Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Mar;67(3):514–517. doi: 10.1104/pp.67.3.514

Mobilization of Respiratory Metabolism in Potato Tubers by Carbon Dioxide 1

Martin S Perez-Trejo 1,2,2, Harry W Janes 1,2, Chaim Frenkel 1,2,3
PMCID: PMC425716  PMID: 16661705

Abstract

Applying high concentrations of CO2 to whole potato tubers stimulated a rapid and pronounced respiratory gas exchange, which persisted for a prolonged time. The upsurge in respiration was proportional to the applied CO2 concentrations and was further augmented by high O2 levels. Tests using whole potatoes, or potato tissue slices from tubers previously treated with CO2, indicated that the rapid CO2-induced respiration is sensitive to cyanide during the first 24 hours of CO2 application. The respiratory rise cannot be attributed to the emergence of a cyanide-resistant alternative electron transport pathway, although prolonged applications of CO2, up to 72 hours, led to a gradual development of the pathway. CO2-stimulated respiration was accompanied by a pronounced decline in the content of starch and glucose 6-phosphate, suggesting an active utilization of respiratory substrates. The ATP content in the CO2-treated potatoes increased markedly, resembling similar increases in tissues undergoing respiratory upsurge.

Full text

PDF
514

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTONINI E. INTERRELATIONSHIP BETWEEN STRUCTURE AND FUNCTION IN HEMOGLOBIN AND MYOGLOBIN. Physiol Rev. 1965 Jan;45:123–170. doi: 10.1152/physrev.1965.45.1.123. [DOI] [PubMed] [Google Scholar]
  2. Ballard L. A., Lipp A. E. Seed dormancy: breaking by uncouplers and inhibitios of oxidative phosphorylation. Science. 1967 Apr 21;156(3773):398–399. doi: 10.1126/science.156.3773.398. [DOI] [PubMed] [Google Scholar]
  3. Bown A. W., Dymock I. J., Aung T. A Synergistic Stimulation of Avena sativa Coleoptile Elongation by Indoleacetic Acid and Carbon Dioxide. Plant Physiol. 1974 Jul;54(1):15–18. doi: 10.1104/pp.54.1.15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chin C. K., Frenkel C. Upsurge in respiration and peroxide formation in potato tubers as influenced by ethylene, propylene, and cyanide. Plant Physiol. 1977 Mar;59(3):515–518. doi: 10.1104/pp.59.3.515. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen W. S., Macpeek W. A. A proposed mechanism for the stimulatory effect of bicarbonate ions on ATP synthesis in isolated chloroplasts. Plant Physiol. 1980 Aug;66(2):242–245. doi: 10.1104/pp.66.2.242. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Davies D. D. Control of and by pH. Symp Soc Exp Biol. 1973;27:513–529. [PubMed] [Google Scholar]
  7. Day D. A., Arron G. P., Christoffersen R. E., Laties G. G. Effect of ethylene and carbon dioxide on potato metabolism: stimulation of tuber and mitochondrial respiration, and inducement of the alternative path. Plant Physiol. 1978 Nov;62(5):820–825. doi: 10.1104/pp.62.5.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ghosh A., Chance B. Oscillations of glycolytic intermediates in yeast cells. Biochem Biophys Res Commun. 1964 Jun 1;16(2):174–181. doi: 10.1016/0006-291x(64)90357-2. [DOI] [PubMed] [Google Scholar]
  9. Grubmeyer C., Melanson D., Duncan I., Spencer M. Oxidative phosphorylation in pea cotyledon submitochondrial particles. Plant Physiol. 1979 Nov;64(5):757–762. doi: 10.1104/pp.64.5.757. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Janes H. W., Rychter A., Frenkel C. Factors Influencing the Development of Cyanide-resistant Respiration in Potato Tissue. Plant Physiol. 1979 May;63(5):837–840. doi: 10.1104/pp.63.5.837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Malik N. S., Thimann K. V. Metabolism of Oat Leaves during Senescence: VI. CHANGES IN ATP LEVELS. Plant Physiol. 1980 May;65(5):855–859. doi: 10.1104/pp.65.5.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mitz M. A. CO2 biodynamics: a new concept of cellular control. J Theor Biol. 1979 Oct 22;80(4):537–551. doi: 10.1016/0022-5193(79)90092-4. [DOI] [PubMed] [Google Scholar]
  13. PUNNETT T., IYER R. V. THE ENHANCEMENT OF PHOTOPHOSPHORYLATION AND THE HILL REACTION BY CARBON DIOXIDE. J Biol Chem. 1964 Jul;239:2335–2339. [PubMed] [Google Scholar]
  14. Rychter A., Janes H. W., Frenkel C. Cyanide-resistant Respiration in Freshly Cut Potato Slices. Plant Physiol. 1978 Apr;61(4):667–668. doi: 10.1104/pp.61.4.667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Rychter A., Janes H. W., Frenkel C. Effect of Ethylene and Oxygen on the Development of Cyanide-resistant Respiration in Whole Plant Mitochondria. Plant Physiol. 1979 Jan;63(1):149–151. doi: 10.1104/pp.63.1.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Solomos T., Laties G. G. The mechanism of ethylene and cyanide action in triggering the rise in respiration in potato tubers. Plant Physiol. 1975 Jan;55(1):73–78. doi: 10.1104/pp.55.1.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. YEMM E. W., WILLIS A. J. The estimation of carbohydrates in plant extracts by anthrone. Biochem J. 1954 Jul;57(3):508–514. doi: 10.1042/bj0570508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Young R. E., Biale J. B. Phosphorylation in avocado fruit slices in relation to the respiratory climacteric. Plant Physiol. 1967 Oct;42(10):1357–1362. doi: 10.1104/pp.42.10.1357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Young R. E., Romani R. J., Biale J. B. Carbon Dioxide Effects on Fruit Respiration . II. Response of Avocados, Bananas, & Lemons. Plant Physiol. 1962 May;37(3):416–422. doi: 10.1104/pp.37.3.416. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES