Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 10;70(Pt 10):o1098–o1099. doi: 10.1107/S1600536814019886

Crystal structure of 5,5′-[(4-fluoro­phen­yl)methyl­ene]bis­[6-amino-1,3-di­methyl­pyrimidine-2,4(1H,3H)-dione]

Naresh Sharma a, Goutam Brahmachari b, Bubun Banerjee b, Rajni Kant a, Vivek K Gupta a,*
PMCID: PMC4257154  PMID: 25484692

Abstract

In the title mol­ecule, C19H21FN6O4, the dihedral angles between the benzene ring and essentially planar pyrimidine rings [maximum deviations of 0.036 (2) and 0.056 (2) Å] are 73.32 (7) and 63.81 (8)°. The dihedral angle between the mean planes of the pyrimidine rings is 61.43 (6)°. In the crystal, N—H⋯O hydrogen bonds link mol­ecules, forming a two-dimensional network parallel to (001) and in combination with weak C—H⋯O hydrogen bonds, a three-dimensional network is formed. Weak C—H⋯π inter­actions and π–π inter­actions, with a centroid–centroid distance of 3.599 (2) Å are also observed.

Keywords: crystal structure, uracil derivatives, biological activity, pyrimidine scaffolds, bis-uracil derivatives

Related literature  

For the biological activity of uracil derivatives, see: Muller et al. (1993); Buckle et al. (1994). For drugs containing purine moieties, see: Zhi et al. (2003); Devi & Bhuyan (2005). For the biological activity of pyrimidine scaffolds, see: Makarov et al. (2005); Deshmukh et al. (2009); Ibrahim & El-Metwally (2010). For the synthesis of bis-uracil derivatives, see: Karimi et al. (2013). For a related structure, see: Das et al. (2009).graphic file with name e-70-o1098-scheme1.jpg

Experimental  

Crystal data  

  • C19H21FN6O4

  • M r = 416.42

  • Orthorhombic, Inline graphic

  • a = 14.6208 (6) Å

  • b = 11.3324 (7) Å

  • c = 22.6410 (12) Å

  • V = 3751.4 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) T min = 0.862, T max = 1.000

  • 9655 measured reflections

  • 3665 independent reflections

  • 2208 reflections with I > 2σ(I)

  • R int = 0.047

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.130

  • S = 1.04

  • 3665 reflections

  • 291 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814019886/lh5725sup1.cif

e-70-o1098-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019886/lh5725Isup2.hkl

e-70-o1098-Isup2.hkl (176.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019886/lh5725Isup3.cml

. DOI: 10.1107/S1600536814019886/lh5725fig1.tif

The mol­ecular structure with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

a . DOI: 10.1107/S1600536814019886/lh5725fig2.tif

Part of the crystal structure viewed along the a axis. Hydrogen bonds are shown as dashed lines.

CCDC reference: 973485

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C7–C12 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N15—H40⋯O3A 0.96 (3) 1.96 (3) 2.916 (3) 174 (2)
N18—H50⋯O3A 0.93 (3) 1.88 (3) 2.803 (3) 170 (2)
N15—H30⋯O3A i 0.86 (3) 2.26 (3) 3.083 (3) 161 (3)
N18—H60⋯O3Aii 0.91 (3) 2.14 (3) 3.007 (3) 159 (2)
C13—H13A⋯O3A i 0.96 2.41 3.154 (3) 134
C13—H13ACg iii 0.96 2.98 3.744 (3) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RK acknowledges the Department of Science & Technology for the single-crystal X-ray diffractometer sanctioned as a National Facility under project No. SR/S2/CMP-47/2003. GB is thankful to the CSIR, New Delhi, for financial support [grant No. 02 (110)/12/EMR-II]. BB is grateful to the UGC, New Delhi, for the award of a Senior Research Fellowship.

supplementary crystallographic information

S1. Chemical context

S2. Structural commentary

Uracil derivatives represent a "privileged" structural motif in a wide variety of natural and synthetic compounds with a broad spectrum of significant biological activities (Muller et al., 1993). 6-Amino­uracils are the important starting compounds for the synthesis of medicinally useful xanthines and theophyllines, which are now routinely used as a phospho­diesterase inhibitor for the treatment of asthma (Buckle et al., 1994). 6-Amino­uracils are regarded as the key inter­mediates for the synthesis of purine-based drugs, such as penciclovir, caffeine, theophylline, and theobromine (Zhi et al., (2003); Devi & Bhuyan, 2005). In addition, pyrimidine scaffolds are reported to exhibit diverse biological and pharmaceutical activities (Ibrahim & El-Metwally, 2010; Deshmukh et al., 2009), Makarov et al., 2005). Herein, we report the synthesis and crystal structure of a new aryl­methyl­ene-bis uracil derivative, namely 5,5'-((4-fluoro­phenyl)­methyl­ene) bis­(6-amino-1,3-di­methyl­pyrimidine-2,4(1H,3H)-dione) synthesized via one-pot pseudo multicomponent reaction at room temperature using iodine as inexpensive and eco-friendly catalyst.

The molecular structure of the title compound is shown in Fig. 1. The distances are in the normal ranges and correspond to those observed in a related structure (Das et al., 2009). The pyrimidine rings are essentially planar with maximum deviations of 0.036 (2) and 0.056 (2) Å for C6 and N1', respectively. The dihedral angle between the mean plane of benzene ring [C7—C12] and pyrimidine rings-A and B are 73.32 (7) ° and 63.81 (8) ° respectively. The dihedral angle between the two pyrimidine rings is 61.43 (6) °. The planarity of the phenyl group confirms its aromatic character. From the least-squares plane calculations of the phenyl moiety, the maximum deviation observed is 0.014 (2) Å for atom C8. The double bond distances C2—O2 = 1.220 (4) Å, C3—O3A = 1.257 (3) Å (ring-A) and C2'- O2' = 1.217 (4) Å, C3A'- O3A' = 1.261 (4) Å (ring-B), are significantly larger than the standard value for carbonyl group (1.192 Å) and lengthening of the C═O double bond is due their involvment in N—H···O and C—H···O hydrogen bonds. In the crystal, N—H···O hydrogen bonds link molecules forming a two-dimensional network parallel to (001) (Fig. 2) and in combination with weak C—H···O hydrogen bonds a three-dimensional network is formed. Weak C—H···π inter­actions and π–π inter­actions with a centroid–centroid distance of 3.599 (2) Å between pyrimidine ring-B and benzene ring-C at (1/2 - x, -1/2 + y, z) are also observed.

S3. Supra­molecular features

S4. Database survey

S5. Synthesis and crystallization

An oven-dried screw cap test tube was charged with a magnetic stir bar, 6-amino-1,3-di­methyl­uracil (0.155 g, 1.0 mmol), 4-fluoro­benzaldehyde (0.062 g, 0.5 mmol), iodine (0.025 g, 10 mol % as catalyst), and EtOH:H2O (1:1 v/v; 4 ml) in a sequential manner. The reaction mixture was then stirred vigorously at room temperature and the stirring was continued for 4 h; the progress of the reaction was monitored by TLC. On completion of the reaction, a solid mass precipitated out, which was filtered, and washed with aqueous ethanol to obtain the crude product that was purified just by recrystallization from ethanol without carrying out column chromatography (72% yield). The title compound forms as a White solid. Yield 72%. Mp: 537–539 K. IR (KBr) νmax cm-1: 3430, 3104, 2956, 1690, 1603, 1498, 1247, 1216, 1142, 1070, 870, 789, 756. 1H NMR (400 MHz, DMSO-d6) δ/p.p.m.: 7.42 (4H, s, –NH2), 7.11 (2H, dd, J = 8.4 & 5.6 Hz, aromatic H), 6.99 (2H, t, J = 8.8 Hz, aromatic H), 5.56 (1H, s, –CH–), 3.32 (6H, s, 2 × NCH3), 3.14 (6H, s, 2 × NCH3). TOF-MS: 439.1513 [M+Na]+. The structure of 5,5'-((4-fluoro­phenyl)­methyl­ene)bis­(6-amino-1, 3-di­methyl­pyrimidine-2,4(1H,3H)-dione) was characterized by means of spectral studies including FT—IR, 1H NMR, and TOF-MS. Crystals suitable for X-ray diffraction were grown by dissolving 50 mg of the title compound in 5 ml DMSO and after several days at ambient temperature colourless block-shaped crystals were formed.

S6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Atoms H30, H40 attached to N15 and H50, H60 attached to N18 were located in a difference Fourier map and refined isotropically. All the remaining H atoms were geometrically fixed and allowed to ride on their parent C atoms, with C—H distances of 0.93–0.98 Å; and with Uiso(H) = 1.2Ueq(C), except for the methyl group where Uiso(H) = 1.5Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of the crystal structure viewed along the a axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C19H21FN6O4 F(000) = 1744
Mr = 416.42 Dx = 1.475 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 2766 reflections
a = 14.6208 (6) Å θ = 4.0–29.0°
b = 11.3324 (7) Å µ = 0.11 mm1
c = 22.6410 (12) Å T = 293 K
V = 3751.4 (3) Å3 Rectangular, white
Z = 8 0.30 × 0.20 × 0.20 mm

Data collection

Oxford Diffraction Xcalibur Sapphire3 diffractometer 3665 independent reflections
Radiation source: fine-focus sealed tube 2208 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.047
Detector resolution: 16.1049 pixels mm-1 θmax = 26.0°, θmin = 3.4°
ω scans h = −17→18
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2010) k = −13→10
Tmin = 0.862, Tmax = 1.000 l = −27→27
9655 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0402P)2 + 0.280P] where P = (Fo2 + 2Fc2)/3
3665 reflections (Δ/σ)max < 0.001
291 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.20 e Å3

Special details

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.36.28 (release 01–02-2013 CrysAlis171. NET) (compiled Feb 1 2013,16:14:44) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3A 0.12040 (11) 0.70286 (16) 0.47999 (8) 0.0448 (5)
O3A' 0.41972 (12) 0.90382 (17) 0.35851 (8) 0.0481 (5)
N3 0.21150 (13) 0.67789 (19) 0.56011 (9) 0.0385 (5)
N1' 0.27279 (15) 0.63863 (19) 0.28860 (9) 0.0445 (6)
C5' 0.28708 (16) 0.7846 (2) 0.36460 (10) 0.0336 (6)
N1 0.35782 (12) 0.7609 (2) 0.56448 (9) 0.0388 (5)
C5 0.26609 (15) 0.7945 (2) 0.47801 (10) 0.0317 (6)
N18 0.16272 (16) 0.6468 (2) 0.36253 (12) 0.0445 (6)
O2 0.29971 (14) 0.6586 (2) 0.64250 (9) 0.0697 (7)
C4 0.25464 (16) 0.8542 (2) 0.41822 (10) 0.0337 (6)
H4 0.2992 0.9187 0.4203 0.040*
C6 0.34765 (15) 0.8050 (2) 0.50801 (10) 0.0328 (6)
C6' 0.24099 (18) 0.6903 (2) 0.34020 (11) 0.0374 (6)
N15 0.42224 (15) 0.8593 (2) 0.48533 (11) 0.0410 (6)
C7 0.16385 (16) 0.9204 (2) 0.41091 (11) 0.0323 (6)
C3A' 0.37186 (18) 0.8189 (2) 0.34004 (11) 0.0393 (6)
N3' 0.40473 (15) 0.7555 (2) 0.29207 (9) 0.0465 (6)
C3A 0.19584 (17) 0.7257 (2) 0.50409 (11) 0.0366 (6)
F20 −0.06866 (11) 1.12341 (16) 0.39325 (9) 0.0834 (7)
C2 0.28952 (18) 0.6969 (3) 0.59256 (12) 0.0437 (7)
O2' 0.39032 (16) 0.60699 (19) 0.22495 (9) 0.0746 (7)
C2' 0.3585 (2) 0.6640 (3) 0.26558 (12) 0.0503 (8)
C13 0.44207 (17) 0.7825 (3) 0.59804 (11) 0.0499 (8)
H13A 0.4918 0.7404 0.5801 0.075*
H13B 0.4341 0.7558 0.6380 0.075*
H13C 0.4554 0.8655 0.5980 0.075*
C12 0.13307 (17) 0.9921 (2) 0.45682 (12) 0.0441 (7)
H12 0.1651 0.9932 0.4923 0.053*
C8 0.11561 (17) 0.9230 (2) 0.35843 (12) 0.0405 (7)
H8 0.1362 0.8786 0.3265 0.049*
C10 0.00938 (18) 1.0575 (2) 0.39853 (15) 0.0505 (8)
C11 0.05596 (19) 1.0616 (3) 0.45075 (14) 0.0510 (8)
H11 0.0363 1.1098 0.4815 0.061*
C9 0.03704 (18) 0.9907 (2) 0.35245 (14) 0.0502 (8)
H9 0.0040 0.9900 0.3174 0.060*
C14 0.14123 (18) 0.6033 (3) 0.58682 (13) 0.0536 (8)
H14A 0.1677 0.5579 0.6183 0.080*
H14B 0.1167 0.5509 0.5575 0.080*
H14C 0.0931 0.6519 0.6022 0.080*
C17 0.4962 (2) 0.7837 (3) 0.26916 (14) 0.0683 (10)
H17A 0.5409 0.7351 0.2885 0.102*
H17B 0.5096 0.8653 0.2766 0.102*
H17C 0.4979 0.7690 0.2274 0.102*
C16 0.2188 (2) 0.5502 (3) 0.25638 (13) 0.0626 (9)
H16A 0.2378 0.5486 0.2158 0.094*
H16B 0.1551 0.5704 0.2585 0.094*
H16C 0.2283 0.4739 0.2738 0.094*
H60 0.1393 (18) 0.576 (3) 0.3509 (12) 0.057 (9)*
H50 0.1483 (16) 0.675 (2) 0.4000 (13) 0.049 (8)*
H40 0.4206 (17) 0.880 (2) 0.4441 (13) 0.060 (9)*
H30 0.476 (2) 0.856 (3) 0.5011 (13) 0.069 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3A 0.0359 (10) 0.0609 (13) 0.0376 (10) −0.0095 (9) −0.0013 (8) 0.0047 (10)
O3A' 0.0439 (10) 0.0557 (12) 0.0446 (11) −0.0059 (10) 0.0066 (9) 0.0039 (11)
N3 0.0360 (11) 0.0470 (14) 0.0326 (11) −0.0023 (10) 0.0028 (10) 0.0068 (12)
N1' 0.0635 (15) 0.0365 (13) 0.0335 (12) 0.0040 (11) 0.0064 (11) 0.0008 (11)
C5' 0.0385 (14) 0.0364 (15) 0.0259 (12) 0.0042 (12) 0.0025 (11) 0.0036 (12)
N1 0.0311 (11) 0.0530 (15) 0.0322 (11) 0.0047 (10) −0.0026 (9) 0.0040 (12)
C5 0.0263 (12) 0.0375 (15) 0.0313 (12) 0.0021 (11) 0.0015 (11) 0.0023 (12)
N18 0.0511 (15) 0.0398 (15) 0.0424 (14) −0.0043 (12) 0.0052 (13) −0.0045 (13)
O2 0.0658 (14) 0.1013 (19) 0.0420 (12) −0.0168 (13) −0.0105 (11) 0.0299 (13)
C4 0.0340 (13) 0.0350 (15) 0.0320 (13) 0.0015 (12) −0.0005 (11) 0.0012 (12)
C6 0.0320 (13) 0.0355 (14) 0.0310 (13) 0.0041 (11) −0.0008 (11) −0.0001 (12)
C6' 0.0450 (15) 0.0349 (15) 0.0324 (13) 0.0090 (13) 0.0004 (12) 0.0048 (13)
N15 0.0305 (12) 0.0565 (15) 0.0361 (13) −0.0035 (11) −0.0025 (11) 0.0055 (12)
C7 0.0302 (13) 0.0315 (14) 0.0352 (14) 0.0001 (11) 0.0000 (11) 0.0043 (12)
C3A' 0.0466 (16) 0.0409 (16) 0.0306 (13) 0.0059 (13) 0.0038 (13) 0.0092 (14)
N3' 0.0534 (14) 0.0510 (15) 0.0349 (12) 0.0043 (12) 0.0139 (11) 0.0073 (12)
C3A 0.0380 (14) 0.0399 (16) 0.0320 (13) 0.0041 (12) 0.0000 (12) −0.0005 (13)
F20 0.0666 (12) 0.0682 (13) 0.1154 (17) 0.0373 (10) −0.0044 (11) 0.0026 (13)
C2 0.0443 (16) 0.0500 (18) 0.0366 (15) 0.0012 (14) 0.0019 (13) 0.0050 (15)
O2' 0.1086 (18) 0.0632 (15) 0.0521 (13) 0.0067 (13) 0.0384 (13) −0.0086 (13)
C2' 0.071 (2) 0.0446 (18) 0.0354 (15) 0.0101 (16) 0.0139 (15) 0.0097 (15)
C13 0.0360 (14) 0.078 (2) 0.0360 (14) 0.0019 (15) −0.0102 (12) 0.0074 (16)
C12 0.0468 (16) 0.0436 (17) 0.0420 (16) 0.0021 (13) 0.0006 (13) −0.0035 (14)
C8 0.0459 (15) 0.0344 (15) 0.0414 (15) 0.0067 (12) −0.0041 (13) 0.0006 (13)
C10 0.0418 (16) 0.0333 (16) 0.076 (2) 0.0096 (13) 0.0004 (16) 0.0073 (17)
C11 0.0578 (18) 0.0398 (17) 0.0554 (19) 0.0045 (14) 0.0075 (16) −0.0067 (16)
C9 0.0519 (17) 0.0431 (17) 0.0556 (18) 0.0095 (14) −0.0143 (15) 0.0051 (16)
C14 0.0539 (18) 0.060 (2) 0.0474 (17) −0.0143 (15) 0.0038 (14) 0.0125 (17)
C17 0.0648 (19) 0.082 (3) 0.0577 (18) 0.0027 (18) 0.0337 (16) 0.008 (2)
C16 0.095 (3) 0.0499 (19) 0.0431 (17) −0.0025 (18) 0.0072 (17) −0.0099 (17)

Geometric parameters (Å, º)

O3A—C3A 1.257 (3) C7—C12 1.394 (3)
O3A'—C3A' 1.261 (3) C3A'—N3' 1.388 (3)
N3—C2 1.374 (3) N3'—C2' 1.376 (3)
N3—C3A 1.398 (3) N3'—C17 1.470 (3)
N3—C14 1.462 (3) F20—C10 1.369 (3)
N1'—C2' 1.387 (3) O2'—C2' 1.217 (3)
N1'—C6' 1.387 (3) C13—H13A 0.9600
N1'—C16 1.469 (3) C13—H13B 0.9600
C5'—C6' 1.379 (3) C13—H13C 0.9600
C5'—C3A' 1.413 (3) C12—C11 1.382 (4)
C5'—C4 1.523 (3) C12—H12 0.9300
N1—C6 1.381 (3) C8—C9 1.388 (3)
N1—C2 1.388 (3) C8—H8 0.9300
N1—C13 1.468 (3) C10—C9 1.351 (4)
C5—C6 1.377 (3) C10—C11 1.365 (4)
C5—C3A 1.419 (3) C11—H11 0.9300
C5—C4 1.522 (3) C9—H9 0.9300
N18—C6' 1.345 (3) C14—H14A 0.9600
N18—H60 0.91 (3) C14—H14B 0.9600
N18—H50 0.93 (3) C14—H14C 0.9600
O2—C2 1.220 (3) C17—H17A 0.9600
C4—C7 1.533 (3) C17—H17B 0.9600
C4—H4 0.9800 C17—H17C 0.9600
C6—N15 1.354 (3) C16—H16A 0.9600
N15—H40 0.96 (3) C16—H16B 0.9600
N15—H30 0.87 (3) C16—H16C 0.9600
C7—C8 1.382 (3)
C2—N3—C3A 124.1 (2) O2—C2—N3 122.8 (3)
C2—N3—C14 116.9 (2) O2—C2—N1 121.5 (3)
C3A—N3—C14 119.0 (2) N3—C2—N1 115.7 (2)
C2'—N1'—C6' 122.1 (2) O2'—C2'—N3' 122.8 (3)
C2'—N1'—C16 116.1 (2) O2'—C2'—N1' 121.3 (3)
C6'—N1'—C16 121.8 (2) N3'—C2'—N1' 115.9 (2)
C6'—C5'—C3A' 119.0 (2) N1—C13—H13A 109.5
C6'—C5'—C4 124.6 (2) N1—C13—H13B 109.5
C3A'—C5'—C4 116.4 (2) H13A—C13—H13B 109.5
C6—N1—C2 122.4 (2) N1—C13—H13C 109.5
C6—N1—C13 120.6 (2) H13A—C13—H13C 109.5
C2—N1—C13 117.0 (2) H13B—C13—H13C 109.5
C6—C5—C3A 118.0 (2) C11—C12—C7 121.4 (3)
C6—C5—C4 119.7 (2) C11—C12—H12 119.3
C3A—C5—C4 122.3 (2) C7—C12—H12 119.3
C6'—N18—H60 122.2 (17) C7—C8—C9 121.2 (3)
C6'—N18—H50 114.3 (16) C7—C8—H8 119.4
H60—N18—H50 119 (2) C9—C8—H8 119.4
C5—C4—C5' 116.4 (2) C9—C10—C11 122.6 (3)
C5—C4—C7 114.11 (19) C9—C10—F20 119.2 (3)
C5'—C4—C7 115.9 (2) C11—C10—F20 118.2 (3)
C5—C4—H4 102.5 C10—C11—C12 118.3 (3)
C5'—C4—H4 102.5 C10—C11—H11 120.9
C7—C4—H4 102.5 C12—C11—H11 120.9
N15—C6—C5 123.3 (2) C10—C9—C8 118.8 (3)
N15—C6—N1 115.4 (2) C10—C9—H9 120.6
C5—C6—N1 121.2 (2) C8—C9—H9 120.6
N18—C6'—C5' 123.3 (2) N3—C14—H14A 109.5
N18—C6'—N1' 116.6 (2) N3—C14—H14B 109.5
C5'—C6'—N1' 120.1 (2) H14A—C14—H14B 109.5
C6—N15—H40 117.4 (16) N3—C14—H14C 109.5
C6—N15—H30 124 (2) H14A—C14—H14C 109.5
H40—N15—H30 116 (3) H14B—C14—H14C 109.5
C8—C7—C12 117.6 (2) N3'—C17—H17A 109.5
C8—C7—C4 123.0 (2) N3'—C17—H17B 109.5
C12—C7—C4 119.0 (2) H17A—C17—H17B 109.5
O3A'—C3A'—N3' 117.6 (2) N3'—C17—H17C 109.5
O3A'—C3A'—C5' 124.5 (2) H17A—C17—H17C 109.5
N3'—C3A'—C5' 118.0 (2) H17B—C17—H17C 109.5
C2'—N3'—C3A' 124.1 (2) N1'—C16—H16A 109.5
C2'—N3'—C17 117.2 (2) N1'—C16—H16B 109.5
C3A'—N3'—C17 118.6 (2) H16A—C16—H16B 109.5
O3A—C3A—N3 117.2 (2) N1'—C16—H16C 109.5
O3A—C3A—C5 124.6 (2) H16A—C16—H16C 109.5
N3—C3A—C5 118.2 (2) H16B—C16—H16C 109.5
C6—C5—C4—C5' 86.2 (3) C5'—C3A'—N3'—C17 −175.0 (2)
C3A—C5—C4—C5' −92.6 (3) C2—N3—C3A—O3A −178.5 (2)
C6—C5—C4—C7 −134.7 (2) C14—N3—C3A—O3A 1.2 (4)
C3A—C5—C4—C7 46.5 (3) C2—N3—C3A—C5 2.5 (4)
C6'—C5'—C4—C5 75.3 (3) C14—N3—C3A—C5 −177.9 (2)
C3A'—C5'—C4—C5 −102.8 (3) C6—C5—C3A—O3A −175.5 (2)
C6'—C5'—C4—C7 −63.1 (3) C4—C5—C3A—O3A 3.4 (4)
C3A'—C5'—C4—C7 118.8 (2) C6—C5—C3A—N3 3.5 (4)
C3A—C5—C6—N15 173.9 (2) C4—C5—C3A—N3 −177.7 (2)
C4—C5—C6—N15 −4.9 (4) C3A—N3—C2—O2 176.5 (3)
C3A—C5—C6—N1 −6.9 (4) C14—N3—C2—O2 −3.2 (4)
C4—C5—C6—N1 174.3 (2) C3A—N3—C2—N1 −4.8 (4)
C2—N1—C6—N15 −176.2 (2) C14—N3—C2—N1 175.5 (2)
C13—N1—C6—N15 5.1 (3) C6—N1—C2—O2 −180.0 (3)
C2—N1—C6—C5 4.6 (4) C13—N1—C2—O2 −1.3 (4)
C13—N1—C6—C5 −174.1 (2) C6—N1—C2—N3 1.3 (4)
C3A'—C5'—C6'—N18 176.0 (2) C13—N1—C2—N3 −179.9 (2)
C4—C5'—C6'—N18 −2.1 (4) C3A'—N3'—C2'—O2' −177.2 (3)
C3A'—C5'—C6'—N1' −6.9 (4) C17—N3'—C2'—O2' 0.2 (4)
C4—C5'—C6'—N1' 175.0 (2) C3A'—N3'—C2'—N1' 1.8 (4)
C2'—N1'—C6'—N18 −171.0 (2) C17—N3'—C2'—N1' 179.3 (2)
C16—N1'—C6'—N18 6.6 (4) C6'—N1'—C2'—O2' 170.1 (2)
C2'—N1'—C6'—C5' 11.7 (4) C16—N1'—C2'—O2' −7.6 (4)
C16—N1'—C6'—C5' −170.7 (2) C6'—N1'—C2'—N3' −8.9 (4)
C5—C4—C7—C8 −142.5 (2) C16—N1'—C2'—N3' 173.4 (2)
C5'—C4—C7—C8 −3.2 (3) C8—C7—C12—C11 1.4 (4)
C5—C4—C7—C12 44.9 (3) C4—C7—C12—C11 174.4 (2)
C5'—C4—C7—C12 −175.8 (2) C12—C7—C8—C9 −2.7 (4)
C6'—C5'—C3A'—O3A' 179.7 (2) C4—C7—C8—C9 −175.4 (2)
C4—C5'—C3A'—O3A' −2.0 (4) C9—C10—C11—C12 −1.6 (4)
C6'—C5'—C3A'—N3' 0.1 (4) F20—C10—C11—C12 177.9 (2)
C4—C5'—C3A'—N3' 178.3 (2) C7—C12—C11—C10 0.7 (4)
O3A'—C3A'—N3'—C2' −177.2 (2) C11—C10—C9—C8 0.3 (4)
C5'—C3A'—N3'—C2' 2.4 (4) F20—C10—C9—C8 −179.2 (2)
O3A'—C3A'—N3'—C17 5.4 (3) C7—C8—C9—C10 1.9 (4)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C7–C12 ring.

D—H···A D—H H···A D···A D—H···A
N15—H40···O3A 0.96 (3) 1.96 (3) 2.916 (3) 174 (2)
N18—H50···O3A 0.93 (3) 1.88 (3) 2.803 (3) 170 (2)
N15—H30···O3Ai 0.86 (3) 2.26 (3) 3.083 (3) 161 (3)
N18—H60···O3Aii 0.91 (3) 2.14 (3) 3.007 (3) 159 (2)
C13—H13A···O3Ai 0.96 2.41 3.154 (3) 134
C13—H13A···Cgiii 0.96 2.98 3.744 (3) 138

Symmetry codes: (i) x+1/2, −y+3/2, −z+1; (ii) −x+1/2, y−1/2, z; (iii) x−1/2, −y+3/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5725).

References

  1. Buckle, D. R., Arch, J. R. S., Connolly, B. J., Fenwick, A. E., Foster, K. A., Murray, K. J., Readshaw, S. A., Smallridge, M. & Smith, D. G. (1994). J. Med. Chem. 37, 476–480. [DOI] [PubMed]
  2. Das, S., Saikia, B. K., Das, B., Saikia, L. & Thakur, A. J. (2009). Acta Cryst. E65, o2416–o2417. [DOI] [PMC free article] [PubMed]
  3. Deshmukh, M. B., Salunkhe, S. M., Patil, D. R. & Anbhule, P. V. (2009). Eur. J. Med. Chem. 44, 2651–2654. [DOI] [PubMed]
  4. Devi, I. & Bhuyan, P. J. (2005). Tetrahedron Lett. 46, 5727–5729.
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158–1166. [DOI] [PubMed]
  7. Karimi, A. R., Dalirnasab, Z., Karimi, M. & Bagherian, F. (2013). Synthesis, 45, 3300–3304.
  8. Makarov, V. A., Riabova, O. B., Granik, V. G., Dahse, H., -, M., Stelzner, A., Wutzlerc, P. & Schmidtke, M. (2005). Bioorg. Med. Chem. Lett. 15, 37–39. [DOI] [PubMed]
  9. Muller, C. E., Shi, D., Manning, M. & Daly, J. W. (1993). J. Med. Chem. 36, 3341–3349. [DOI] [PubMed]
  10. Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Zhi, C., Long, Z.-Y., Gambino, J., Xu, W.-C., Brown, N. C., Barnes, M., Butler, M., LaMarr, W. & Wright, G. E. (2003). J. Med. Chem. 46, 2731–2739. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814019886/lh5725sup1.cif

e-70-o1098-sup1.cif (29.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019886/lh5725Isup2.hkl

e-70-o1098-Isup2.hkl (176.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019886/lh5725Isup3.cml

. DOI: 10.1107/S1600536814019886/lh5725fig1.tif

The mol­ecular structure with displacement ellipsoids drawn at the 40% probability level. H atoms are shown as small spheres of arbitrary radii.

a . DOI: 10.1107/S1600536814019886/lh5725fig2.tif

Part of the crystal structure viewed along the a axis. Hydrogen bonds are shown as dashed lines.

CCDC reference: 973485

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES