Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Mar;67(3):494–498. doi: 10.1104/pp.67.3.494

Metabolism of Cytokinin 1

DEPHOSPHORYLATION OF CYTOKININ RIBONUCLEOTIDE BY 5′-NUCLEOTIDASES FROM WHEAT GERM CYTOSOL

Chong-Maw Chen 1, Susan M Kristopeit 1
PMCID: PMC425712  PMID: 16661701

Abstract

Two forms (F-I and F-II) of 5′-nucleotidases (5′-ribonucleotide phosphohydrolase, EC 3.1.3.5) which catalyze the dephosphorylation of N6-(Δ2-isopentenyl)adenosine 5′-monophosphate and AMP to form the corresponding nucleosides were partially purified from the cytosol of wheat (Triticum aestivum) germ. Both the F-I (molecular weight, 57,000) and F-II (molecular weight, 110,000) 5′-nucleotidases dephosphorylate the ribonucleotides at an optimum pH of 7. The Km values for the cytokinin nucleotide are 3.5 micromolar (F-I enzyme) and 12.8 micromolar (F-II enzyme) in 100 millimolar Tris-maleate buffer (pH 7) at 37 C. The F-I enzyme is less rapidly inactivated by heating than is the F-II enzyme. Both nucleotidases hydrolyze purine ribonucleoside 5′-phosphates, AMP being the preferred substrate. N6-(Δ2-isopentenyl)Adenosine 5′-monophosphate is hydrolyzed at a rate 72 and 86% that of AMP by the F-I and F-II nucleotides, respectively. Phenylphosphate and 3′-AMP are not substrates for the enzymes. It is proposed that dephosphorylation of cytokinin nucleotide by cytosol 5′-nucleotidases may play an important role in regulating levels of “active cytokinin” in plant cells.

Full text

PDF
494

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  2. Burrows W. J. Incorporation of 3H-adenine into free cytokinins by cytokinin-autonomous tobacco callus tissue. Biochem Biophys Res Commun. 1978 Oct 16;84(3):743–748. doi: 10.1016/0006-291x(78)90767-2. [DOI] [PubMed] [Google Scholar]
  3. Chen C. M., Eckert R. L. Phosphorylation of cytokinin by adenosine kinase from wheat germ. Plant Physiol. 1977 Mar;59(3):443–447. doi: 10.1104/pp.59.3.443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen C. M., Melitz D. K. Cytokinin biosynthesis in a cell-free system from cytokinin-autotrophic tobacco tissue cultures. FEBS Lett. 1979 Nov 1;107(1):15–20. doi: 10.1016/0014-5793(79)80452-4. [DOI] [PubMed] [Google Scholar]
  5. Chen C. M., Petschow B. Cytokinin biosynthesis in cultured rootless tobacco plants. Plant Physiol. 1978 Dec;62(6):861–865. doi: 10.1104/pp.62.6.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen C. M., Petschow B. Metabolism of cytokinin: ribosylation of cytokinin bases by adenosine phosphorylase from wheat germ. Plant Physiol. 1978 Dec;62(6):871–874. doi: 10.1104/pp.62.6.871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dornand J., Bonnafous J. C., Mani J. C. Effects of con A and other lectins on pure 5'nucleotidase isolated from lymphocyte plasma membranes. Biochem Biophys Res Commun. 1978 May 30;82(2):685–692. doi: 10.1016/0006-291x(78)90929-4. [DOI] [PubMed] [Google Scholar]
  8. Doss R. C., Carraway C. A., Carraway K. L. Multiple forms of 5'-nucleotidase from lactating rat mammary gland resulting from the association of the enzyme with different membrane fractions. Biochim Biophys Acta. 1979 Sep 12;570(1):96–106. doi: 10.1016/0005-2744(79)90204-3. [DOI] [PubMed] [Google Scholar]
  9. Einset J. W., Skoog F. Biosynthesis of cytokinins in cytokinin-autotrophic tobacco callus. Proc Natl Acad Sci U S A. 1973 Mar;70(3):658–660. doi: 10.1073/pnas.70.3.658. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gibson W. B., Drummond G. I. Properties of 5'-nucleotidase from avian heart. Biochemistry. 1972 Jan 18;11(2):223–229. doi: 10.1021/bi00752a013. [DOI] [PubMed] [Google Scholar]
  11. Hall R. H. N6-(delta 2-isopentenyl)adenosine: chemical reactions, biosynthesis, metabolism, and significance to the structure and function of tRNA. Prog Nucleic Acid Res Mol Biol. 1970;10:57–86. doi: 10.1016/s0079-6603(08)60561-9. [DOI] [PubMed] [Google Scholar]
  12. Huang C. M., Keenan T. W. Preparation and properties of 5'-nucleotidases from bovine milk fat globule membranes. Biochim Biophys Acta. 1972 Jul 3;274(1):246–257. doi: 10.1016/0005-2736(72)90298-2. [DOI] [PubMed] [Google Scholar]
  13. JOYCE B. K., GRISOLIA S. Purification and properties of a nonspecific acid phosphatase from wheat germ. J Biol Chem. 1960 Aug;235:2278–2281. [PubMed] [Google Scholar]
  14. King E. J. The colorimetric determination of phosphorus. Biochem J. 1932;26(2):292–297. doi: 10.1042/bj0260292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Laloue M., Terrine C., Guern J. Cytokinins: Metabolism and Biological Activity of N-(Delta-Isopentenyl)adenosine and N-(Delta-Isopentenyl)adenine in Tobacco Cells and Callus. Plant Physiol. 1977 Mar;59(3):478–483. doi: 10.1104/pp.59.3.478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sullivan J. M., Alpers J. B. In vitro regulation of rat heart 5'-nucleotidase by adenine nucleotides and magnesium. J Biol Chem. 1971 May 10;246(9):3057–3063. [PubMed] [Google Scholar]
  17. Taya Y., Tanaka Y., Nishimura S. 5'-AMP is a direct precursor of cytokinin in Dictyostelium discoideum. Nature. 1978 Feb 9;271(5645):545–547. doi: 10.1038/271545a0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES