Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Mar;67(3):470–473. doi: 10.1104/pp.67.3.470

Slow Passive Diffusion of Orthophosphate between Intact Isolated Chloroplasts and Suspending Medium 1

Gilles Mourioux 1, Roland Douce 1
PMCID: PMC425707  PMID: 16661696

Abstract

Isolated spinach chloroplasts purified by isopycnic centrifugation in density gradients of Percoll were found to be highly intact, to be devoid of extrachloroplastic contaminations, and to retain a high rate of CO2-dependent O2 evolution.

When suspended in a medium which avoided rupture of the envelope, intact purified chloroplasts progressively lost their phosphate content by passive diffusion. This led to a slow decrease in the uptake of labeled 3-phosphoglyceric acid or orthophosphate (Pi) and in the rate of CO2-dependent O2 evolution by isolated chloroplasts. Under these conditions, there was a good correlation between the rate of CO2-dependent O2 evolution and the concentration of Pi in the stroma space. Addition of Pi to the suspending medium at a final concentration of 10 millimolar, which counterpoised the slow efflux of Pi from the chloroplasts, slowed considerably the decrease in the rate of CO2-dependent O2 evolution.

Full text

PDF
470

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albertsson P. A., Larsson C. Properties of chloroplasts isolated by phase partition. Mol Cell Biochem. 1976 Jun 15;11(3):183–189. doi: 10.1007/BF01744998. [DOI] [PubMed] [Google Scholar]
  2. Cockburn W., Baldry C. W., Walker D. A. Some effects of inorganic phosphate on O2 evolution by isolated chloroplasts. Biochim Biophys Acta. 1967;143(3):614–624. doi: 10.1016/0005-2728(67)90067-9. [DOI] [PubMed] [Google Scholar]
  3. Douce R., Moore A. L., Neuburger M. Isolation and oxidative properties of intact mitochondria isolated from spinach leaves. Plant Physiol. 1977 Oct;60(4):625–628. doi: 10.1104/pp.60.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Fliege R., Flügge U. I., Werdan K., Heldt H. W. Specific transport of inorganic phosphate, 3-phosphoglycerate and triosephosphates across the inner membrane of the envelope in spinach chloroplasts. Biochim Biophys Acta. 1978 May 10;502(2):232–247. doi: 10.1016/0005-2728(78)90045-2. [DOI] [PubMed] [Google Scholar]
  5. Heber U., Santarius K. A. Direct and indirect transfer of ATP and ADP across the chloroplast envelope. Z Naturforsch B. 1970 Jul;25(7):718–728. doi: 10.1515/znb-1970-0714. [DOI] [PubMed] [Google Scholar]
  6. Heldt H. W., Sauer F. The inner membrane of the chloroplast envelope as the site of specific metabolite transport. Biochim Biophys Acta. 1971 Apr 6;234(1):83–91. doi: 10.1016/0005-2728(71)90133-2. [DOI] [PubMed] [Google Scholar]
  7. Jeffrey S. W., Douce R., Benson A. A. Carotenoid transformations in the chloroplast envelope. Proc Natl Acad Sci U S A. 1974 Mar;71(3):807–810. doi: 10.1073/pnas.71.3.807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kaiser W., Urbach W. The effect of dihydroxyacetone phosphate and 3-phosphoglycerate on O2 evolution and on the levels of ATP, ADP and Pi in isolated intact chloroplasts. Biochim Biophys Acta. 1977 Mar 11;459(3):337–346. doi: 10.1016/0005-2728(77)90035-4. [DOI] [PubMed] [Google Scholar]
  9. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  10. Lehner K., Heldt H. W. Dicarboxylate transport across the inner membrane of the chloroplast envelope. Biochim Biophys Acta. 1978 Mar 13;501(3):531–544. doi: 10.1016/0005-2728(78)90119-6. [DOI] [PubMed] [Google Scholar]
  11. Lilley R. M., Chon C. J., Mosbach A., Heldt H. W. The distribution of metabolites between spinach chloroplasts and medium during photosynthesis in vitro. Biochim Biophys Acta. 1977 May 11;460(2):259–272. doi: 10.1016/0005-2728(77)90212-2. [DOI] [PubMed] [Google Scholar]
  12. Morgenthaler J. J., Price C. A. Photosynthetic activity of spinach chloroplasts after isopycnic centrifugation in gradients of silica. Plant Physiol. 1974 Oct;54(4):532–534. doi: 10.1104/pp.54.4.532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nakatani H. Y., Barber J. An improved method for isolating chloroplasts retaining their outer membranes. Biochim Biophys Acta. 1977 Sep 14;461(3):500–512. [PubMed] [Google Scholar]
  14. RACKER E. Spectrophotometric measurements of the enzymatic formation of fumaric and cis-aconitic acids. Biochim Biophys Acta. 1950 Jan;4(1-3):211–214. doi: 10.1016/0006-3002(50)90026-6. [DOI] [PubMed] [Google Scholar]
  15. YANAGITA T. SUCCESSIVE DETERMINATIONS OF THE FREE, ACID-LABILE AND RESIDUAL PHOSPHATES IN BIOLOGICAL SYSTEMS. J Biochem. 1964 Mar;55:260–268. doi: 10.1093/oxfordjournals.jbchem.a127879. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES