromyces and the combination Talaromyces echinosporus was proposed. Currently, this species is placed in synonymy with Talaromyces rugulosus (Yilmaz et al. 2014). In 1962, unaware of the existence P. echinosporum Nehira, Smith described P. echinosporum G. Sm. and typified it with IMI 080450T. Three years later he corrected this error and renamed his species P. asperosporum. Sequence analysis confirm that NRRL 3411 (= IMI 080450T) is conspecific with P. montanense.

Penicillium odoratum M. Chr. & Backus, Mycologia 53: 459. 1961. MycoBank MB335755.

= Penicillium trzebinskianum S. Abe, J. Gen. Appl. Microbiol., Tokyo 2: 63. 1956. MB302427.

= Penicillium trzebinskianum S. Abe ex C. Ramírez, Manual and Atlas of the Penicillia: 79. 1982. MB115803.

In: Penicillium lividum-clade

Typus: USA, Wisconsin, soil, spruce-larch bog, M. Christensen. Culture ex-type: WSF 2000 = DTO 205-B7 = CBS 294.62 = CBS 129423 = DAOM 226269 = ATCC 14769 = DSM 2419 = IFO 7741 = IMI 094208ii = NRRL 3007 = DAOM 226269.

Penicillium palmense C. Ramírez & A.T. Martínez, Mycopathologia 66: 80. 1978. MycoBank MB319289.

In: Penicillium spinulosum-clade

Typus: Air, Canary Islands, Gran Canaria, Spain. Culture ex-type: IJFM 3840 = CBS 336.79 = ATCC 38669 = VKM F-2181.

Penicillium pulvis Houbraken, Visagie, Samson & Seifert, this study. MycoBank MB809970.

In: Penicillium glabrum-clade

Typus: South Africa, South Africa, Kuils River, house dust, K. Jacobs. Culture ex-type: CBS 138432 = DTO 180-B7.

Penicillium purpurescens (Sopp) Raper & Thom, A manual of the Penicillia: 177. 1949. MycoBank MB335761.

Citromyces purpurescens Sopp, Skr. Vidensk.-Selsk. Christiana, Math.-Naturvidensk. Kl. 11: 117. 1912. MB157120.

?= Citromyces virido-albus Sopp, Skr. Vidensk.-Selsk. Christiana, Math.-Naturvidensk. Kl. 11: 131. 1912. MB454083; fide Raper & Thom (1949); no culture available.

?= Penicillium virido-album (Sopp) Biourge, Cellule 33: 106. 1923. MB492659; fide Raper & Thom (1949).

= Penicillium internascens Szilvinyi, Zentralbl. Bakteriol. Parasitenk., Abt. 2 103: 148. 1941. MB289091.

= Penicillium resinae Z.T. Qi & H.Z. Kong, Acta Mycol. Sin.: 103. 1982. MB110236.

In: Penicillium glabrum-clade

Neotypus: Canada, soil, G.R. Bisby. Culture ex-neotype: IMI 39745 = CBS 366.48 = ATCC 10485 = NRRL 720 = QM 1959.

Penicillium quercetorum Baghd., Novosti Sist. Nizsh. Rast. 5: 110. 1968. MB335762.

In: Penicillium quercetorum-clade

Typus: Syria, soil near Es-Euveida, V.C. Baghdadi. Culture ex-type: CBS H-7527 = CBS 417.69 = ATCC 48727 = CCRC 31668 = FRR 516 = IFO 31749 = IMI 140342 = MUCL 31203 = VKM F-1074.

Penicillium ranomafanaense Houbraken & Hagen, this study. MycoBank MB809971.

In: Penicillium verhagenii-clade

Typus: Madagascar, Ranoma fana, soil, F. Hagen & J. Houbraken. Culture ex-type: CBS 137953 = DTO 085-A5.

Penicillium roseomaculatum Biourge, Cellule 33: 301. 1923. MycoBank MB276785.

= Penicillium baiicola Biourge, Cellule 33: 305. 1923. MB258101.

= Penicillium subericola Barreto, Frisvad & Samson, Fungal Diver. 49: 32. 2011. MB517383

In: Penicillium spinulosum-clade

Typus: Unrecorded source, P. Biourge. Culture ex-type: CBS 137962 = NRRL 728 = FRR 0728 = IMI 189696 = MUCL 29101.

Penicillium roseoviride Stapp & Bortels, Zentralbl. Bakteriol. Parasitenk., Abt. 2 93: 51. 1935. MycoBank MB492646.

In: Penicillium thomii-clade

Typus: Germany, soil in a beech forest. Culture ex-type: CBS 267.35 = ATCC 10412 = IFO 6089 = IMI 039740ii = NRRL 760 = QM 7485).

Penicillium rudallense Houbraken, Visagie & Pitt, this study. MycoBank MB809972.

In: Penicillium glabrum-clade

Typus: Australia, WA, Rudall River National Park, soil, A.D. Hocking. Culture ex-type: CBS 138162 = FRR 6085 = DTO 056-I4.

Penicillium saturniforme (L. Wang & W.Y. Zhuang) Houbraken & Samson, Stud. Mycol. 70: 48. 2011. MycoBank MB561958.

Eupenicillium saturniforme L. Wang & W.Y. Zhuang, Mycopathologia 167: 300. 2009. MB541663.

In: Penicillium saturniforme-clade

Typus: China, Jiling Province, Dunhua Little Peony Forest Reserve, soil. Culture ex-type: AS 3.6886 = CBS 122276 = HMAS 130355-1-4.

Penicillium spinulosum Thom, U.S.D.A. Bur. Animal Industr. Bull. 118: 76. 1910. MycoBank MB215401.

= Penicillium pfefferianum (Wehmer) Westling, Ark. Bot. 11: 132. 1911. MB492636.

= Penicillium flavocinereum Biourge, Cellule 33: 293. 1923. MB265060.

?= Penicillium janthocitrinum Biourge, Cellule 33: 311. 1923. MB119135; fide Pitt (1980).

= Penicillium mucosum Stapp & Bortels, Zentralbl. Bakteriol. Parasitenk., Abt. 2 93: 51. 1935. MB492626.

= Penicillium tannophilum Stapp & Bortels, Zentralbl. Bakteriol. Parasitenk., Abt. 2 93: 52. 1935. MB492654.

= Penicillium brunneoviride Szilvinyi, Zentralbl. Bakteriol. Parasitenk., Abt. 2 103: 144. 1941. MB289078.

= Penicillium trzebinskii var. magnum Sakag. & S. Abe, J. Gen. Appl. Microbiol., Tokyo 2: 62. 1956. MB352367.

= Penicillium abeanum G. Sm., Trans. Brit. Mycol. Soc. 46: 333. 1963. MB335704.

In: Penicillium spinulosum-clade

Neotypus: Germany, Hannover, culture contaminant, C. Wehmer. Culture ex-neotype: IMI 24316i = CBS 374.48 = ATCC 10498 = FRR 1750 = MUCL 13910 = MUCL 13911 = NCTC 591 = NRRL 1750 = QM 7654.

Penicillium sterculiniicola Houbraken, this study. MycoBank MB809973.

In: Penicillium spinulosum-clade

Typus: USA, spawn run compost. Culture ex-type: CBS 122426 = DTO 031-A4.

Penicillium sublectaticum Houbraken, Frisvad, Samson & Seifert, this study. MycoBank MB809974.

In: subgenus Aspergilloides, section Aspergilloides, P. sublectaticum-clade.

Typus: New Zealand, Dunedin, house dust, collected by T. Atkinson, 2009, isolated by E. Whitfield and K. Mwange. Culture ex-type: CBS 138217 = DTO 244-G2.

Penicillium subspinulosum Houbraken, this study. MycoBank MB809975.

In: subgenus Aspergilloides, section Aspergilloides, Penicillium spinulosum-clade.

Typus: Poland, soil, J. Houbraken & B. Byskal. Culture ex-type CBS 137946 = DTO 041-F2.

Penicillium thiersii S.W. Peterson, E.M. Bayer & Wicklow, Mycologia 96: 1283. 2005. MycoBank MB487738.

In: Penicillium thiersii-clade

Typus: USA, Wisconsin, New Glarus Woods State Park, old black stroma of Hypoxylon encrusting the surface of a dead maple log, H.D. Thiers. Culture ex-type: BPI 842269 = CBS 117503 = IBT 27050 = NRRL 28162.

Penicillium thomii Maire, Bull. Soc. Hist. Nat. Afrique N. 8: 189. 1917. MycoBank MB202819.

?= Penicillium parallelosporum Y. Sasaki, J. Fac. Agric. Hokkaido Imp. Univ. 49: 147. 1950. MB302414 (nom. inval., Art. 39.1.).

= Penicillium patens Pitt & A.D. Hocking, Mycotaxon 22: 197. 1985. MB105611.

In: Penicillium thomii-clade

Neotypus: USA, Spaulding, pine cone. Culture ex-neotype: IMI 189694 = CBS 225.81 = NRRL 2077.

Penicillium trzebinskii K.M. Zaleski, Bull. Int. Acad. Polon. Sci., Sér. B., Sci. Nat. 1927: 498. 1927. MycoBank MB280795.

= Penicillium tannophagum Stapp & Bortels, Zentralbl. Bakteriol. Parasitenk., Abt. 2 93: 52. 1935. MB492653.

= Penicillium mediocre Stapp & Bortels, Zentralbl. Bakteriol. Parasitenk., Abt. 2 93: 50. 1935. MB492624.

= Penicillium toxicarium I. Miyake ex C. Ramírez, Manual and Atlas of the Penicillia: 125. 1982. MB115802.

In: Penicillium spinulosum-clade

Typus: Poland, Poznan area, Dluga Goslina Forest, soil, K. Zaleski. Culture ex-type: CBS 382.48 = ATCC 10507 = FRR 731 = IFO 6110 = IMI 039749 = MUCL 29102 = NRRL 731 = QM 7678.

Penicillium tsitsikammaense Houbraken, this study. MycoBank MB809976.

In: Penicillium fuscum-clade

Typus: South Africa, Cape Province, Tsitsikamma Forest near Knysna, forest soil, D.B. Scott. Culture ex-type: CBS 328.71 = DTO 006-I3 = CSIR 1092.

Penicillium turcosoconidiatum Visagie, Houbraken & K. Jacobs, this study. MycoBank MB809977.

In: Penicillium fuscum-clade

Typus: South Africa, Stellenbosch, soil, C.M. Visagie. Culture ex-type: CBS 138557 = DTO 181-A3 = CV 110 = DAOM 241130.

Penicillium vagum Houbraken, Pitt, Visagie & K. Jacobs, this study. MycoBank MB809978.

In: Penicillium vagum-clade

Typus: South Africa, Western Cape, Stellenbosch mountain, air sample, C.M. Visagie. Culture ex-type: CBS 137728 = DTO 180-G3 = CV 25 = DAOM 241357.

Penicillium valentinum C. Ramírez & A.T. Martínez, Mycopathologia 72: 183. 1980. MycoBank MB113027.

In: Penicillium thomii-clade

Typus: Spain, Madrid, air. C. Ramírez. Culture ex-type: IJFM 5071 = CBS 172.81.

Penicillium verhagenii Houbraken, this study. MycoBank MB809979.

In: Penicillium verhagenii-clade

Typus: Belgium, Postel, mosses under Myrica gale (Bog Myrtle), J. Houbraken. Culture ex-type CBS 137959 = DTO 193-A1.

Penicillium yezoense Hanzawa ex Houbraken, this study. MycoBank MB809980.

= Penicillium yezoense Hanzawa, J. Agric. Chem. Soc. Japan: 774. 1943. MB335775 (nom. inval., Art. 39.1.).

In: Penicillium thomii-clade

Typus: Japan, butter, Y. Sasak. Culture ex-type: CBS 350.59 = ATCC 18333 = FRR 3395 = IFO 5362 = IMI 068615.

Penicillium zhuangii L. Wang, PLoS ONE 9 e101454-P4. 2014. MycoBank MB805945.

In: Penicillium hoeksii-clade

Typus: China, Shaanxi, Nangongshan Forest Park, leaves of Rhododendron sp., 1 500 m, P-J Han. Culture ex-type: HMAS 244961 = CBS 137464 = AS3.15338 = NRRL 62806.

Acknowledgements

This research was in part supported by grants from the Alfred P. Sloan Foundation Program on the Microbiology of the Built Environment. The research of Karin Jacobs was funded by a grant from the South African Biosystematics Initiative (SABI) of the National Research Foundation (NRF), South Africa. We are grateful to the many collectors of soil samples and house dust samples that yielded many of the new species described here. Uwe Braun is acknowledged for his advice on the new species names and the nomenclatural issues. We are grateful to John David, former curator of herb. IMI, for sending us a microscopic preparation from the neotype specimen of P. lividum.

Footnotes

Peer review under responsibility of CBS-KNAW Fungal Biodiversity Centre.

Contributor Information

J. Houbraken, Email: j.houbraken@cbs.knaw.nl.

K. Jacobs, Email: kj@sun.ac.za.

References

  1. Barreto M.C., Houbraken J., Samson R.A. Taxonomic studies of the Penicillium glabrum complex and the description of a new species P. subericola. Fungal Diversity. 2011;49:23–33. [Google Scholar]
  2. Biourge P. Les moisissures du groupe Penicillium Link. Cellule. 1923;33:7–331. [Google Scholar]
  3. Frisvad J.C., Houbraken J., Popma S. Two new Penicillium species P. buchwaldii and P. spathulatum, producing the anticancer compound asperphenamate. FEMS Microbiology Letters. 2013;339:77–92. doi: 10.1111/1574-6968.12054. [DOI] [PubMed] [Google Scholar]
  4. Frisvad J.C., Samson R.A., Stolk A.C. Disposition of recently described species in Penicillium. Persoonia. 1990;14:209–232. [Google Scholar]
  5. Hetherington A.C., Raistrick H. Studies in the biochemistry of microorganisms XI. On citromycetin, a new yellow colouring matter produced from glucose by a species of Citromyces. Philosophical Transactions of the Royal Society, London, Series B. 1931;220:209–244. [Google Scholar]
  6. Houbraken J., Frisvad J.C., Samson R.A. Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens. IMA Fungus. 2011;2:87–95. doi: 10.5598/imafungus.2011.02.01.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Houbraken J., Frisvad J.C., Samson R.A. Taxonomy of Penicillium section Citrina. Studies in Mycology. 2011;70:53–138. doi: 10.3114/sim.2011.70.02. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Houbraken J., Frisvad J.C., Seifert K.A. New penicillin-producing Penicillium species and an overview of section Chrysogena. Persoonia. 2012;29:78–100. doi: 10.3767/003158512X660571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houbraken J., Samson R.A. Phylogeny of Penicillium and the segregation of Trichocomaceae into three families. Studies in Mycology. 2011;70:1–51. doi: 10.3114/sim.2011.70.01. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Houbraken J., Spierenburg H., Frisvad J.C. Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie van Leeuwenhoek. 2012;101:403–421. doi: 10.1007/s10482-011-9647-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Li C., Gloer J.B., Wicklow D.T. Thiersindoiloes A-C: new indole diterpenoids from Penicillium thiersii. Journal of Natural Products. 2003;66:1232–1235. doi: 10.1021/np030192m. [DOI] [PubMed] [Google Scholar]
  12. Li C., Gloer J.B., Wicklow D.T. Thiersinines A and B: novel antiinsectan indole diterpenoids from a new fungicolous Penicillium species (NRRL 28147) Organic Letters. 2002;4:3095–3098. doi: 10.1021/ol026424a. [DOI] [PubMed] [Google Scholar]
  13. Li C., Gloer J.B., Wicklow D.T. Antiinsectan decaturin and oxalicine analogues from Penicillium thiersii. Journal of Natural Products. 2005;68:319–322. doi: 10.1021/np0496486. [DOI] [PubMed] [Google Scholar]
  14. Librado P., Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25:1451–1452. doi: 10.1093/bioinformatics/btp187. [DOI] [PubMed] [Google Scholar]
  15. Lund F. Differentiating Penicillium species by detection of indole metabolites using a filter paper method. Letters in Applied Microbiology. 1995;20:228–231. [Google Scholar]
  16. Mahmoodian A., Stickings C.E. 15 metabolites of Penicillium frequentans Westling, isolation of sulochrin, asterric acid, (+)-bisdecchlorogeodin + 2 new substituted anthraquinones questin + questinol. Biochemical Journal. 1964;92:369–378. doi: 10.1042/bj0920369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Nylander J.A.A. Evolutionary Biology Centre, Uppsala University; 2004. MrModeltest v2. Program distributed by the author. [Google Scholar]
  18. Park MS, Fong JJ, Oh SY, et al. Penicillium jejuense sp. nov., isolated from the marine environments of Jeju Island, Korea. Submitted. [DOI] [PubMed]
  19. Peterson S.W. Phylogenetic analysis of Penicillium species based on ITS and LSU-rDNA nucleotide sequences. In: Samson R.A., Pitt J.I., editors. Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers; Amsterdam: 2000. pp. 163–178. [Google Scholar]
  20. Peterson S.W., Bayer E.M., Wicklow D.T. Penicillium thiersii, Penicillium angulare and Penicillium decaturense, new species isolated from wood-decay fungi in North America and their phylogenetic placement from multilocus DNA sequence analysis. Mycologia. 2004;96:1280–1293. [PubMed] [Google Scholar]
  21. Pitt J.I. Academic Press Inc; London: 1980 [“1979”]. The genus Penicillium and its teleomorphic states Eupenicillium and Talaromyces. [Google Scholar]
  22. Pitt J.I., Hocking A.D. New species of fungi from Indonesian dried fish. Mycotaxon. 1985;22:197–208. [Google Scholar]
  23. Pitt J.I., Klich M.A., Shaffer G.P. Differentiation of Penicillium glabrum from Penicillium spinulosum and other closely related species: an integrated taxonomic approach. Systematic and Applied Microbiology. 1990;13:304–309. [Google Scholar]
  24. Pitt J.I., Samson R.A., Frisvad J.C. List of accepted species and their synonyms in the family Trichocomaceae. In: Samson R.A., Pitt J.I., editors. Integration of modern taxonomic methods for Penicillium and Aspergillus classification. Harwood Academic Publishers; Amsterdam: 2000. pp. 9–79. [Google Scholar]
  25. Quintanilla J.A. Three new species of Penicillium isolated from soil. Mycopathologia. 1982;80:73–82. [Google Scholar]
  26. Ramírez C. Elsevier Biomedical Press; Amsterdam: 1982. Manual and atlas of the Penicillia. [Google Scholar]
  27. Raper K., Thom C. The Williams & Wilkins Company; Baltimore: 1949. A manual of the penicillia. [Google Scholar]
  28. Ronquist F., Huelsenbeck J.P. MrBayes version 3.0: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–1574. doi: 10.1093/bioinformatics/btg180. [DOI] [PubMed] [Google Scholar]
  29. Samson R.A., Houbraken J., Thrane U. 2010. Food and indoor fungi. (CBS Laboratory manual). [Google Scholar]
  30. Samson R.A., Seifert K.A., Kuijpers A. Phylogenetic analysis of Penicillium subgenus Penicillium using partial B-tubulin sequences. Studies in Mycology. 2004;49:175–200. [Google Scholar]
  31. Samson R.A., Yilmaz N., Houbraken J. Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Studies in Mycology. 2011;70:159–183. doi: 10.3114/sim.2011.70.04. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Schoch C.L., Seifert K.A., Huhndorf S. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America. 2012;109:6241–6246. doi: 10.1073/pnas.1117018109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Scott D.B. The genus Eupenicillium Ludwig. CSIR Research Report. 1968;272:1–150. [Google Scholar]
  34. Seifert K.A., Frisvad J.C., McLean M.A. Penicillium kananaskense, a new species from Alberta soil. Canadian Journal of Botany. 1994;72:20–24. [Google Scholar]
  35. Skouboe P., Frisvad J.C., Taylor J.W. Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycological Research. 1999;103:873–881. [Google Scholar]
  36. Stamatakis A., Hoover P., Rougemont J. A rapid bootstrap algorithm for the RAxML Web-Servers. Systematic Biology. 2008;75:758–771. doi: 10.1080/10635150802429642. [DOI] [PubMed] [Google Scholar]
  37. Stolk A.C. Studies on the genus Eupenicillium Ludwig. III. Four new species of Eupenicillium. Antonie van Leeuwenhoek. 1968;34:37–53. doi: 10.1007/BF02046412. [DOI] [PubMed] [Google Scholar]
  38. Stolk A.C., Samson R.A. The Ascomycete genus Eupenicillium and related Penicillium anamorphs. Studies in Mycology. 1983;23:1–149. [Google Scholar]
  39. Subramanian C.V. Indian Council of Agricultural Research; New Delhi: 1971. Hyphomycetes: an account of Indian species except Cercosporae. [Google Scholar]
  40. Taylor J.W., Jacobson D.J., Kroken S. Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology. 2000;31:21–32. doi: 10.1006/fgbi.2000.1228. [DOI] [PubMed] [Google Scholar]
  41. Visagie C.M., Houbraken J., Frisvad J.C. Identification and nomenclature of the genus Penicillium. Studies in Mycology. 2014;78:343–371. doi: 10.1016/j.simyco.2014.09.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Wang B., Yu Y., Wang L. Penicillium fusisporum and P. zhuangii, two new monoverticillate species with apical-swelling stipes of section Aspergilloides isolated from plant leaves in China. PLoS ONE. 2014;9:e101454. doi: 10.1371/journal.pone.0101454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Wang L., Zhuang W.-Y. Eupenicillium saturniforme, a new species discovered from northeast China. Mycopathologia. 2009;167:297–305. doi: 10.1007/s11046-008-9179-z. [DOI] [PubMed] [Google Scholar]
  44. Yilmaz N., Visagie C.M., Houbraken J. Polyphasic taxonomy of the genus Talaromyces. Studies in Mycology. 2014;78:175–341. doi: 10.1016/j.simyco.2014.08.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Zaleski K.M. Über die in Polen gefundenen Arten der Gruppe Penicillium Link. I, II and III Teil. Bulletin de l'Académie Polonaise des Sciences et des Lettres, Classe des Sciences Mathématiques et Naturelles – Série B: Sciences Naturelles. 1927:417–563. pls 36–44 (printed in 1928) [Google Scholar]

Articles from Studies in Mycology are provided here courtesy of Westerdijk Fungal Biodiversity Institute

RESOURCES