Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 20;70(Pt 10):224–227. doi: 10.1107/S1600536814020698

Crystal structure of (E)-1,3-dimethyl-2-[3-(3-nitro­phen­yl)triaz-2-en-1-yl­idene]-2,3-di­hydro-1H-imidazole

Siddappa Patil a, Alejandro Bugarin a,*
PMCID: PMC4257158  PMID: 25484658

The title mol­ecule, a rare example of a π-conjugated triazene, crystallized with two independent mol­ecules in the asymmetric unit. In the crystal, the two independent mol­ecules stack head-to-tail probably due to the presence of the dipole moment of the meta nitro group.

Keywords: crystal structure, azides, π-conjugated triazene, N-heterocyclic carbene, hydrogen bonds, π–π inter­actions

Abstract

The title compound, C11H12N6O2, a π-conjugated triazene, crystallized with two independent mol­ecules (A and B) in the asymmetric unit. Both mol­ecules have an E conformation about the –N=N– bond and have slightly twisted overall conformations. In mol­ecule A, the imidazole ring is inclined to the benzene ring by 8.12 (4)°, while in mol­ecule B the two rings are inclined to one another by 7.73 (4)°. In the crystal, the independent mol­ecules are linked to each other by C—H⋯O hydrogen bonds, forming –AAA– and –BBB– chains along [100]. The chains are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming sheets lying parallel to (001). The sheets are linked by further C—H⋯N hydrogen bonds and π–π inter­actions [centroid–centroid distance = 3.5243 (5) Å; involving the imidazole ring of mol­ecule A and the benzene ring of mol­ecule B], forming a three-dimensional framework structure.

Chemical context  

Triazenes are compounds containing three contiguous nitro­gen atoms in a linear format with a double bond between the first and second N atoms; i.e., –N=N—N–. The structure of the triazene moiety is influenced by the resonance arising from delocalization of the electron lone-pair on the third N atom, towards the double bond. Triazenes are relatively old compounds from the organic chemist’s viewpoint. It was as early as 1862 that Griess described a suitable method for the synthesis of 1,3-di­phenyl­triazene (Griess, 1862). At that time, no applications for triazenes could be found and these compounds were ignored for many decades. Unsubstituted triazenes are unstable under normal conditions; however, substituted triazenes are normally thermally stable. More recently, attention has been paid to substituted triazenes, especially to 1-aryl-3,3-dialkyl-triazenes [which were synthesized for the first time by Baeyer & Jaeger (1875)] because some of them show activity as insecticides (Giraldi et al., 1990). Currently, triazenes have found uses as alkyl­ating agents in tumor therapy (Rouzer et al., 1996), as iodo-masking groups in the synthesis of small (Nicolaou et al., 1999) and macromolecules (Jones et al., 1997), and in the preparation of N-containing heterocycles (Wirshun et al., 1998). The first report on a π-conjugated triazenes was by Winberg et al. (1965), and more recently, we have reported the syntheses and structures of a variety of such π-conjugated triazenes (Patil et al., 2014).graphic file with name e-70-00224-scheme1.jpg

Structural commentary  

The mol­ecular structures of the two independent mol­ecules (A and B) of the title compound are illustrated in Fig. 1. Both mol­ecules have an E conformation about the –N5=N4– and –N11=N10– bonds and the bond lengths and angles of the π-conjugated triazene unit (Table 1) are very similar to those in related structures (Khramov & Bielawski, 2005, 2007; Jishkariani et al., 2013; Tennyson et al., 2010). The two mol­ecules have slightly twisted overall conformations, with the imidazole ring (N1/N2/C1–C3) inclined to the benzene ring (C6–C11) by 8.12 (4)° in mol­ecule A, while in mol­ecule B the two rings (N7/N8/C12–C14 and C17–C22) are inclined to one another by 7.73 (4)°.

Figure 1.

Figure 1

A view of the mol­ecular structure of the two independent mol­ecules (A and B) of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected geometric parameters (Å, °).

N3—C3 1.3532 (9) N9—C14 1.3501 (9)
N3—N4 1.3318 (8) N9—N10 1.3299 (8)
N4—N5 1.2856 (8) N10—N11 1.2866 (8)
       
N4—N3—C3 112.23 (6) N10—N9—C14 112.44 (6)
N5—N4—N3 111.84 (6) N11—N10—N9 111.74 (6)
N4—N5—C6 111.86 (6) N10—N11—C17 111.77 (6)

Supra­molecular features  

In the crystal, the independent mol­ecules are linked by C—H⋯O hydrogen bonds forming –AAA– and –BBB– chains along [100]. The chains are linked by C—H⋯O and C—H⋯N hydrogen bonds, forming sheets lying parallel to (001); see Fig. 2 and Table 2. The sheets are linked by further C—H⋯N hydrogen bonds and C—H⋯π and π–π inter­actions [Cg1⋯Cg4i = 3.5243 (5) Å; Cg1 and Cg4 are the centroids of the imidazole ring of mol­ecule A and the benzene ring of mol­ecule B; symmetry code: (i) x, y, z − 1], forming a three-dimensional framework structure (Fig. 3 and Table 2).

Figure 2.

Figure 2

A view along the c axis of the crystal packing of title compound, with hydrogen bonds shown as dashed lines (see Table 2 for details).

Table 2. Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the benzene ring (C6–C11) of mol­ecule A and the imidazole ring (N7/N8/C12–C14) ring of mol­ecule B, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O3i 0.95 2.55 3.3223 (11) 139
C16—H00B⋯N5ii 0.98 2.50 3.4757 (11) 172
C16—H00C⋯N3iii 0.98 2.61 3.5557 (11) 163
C8—H8⋯N9iv 0.95 2.44 3.3882 (10) 178
C13—H13⋯N3ii 0.95 2.60 3.5441 (10) 174
C15—H15B⋯O4v 0.98 2.48 3.3692 (11) 151
C4—H4CCg3vi 0.98 2.96 3.8391 (9) 150
C15—H15ACg2iii 0.98 2.80 3.5398 (9) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Figure 3.

Figure 3

A view along the a axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 2 for details; H atoms not involved in hydrogen bonds have been omitted for clarity).

Database survey  

The first synthesis of a π-conjugated triazene was reported on in 1965 (Winberg & Coffman, 1965). The first X-ray structure analysis of a π-conjugated triazene appeared many years later (Khramov et al., 2005). A search of the WebCSD database, gave 15 hits for π-conjugated triazenes. Two of these structures (Patil et al., 2014) employed 1,3-di­methyl­imidazolium iodide as the carbene precursor. Although, there is a compound that closely resembles the title compound in the literature (Patil et al., 2014), it differs in the position of the nitro-substituent in the aromatic moiety. In the title compound, the nitro substituent is in the meta position, while the parallel report has the nitro substituent in the para position.

Synthesis and crystallization  

1-Azido-3-nitro­benzene was prepared according to the literature procedure (Siddiki et al., 2013). The synthesis of 1,3-di­methyl­imidazolium iodide was carried out accordingly to literature procedure (Oertel et al., 2011). For the synthesis of the title compound, 1-azido-3-nitro­benzene (196 mg, 1.2 mmol) was added in one portion to a suspension of 1,3-di­methyl­imidazolium iodide (134 mg, 0.6 mmol) in dry THF (5 mL) and stirred at room temperature for 5 min. In one portion, NaH (24 mg, 0.6 mmol, 60% in mineral oil) was added to the reaction vessel and the resulting mixture was stirred at room temperature for 6 h. The yellowish-orange precipitate that formed was collected by filtration and dried under reduced pressure, giving the title compound as an orange crystalline solid (yield 140 mg, 90%). Crystals were prepared by slow infusion of hexa­nes into a saturated THF solution of the title compound. IR (neat) ν 3439, 1601, 1398, 1357, 1191 cm−1. 1H NMR (500 MHz, DMSO-d 6): δ 7.99 (s, 1H, Ph-H), 7.85–7.83 (m, 1H, Ph-H), 7.70–7.69 (m, 1 H, Ph-H), 7.55–7.52 (m, 1H, Ph-H), 7.06 (s, 2H, NCH) 3.60 (s, 6H, N-CH3). 13C NMR (125 MHz, DMSO-d 6): δ 154.4, 151.1, 149.0, 130.6, 126.9, 118.8, 118.3, 114.4, 35.7. UV/Vis (0.1 µM, CH2Cl2): λ (∊) = 455 nm. HRMS (ESI, N2): m/z calculated for C11H13N6O2 [M + H]+ 261.1095, found 261.1094.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.95 and 0.98 Å for CH and CH3 H atoms, respectively, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and = 1.2Ueq(C) for other H atoms.

Table 3. Experimental details.

Crystal data
Chemical formula C11H12N6O2
M r 260.27
Crystal system, space group Monoclinic, P21/c
Temperature (K) 103
a, b, c (Å) 14.0377 (5), 12.9071 (5), 14.2995 (5)
β (°) 113.6050 (8)
V3) 2374.08 (15)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.43 × 0.33 × 0.25
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.952, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 60704, 14895, 10565
R int 0.040
(sin θ/λ)max−1) 0.916
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.049, 0.128, 1.03
No. of reflections 14895
No. of parameters 347
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.69, −0.30

Computer programs: APEX2 and SAINT (Bruker, 2014), SHELXS97 and SHELXL2013 (Sheldrick 2008), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814020698/su2778sup1.cif

e-70-00224-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020698/su2778Isup2.hkl

e-70-00224-Isup2.hkl (815.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814020698/su2778Isup3.cml

CCDC reference: 977732

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the University of Texas at Arlington for financial support. We are grateful to Dr Muhammed Yousufuddin, Shimadzu Center, for the X-ray data collection, and to the NSF for grants (CHE-0234811 and CHE-0840509) for additional instrumentation.

supplementary crystallographic information

Crystal data

C11H12N6O2 F(000) = 1088
Mr = 260.27 Dx = 1.456 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 14.0377 (5) Å Cell parameters from 9007 reflections
b = 12.9071 (5) Å θ = 3.1–40.1°
c = 14.2995 (5) Å µ = 0.11 mm1
β = 113.6050 (8)° T = 103 K
V = 2374.08 (15) Å3 Prism, orange
Z = 8 0.43 × 0.33 × 0.25 mm

Data collection

Bruker SMART APEXII diffractometer 10565 reflections with I > 2σ(I)
φ and ω scans Rint = 0.040
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 40.7°, θmin = 2.9°
Tmin = 0.952, Tmax = 1.000 h = −25→25
60704 measured reflections k = −23→23
14895 independent reflections l = −26→26

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.060P)2 + 0.4222P] where P = (Fo2 + 2Fc2)/3
14895 reflections (Δ/σ)max = 0.001
347 parameters Δρmax = 0.69 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 1.41154 (5) 0.17070 (6) 0.07592 (6) 0.02761 (14)
O2 1.35616 (5) 0.32803 (5) 0.07112 (6) 0.02894 (15)
N1 0.69882 (5) 0.35407 (5) 0.09704 (5) 0.01430 (10)
N2 0.74421 (5) 0.19273 (5) 0.09668 (5) 0.01287 (10)
N3 0.86553 (5) 0.33461 (5) 0.09907 (5) 0.01281 (10)
N4 0.93463 (4) 0.26313 (5) 0.10078 (4) 0.01161 (9)
N5 1.01715 (5) 0.30405 (5) 0.09846 (5) 0.01286 (10)
N6 1.34736 (5) 0.23387 (6) 0.07898 (5) 0.01852 (12)
C1 0.64415 (5) 0.19428 (6) 0.09429 (6) 0.01542 (12)
H1 0.6029 0.1354 0.0927 0.019*
C2 0.61618 (5) 0.29407 (6) 0.09470 (6) 0.01605 (12)
H2 0.5519 0.3186 0.0936 0.019*
C3 0.77707 (5) 0.29211 (5) 0.09821 (5) 0.01153 (10)
C4 0.79822 (6) 0.09749 (6) 0.09254 (6) 0.01641 (12)
H4A 0.8149 0.0987 0.0322 0.025*
H4B 0.7535 0.0379 0.0884 0.025*
H4C 0.8626 0.0918 0.1542 0.025*
C5 0.70332 (7) 0.46623 (6) 0.09997 (8) 0.02396 (16)
H5A 0.7448 0.4892 0.1699 0.036*
H5B 0.6328 0.4943 0.0774 0.036*
H5C 0.7354 0.4910 0.0546 0.036*
C6 1.09080 (5) 0.22826 (5) 0.10102 (5) 0.01144 (10)
C7 1.08081 (6) 0.12097 (5) 0.11242 (6) 0.01449 (11)
H7 1.0200 0.0949 0.1180 0.017*
C8 1.15869 (6) 0.05259 (6) 0.11562 (6) 0.01589 (12)
H8 1.1512 −0.0194 0.1249 0.019*
C9 1.24754 (6) 0.08873 (6) 0.10535 (6) 0.01545 (12)
H9 1.3009 0.0426 0.1071 0.019*
C10 1.25535 (5) 0.19462 (6) 0.09241 (5) 0.01371 (11)
C11 1.18020 (5) 0.26503 (5) 0.09144 (5) 0.01285 (11)
H11 1.1893 0.3371 0.0844 0.015*
O3 0.37570 (6) 0.04437 (6) 0.82832 (7) 0.03536 (18)
O4 0.28471 (5) 0.17434 (6) 0.84106 (6) 0.02731 (14)
N7 1.02372 (4) 0.23808 (5) 0.84318 (5) 0.01204 (10)
N8 0.94498 (5) 0.37758 (5) 0.86112 (5) 0.01262 (10)
N9 0.86200 (5) 0.20437 (5) 0.84779 (5) 0.01280 (10)
N10 0.77639 (4) 0.25054 (5) 0.84548 (5) 0.01187 (9)
N11 0.70763 (5) 0.18431 (5) 0.84484 (5) 0.01359 (10)
N12 0.36319 (5) 0.13767 (6) 0.83579 (6) 0.01928 (12)
C12 1.08846 (5) 0.32082 (6) 0.84914 (6) 0.01436 (11)
H12 1.1547 0.3174 0.8459 0.017*
C13 1.03999 (6) 0.40748 (6) 0.86051 (6) 0.01455 (12)
H13 1.0660 0.4762 0.8669 0.017*
C14 0.93575 (5) 0.27292 (5) 0.85061 (5) 0.01114 (10)
C15 1.04585 (5) 0.12916 (6) 0.83482 (6) 0.01494 (12)
H15A 1.0610 0.0946 0.9003 0.022*
H15B 1.1061 0.1231 0.8169 0.022*
H15C 0.9854 0.0964 0.7817 0.022*
C16 0.87328 (6) 0.45063 (6) 0.87669 (7) 0.01784 (13)
H00A 0.8088 0.4537 0.8149 0.027*
H00B 0.9052 0.5195 0.8912 0.027*
H00C 0.8576 0.4277 0.9343 0.027*
C17 0.61624 (5) 0.23313 (5) 0.84061 (5) 0.01230 (11)
C18 0.59905 (6) 0.34078 (6) 0.83778 (6) 0.01640 (12)
H18 0.6516 0.3870 0.8374 0.020*
C19 0.50599 (6) 0.37999 (6) 0.83552 (7) 0.01905 (14)
H19 0.4958 0.4528 0.8338 0.023*
C20 0.42745 (6) 0.31436 (6) 0.83575 (6) 0.01717 (13)
H20 0.3641 0.3410 0.8352 0.021*
C21 0.44519 (5) 0.20858 (6) 0.83684 (6) 0.01418 (11)
C22 0.53703 (5) 0.16660 (6) 0.83938 (6) 0.01394 (11)
H22 0.5461 0.0936 0.8403 0.017*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0170 (3) 0.0305 (3) 0.0415 (4) 0.0060 (2) 0.0181 (3) 0.0032 (3)
O2 0.0208 (3) 0.0227 (3) 0.0491 (4) −0.0023 (2) 0.0200 (3) 0.0063 (3)
N1 0.0111 (2) 0.0138 (2) 0.0193 (3) 0.00077 (18) 0.0074 (2) −0.0021 (2)
N2 0.0114 (2) 0.0121 (2) 0.0160 (2) −0.00117 (18) 0.00653 (19) −0.00044 (19)
N3 0.0110 (2) 0.0111 (2) 0.0178 (3) 0.00034 (17) 0.00737 (19) −0.00037 (19)
N4 0.0106 (2) 0.0111 (2) 0.0141 (2) 0.00008 (17) 0.00600 (18) −0.00066 (18)
N5 0.0115 (2) 0.0108 (2) 0.0184 (3) 0.00012 (17) 0.0082 (2) 0.00033 (19)
N6 0.0117 (2) 0.0232 (3) 0.0219 (3) 0.0010 (2) 0.0081 (2) 0.0025 (2)
C1 0.0117 (3) 0.0181 (3) 0.0177 (3) −0.0026 (2) 0.0071 (2) −0.0003 (2)
C2 0.0112 (3) 0.0201 (3) 0.0183 (3) −0.0011 (2) 0.0074 (2) −0.0017 (2)
C3 0.0104 (2) 0.0118 (2) 0.0129 (3) −0.00022 (19) 0.0053 (2) −0.0012 (2)
C4 0.0168 (3) 0.0109 (3) 0.0226 (3) −0.0004 (2) 0.0091 (3) −0.0003 (2)
C5 0.0183 (3) 0.0141 (3) 0.0405 (5) 0.0018 (2) 0.0129 (3) −0.0054 (3)
C6 0.0114 (2) 0.0105 (2) 0.0133 (3) 0.00012 (19) 0.0059 (2) −0.0003 (2)
C7 0.0151 (3) 0.0110 (2) 0.0198 (3) −0.0003 (2) 0.0096 (2) −0.0001 (2)
C8 0.0169 (3) 0.0111 (3) 0.0206 (3) 0.0013 (2) 0.0085 (2) −0.0004 (2)
C9 0.0134 (3) 0.0147 (3) 0.0181 (3) 0.0027 (2) 0.0062 (2) −0.0014 (2)
C10 0.0104 (2) 0.0160 (3) 0.0156 (3) 0.0001 (2) 0.0061 (2) −0.0002 (2)
C11 0.0114 (2) 0.0127 (3) 0.0154 (3) −0.0003 (2) 0.0063 (2) 0.0004 (2)
O3 0.0258 (3) 0.0183 (3) 0.0696 (6) −0.0036 (2) 0.0271 (4) 0.0009 (3)
O4 0.0134 (2) 0.0315 (3) 0.0412 (4) 0.0020 (2) 0.0153 (3) 0.0029 (3)
N7 0.0102 (2) 0.0114 (2) 0.0153 (2) −0.00043 (17) 0.00589 (18) −0.00002 (18)
N8 0.0132 (2) 0.0096 (2) 0.0164 (2) −0.00070 (18) 0.00730 (19) 0.00062 (18)
N9 0.0106 (2) 0.0106 (2) 0.0190 (3) −0.00018 (17) 0.00774 (19) 0.00041 (19)
N10 0.0105 (2) 0.0119 (2) 0.0140 (2) 0.00009 (17) 0.00575 (18) 0.00015 (18)
N11 0.0114 (2) 0.0120 (2) 0.0194 (3) 0.00001 (18) 0.0083 (2) 0.00108 (19)
N12 0.0125 (2) 0.0210 (3) 0.0260 (3) −0.0008 (2) 0.0093 (2) 0.0023 (2)
C12 0.0117 (3) 0.0150 (3) 0.0172 (3) −0.0023 (2) 0.0067 (2) 0.0013 (2)
C13 0.0139 (3) 0.0131 (3) 0.0172 (3) −0.0029 (2) 0.0068 (2) 0.0010 (2)
C14 0.0105 (2) 0.0104 (2) 0.0130 (3) −0.00021 (19) 0.0052 (2) 0.00045 (19)
C15 0.0134 (3) 0.0124 (3) 0.0200 (3) 0.0021 (2) 0.0077 (2) 0.0006 (2)
C16 0.0198 (3) 0.0102 (3) 0.0278 (4) 0.0011 (2) 0.0140 (3) −0.0004 (2)
C17 0.0108 (2) 0.0124 (3) 0.0145 (3) 0.00085 (19) 0.0058 (2) 0.0005 (2)
C18 0.0150 (3) 0.0124 (3) 0.0237 (3) 0.0004 (2) 0.0098 (3) 0.0003 (2)
C19 0.0167 (3) 0.0134 (3) 0.0289 (4) 0.0030 (2) 0.0111 (3) 0.0004 (3)
C20 0.0131 (3) 0.0173 (3) 0.0222 (3) 0.0029 (2) 0.0082 (2) 0.0001 (2)
C21 0.0105 (2) 0.0157 (3) 0.0172 (3) −0.0002 (2) 0.0064 (2) 0.0004 (2)
C22 0.0115 (2) 0.0131 (3) 0.0184 (3) 0.0006 (2) 0.0071 (2) 0.0010 (2)

Geometric parameters (Å, º)

O1—N6 1.2288 (9) O3—N12 1.2278 (10)
O2—N6 1.2313 (10) O4—N12 1.2287 (9)
N1—C3 1.3534 (9) N7—C14 1.3578 (9)
N1—C2 1.3841 (9) N7—C12 1.3827 (9)
N1—C5 1.4489 (10) N7—C15 1.4549 (9)
N2—C3 1.3603 (9) N8—C14 1.3597 (9)
N2—C1 1.3914 (9) N8—C13 1.3918 (9)
N2—C4 1.4578 (9) N8—C16 1.4598 (9)
N3—C3 1.3532 (9) N9—C14 1.3501 (9)
N3—N4 1.3318 (8) N9—N10 1.3299 (8)
N4—N5 1.2856 (8) N10—N11 1.2866 (8)
N5—C6 1.4132 (9) N11—C17 1.4087 (9)
N6—C10 1.4699 (9) N12—C21 1.4659 (10)
C1—C2 1.3473 (11) C12—C13 1.3525 (10)
C1—H1 0.9500 C12—H12 0.9500
C2—H2 0.9500 C13—H13 0.9500
C4—H4A 0.9800 C15—H15A 0.9800
C4—H4B 0.9800 C15—H15B 0.9800
C4—H4C 0.9800 C15—H15C 0.9800
C5—H5A 0.9800 C16—H00A 0.9800
C5—H5B 0.9800 C16—H00B 0.9800
C5—H5C 0.9800 C16—H00C 0.9800
C6—C11 1.3987 (9) C17—C22 1.3994 (10)
C6—C7 1.4078 (10) C17—C18 1.4081 (10)
C7—C8 1.3916 (10) C18—C19 1.3893 (10)
C7—H7 0.9500 C18—H18 0.9500
C8—C9 1.3934 (10) C19—C20 1.3913 (11)
C8—H8 0.9500 C19—H19 0.9500
C9—C10 1.3893 (10) C20—C21 1.3868 (11)
C9—H9 0.9500 C20—H20 0.9500
C10—C11 1.3884 (10) C21—C22 1.3855 (10)
C11—H11 0.9500 C22—H22 0.9500
C3—N1—C2 109.75 (6) C14—N7—C12 109.60 (6)
C3—N1—C5 124.35 (6) C14—N7—C15 123.86 (6)
C2—N1—C5 125.89 (6) C12—N7—C15 126.49 (6)
C3—N2—C1 108.62 (6) C14—N8—C13 108.90 (6)
C3—N2—C4 128.12 (6) C14—N8—C16 128.14 (6)
C1—N2—C4 123.19 (6) C13—N8—C16 122.88 (6)
N4—N3—C3 112.23 (6) N10—N9—C14 112.44 (6)
N5—N4—N3 111.84 (6) N11—N10—N9 111.74 (6)
N4—N5—C6 111.86 (6) N10—N11—C17 111.77 (6)
O1—N6—O2 123.36 (7) O3—N12—O4 123.10 (7)
O1—N6—C10 118.10 (7) O3—N12—C21 118.31 (6)
O2—N6—C10 118.54 (7) O4—N12—C21 118.59 (7)
C2—C1—N2 107.86 (6) C13—C12—N7 107.23 (6)
C2—C1—H1 126.1 C13—C12—H12 126.4
N2—C1—H1 126.1 N7—C12—H12 126.4
C1—C2—N1 106.98 (6) C12—C13—N8 107.52 (6)
C1—C2—H2 126.5 C12—C13—H13 126.2
N1—C2—H2 126.5 N8—C13—H13 126.2
N1—C3—N3 119.86 (6) N9—C14—N7 119.42 (6)
N1—C3—N2 106.78 (6) N9—C14—N8 133.82 (6)
N3—C3—N2 133.35 (6) N7—C14—N8 106.75 (6)
N2—C4—H4A 109.5 N7—C15—H15A 109.5
N2—C4—H4B 109.5 N7—C15—H15B 109.5
H4A—C4—H4B 109.5 H15A—C15—H15B 109.5
N2—C4—H4C 109.5 N7—C15—H15C 109.5
H4A—C4—H4C 109.5 H15A—C15—H15C 109.5
H4B—C4—H4C 109.5 H15B—C15—H15C 109.5
N1—C5—H5A 109.5 N8—C16—H00A 109.5
N1—C5—H5B 109.5 N8—C16—H00B 109.5
H5A—C5—H5B 109.5 H00A—C16—H00B 109.5
N1—C5—H5C 109.5 N8—C16—H00C 109.5
H5A—C5—H5C 109.5 H00A—C16—H00C 109.5
H5B—C5—H5C 109.5 H00B—C16—H00C 109.5
C11—C6—C7 118.69 (6) C22—C17—C18 118.63 (6)
C11—C6—N5 115.99 (6) C22—C17—N11 115.56 (6)
C7—C6—N5 125.31 (6) C18—C17—N11 125.81 (6)
C8—C7—C6 120.95 (6) C19—C18—C17 120.58 (7)
C8—C7—H7 119.5 C19—C18—H18 119.7
C6—C7—H7 119.5 C17—C18—H18 119.7
C7—C8—C9 120.58 (7) C18—C19—C20 121.12 (7)
C7—C8—H8 119.7 C18—C19—H19 119.4
C9—C8—H8 119.7 C20—C19—H19 119.4
C10—C9—C8 117.72 (6) C21—C20—C19 117.42 (7)
C10—C9—H9 121.1 C21—C20—H20 121.3
C8—C9—H9 121.1 C19—C20—H20 121.3
C11—C10—C9 123.03 (6) C22—C21—C20 123.12 (7)
C11—C10—N6 118.49 (6) C22—C21—N12 118.34 (6)
C9—C10—N6 118.48 (6) C20—C21—N12 118.55 (6)
C10—C11—C6 119.00 (6) C21—C22—C17 119.12 (6)
C10—C11—H11 120.5 C21—C22—H22 120.4
C6—C11—H11 120.5 C17—C22—H22 120.4

Hydrogen-bond geometry (Å, º)

Cg2 and Cg3 are the centroids of the benzene ring (C6–C11) of molecule A and the imidazole ring (N7/N8/C12–C14) ring of molecule B, respectively.

D—H···A D—H H···A D···A D—H···A
C1—H1···O3i 0.95 2.55 3.3223 (11) 139
C16—H00B···N5ii 0.98 2.50 3.4757 (11) 172
C16—H00C···N3iii 0.98 2.61 3.5557 (11) 163
C8—H8···N9iv 0.95 2.44 3.3882 (10) 178
C13—H13···N3ii 0.95 2.60 3.5441 (10) 174
C15—H15B···O4v 0.98 2.48 3.3692 (11) 151
C4—H4C···Cg3vi 0.98 2.96 3.8391 (9) 150
C15—H15A···Cg2iii 0.98 2.80 3.5398 (9) 132

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) x, y, z+1; (iv) −x+2, −y, −z+1; (v) x+1, y, z; (vi) x, −y−1/2, z−3/2.

References

  1. Baeyer, A. & Jaeger, C. (1875). Ber. Dtsch. Chem. Ges. 8, 148–151.
  2. Bruker (2014). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Giraldi, T., Connors, T. A. & Carter, G. (1990). Triazenes – Chemical, Biological and Clinical Aspects New York: Plenum Press.
  4. Griess, P. (1862). Liebigs, J. Ann. Chem. 121, 258–261.
  5. Jishkariani, D., Hall, C. D., Demircan, A., Tomlin, B. J., Steel, P. J. & Katritzky, A. R. (2013). J. Org. Chem. 78, 3349–3354. [DOI] [PubMed]
  6. Jones, L., Schumm, J. S. & Tour, J. M. (1997). J. Org. Chem. 62, 1388–1410.
  7. Khramov, D. M. & Bielawski, C. W. (2005). Chem. Commun. pp. 4958–4960. [DOI] [PubMed]
  8. Khramov, D. M. & Bielawski, C. W. (2007). J. Org. Chem. 72, 9407–9417. [DOI] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Nicolaou, K. C., Boddy, C. N. C., Li, H., Koumbis, A. E., Hughes, R., Natarajan, S., Jain, N. F., Ramanjulu, J. M., Bräse, S. & Solomon, M. E. (1999). Chem. Eur. J. 5, 2602–2621.
  11. Oertel, A. M., Ritleng, V., Burr, L. & Chetcuti, M. J. (2011). Organometallics, 30, 6685–6691.
  12. Patil, S., White, K. & Bugarin, A. (2014). Tetrahedron Lett. 55, 4826–4829.
  13. Rouzer, C. A., Sabourin, M., Skinner, T. L., Thompson, E. J., Wood, T. O., Chmurny, G. N., Klose, J. R., Roman, J. M., Smith, R. H. & Michejda, C. J. (1996). Chem. Res. Toxicol. 9, 172–178. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Siddiki, A. A., Takale, B. S. & Telvekar, V. N. (2013). Tetrahedron Lett. 54, 1294–1297.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Tennyson, A. G., Moorhead, E. J., Madison, B. L., Er, J. A. V., Lynch, V. M. & Bielawski, C. W. (2010). Eur. J. Org. Chem. pp. 6277–6282.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Winberg, H. E. & Coffman, D. D. (1965). J. Am. Chem. Soc. 87, 2776–2777.
  20. Wirshun, W., Winkler, M., Lutz, K. & Jochims, J. C. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 1755–1762.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814020698/su2778sup1.cif

e-70-00224-sup1.cif (1.7MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020698/su2778Isup2.hkl

e-70-00224-Isup2.hkl (815.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814020698/su2778Isup3.cml

CCDC reference: 977732

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES