Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 6;70(Pt 10):170–173. doi: 10.1107/S1600536814019758

Crystal structure of 1,8-dibenzoyl-2,7-di­phen­oxy­naphthalene

Satsuki Narushima a, Saki Mohri a, Noriyuki Yonezawa a, Akiko Okamoto a,*
PMCID: PMC4257173  PMID: 25484644

In 1,8-dibenzoyl-2,7-di­phen­oxy­naphthalene, the planes of the benzene rings of the four naphthalene substituents are almost perpendicular to that of the naphthalene core.

Keywords: crystal structure, peri-aroyl­naphthalene, C—H⋯π inter­actions, spatial organization

Abstract

In the title compound, C36H24O4, the benzene rings of the benzoyl and phen­oxy groups make dihedral angles of 75.01 (4), 75.78 (4), 83.17 (5) and 80.84 (5)° with the naphthalene ring system. In the crystal, two types of C—H⋯π inter­actions between the benzene rings of the benzoyl groups and the naphthalene unit, and two kinds of π–π inter­actions between the benzene rings, with centroid–centroid distances of 3.879 (1) and 3.696 (1) Å, are observed.

Chemical context  

Peri-substituted naphthalenes have received much attention as characteristic-structured aromatic-ring-core compounds for a variety of functional materials (Mei et al., 2006; Shinamura et al., 2010; Jiang et al., 2010; Shao et al., 2014). For example, rylene derivatives are fluoro­phores well known for their exceptional photochemical stability and high fluorescence quantum yields (Würthner et al., 2004; Jiao et al., 2009), and employed in solar cells (Shibano et al., 2009), laser dyes (Gvishi et al., 1993), organic light-emitting field-effect trans­is­tors (Seo et al., 2013) and optical switches (Oneil et al., 1992). However, planar aromatic structures containing peri-substituted naphthalenes are prone to inter­molecular aggregation that often leads to serious problems including fluorescence quenching (Wang & Yu, 2010). Therefore, development of peri-substituted naphthalene derivatives with aromatic substituents twisted relative to the naphthalene ring system, to inhibit mol­ecular aggregation, has been desired. graphic file with name e-70-00170-scheme1.jpg

The authors have found that peri-aroyl­naphthalene compounds are afforded smoothly via electrophilic aromatic aroylation of a naphthalene derivative in the presence of a suitable acidic mediator (Okamoto & Yonezawa, 2009; Okamoto et al., 2011). In peri-aroyl­naphthalene compounds, as a result of steric hindrance, the aroyl groups have to be arranged nearly perpendicular relative to the naphthalene core. Bearing this in mind, we have initiated a crystallographic study of peri-aroyl­naphthalene compounds in a search for correlation between the mol­ecular structure, the crystal packing and the non-bonding inter­actions (Okamoto et al., 2014). Herein, the crystal structure of 1,8-dibenzoyl-2,7-di­phen­oxy­naphtahlene, (I), is reported and its structural features are discussed through comparison with the homologues, 1,8-bis­(4-fluoro­benzo­yl)-2,7-di­phen­oxy­naphthalene (Hijikata et al., 2012) and 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene (Nakaema et al., 2008).

Structural commentary  

The mol­ecular structure of (I) is displayed in Fig. 1. The benzene rings of the four substituents are arranged almost perpendicular relative to the naphthalene ring system. Furthermore, the two carbonyl groups attached at the 1- and 8-positions of the naphthalene ring are in the anti orientation. The benzene rings of the benzoyl groups make dihedral angles of 75.01 (4) and 75.78 (4)° with the naphthalene core. These dihedral angles are slightly smaller than those between the benzene rings of the phen­oxy groups at the 2- and 7-positions and the naphthalene ring [83.17 (5) and 80.84 (5)°]. The mol­ecular structure only slightly deviates from C 2 symmetry and the mol­ecules exhibit axial chirality either with two S,S or two R,R stereogenic centers.

Figure 1.

Figure 1

The mol­ecular structure of title mol­ecule, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, R,R and S,S-isomers are alternately arranged along the c axis, forming a single column with the mol­ecules linked by two types of C—H⋯π inter­actions involving the benzene ring of the benzoyl groups and the naphthalene unit (Table 1 and Fig. 2). In addition, π–π stacking inter­actions are formed between mol­ecules in adjacent columns (Fig. 3). These inter­actions are observed between the benzene rings of the phen­oxy groups [Cg4 is the centroid of the C18–C23 ring and Cg6 is the centroid of the C31–C36 ring; Cg4Cg6(x + 1, −y + Inline graphic, z + Inline graphic) = 3.879 (1) Å] and the benzene rings of the benzoyl groups [Cg3 is the centroid of the C12–C17 ring; Cg3⋯Cg3(−x + 1, −y, −z + 1) = 3.696 (1) Å].

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C4/C10/C9 and C5–C10 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯Cg1i 0.95 2.50 3.4192 (12) 163
C27—H27⋯Cg2ii 0.95 2.51 3.4002 (12) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Two types of C—H⋯π inter­actions between the benzene ring of the benzoyl groups and the naphthalene rings, forming a single column structure (see Table 1 for details).

Figure 3.

Figure 3

π–π inter­actions between the benzene rings of the benzoyl groups (green dashed line) and between the benzene rings of the phen­oxy groups (blue dashed lines).

Database survey  

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Allen, 2002) showed 39 structures of 1,8-diaroyl­naphthalenes and 1,8-dialkanoyl­naphthalenes and 30 structures of 1,8-diaroyl-2,7-di­alk­oxy­naphthalenes and 1,8-diaroyl-2,7-di­aryl­oxynaphthalenes. The title compound, (I), is closely related to 1,8-bis­(4-fluoro­benzo­yl)-2,7-di­phen­oxy­naphthalene, (II) (Hijikata et al., 2012), and 1,8-dibenzoyl-2,7-di­meth­oxy­naphthalene, (III) (Nakaema et al., 2008). Like in the title compound, in homologue (II), the four benzene rings are non-coplanarly oriented relative to the naphthalene core. The dihedral angles formed by the benzene rings of the benzoyl groups are very similar to the title compound (I) [72.07 (4) and 73.24 (4)°], whereas those of the benzene rings of the phen­oxy groups differ and are both smaller than in the title compound [62.49 (5) and 77.96 (5)°]. Homologue (III) is apparently different as the mol­ecule is located on a crystallographic twofold rotation axis passing through the two central C atoms of the naphthalene unit. The dihedral angle between the benzene ring of the benzoyl group and the naphthalene ring system is 80.25 (6)°. In homologues (II) and (III), the mol­ecules are linked by (sp 2)C—H⋯O=C hydrogen bonds, forming a column structure [H⋯O = 2.40 Å for homologue (II) and 2.60 Å for homologue (III)]. In homologue (II), C—H⋯π inter­actions between the benzene ring of the benzoyl group and the benzene ring of the phen­oxy group (2.80 Å) are observed. In homologue (III), π–π inter­actions between the benzene rings of the benzoyl groups are formed [centroid–centroid and inter­planar distances of 3.6383 (10) and 3.294 Å, respectively]. On the other hand, the title structure forms no C—H⋯O=C inter­actions shorter than 2.70 Å. In (I), C—H⋯π and π–π stacking inter­actions evidently predominate.

Synthesis and crystallization  

1,8-Dibenzoyl-2,7-di­hydroxy­naphthalene (0.2 mmol, 74 mg), benzenboronic acid (0.8 mmol, 97 mg), Cu(OAc)2 (0.4 mmol, 73 mg), activated 4 Å mol­ecular sieves (0.2 g), pyridine (1.6 mmol, 126 mg) and methyl­ene chloride (0.8 ml) were placed in a 10 ml flask. The reaction mixture was stirred at room temperature for 48 h and then diluted with CHCl3 (10 ml). The solution was successively washed with saturated aqueous NH4Cl, 2M aqueous HCl and brine. The organic layers thus obtained were dried over anhydrous MgSO4. After removal of solvent under reduced pressure, the crude product was purified by column chromatography (silica gel, hexa­ne–AcOEt, 2:1 v/v; isolated yield 68%). The isolated product was crystallized from ethanol to give single crystals.

1H NMR (300 MHz, CDCl3): δ 6.82 (4H, d, J = 8.4 Hz), 7.03 (2H, t, J = 7.2 Hz), 7.08 (2H, d, J = 9.3 Hz), 7.22 (4H, t, J = 7.5 Hz), 7.33 (4H, t, J = 7.8 Hz), 7.46 (2H, t, J = 6.9 Hz), 7.80 (4H, d, J = 7.5 Hz), 7.89 (2H, d, J = 9.0 Hz); 13C NMR (75 MHz, CDCl3): δ 117.333, 119.169, 123.863, 125.374, 127.984, 128.070, 129.361, 129.714, 131.980, 133.022, 138.501, 153.884, 156.121, 179.239, 196.142; IR (KBr): ν 1655, 1614, 1592, 1504 cm−1; HRMS (m/z): [M+H]+ calculated for C30H25O4, 521.1753; found, 521.1768; m.p. 423.6–424.4 K.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were located in a difference Fourier map and were subsequently refined as riding on their carriers, with C—H = 0.95 Å (aromatic) and U iso(H) = 1.2 U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C36H24O4
M r 520.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 193
a, b, c (Å) 12.7734 (2), 16.4106 (3), 12.9012 (2)
β (°) 95.939 (1)
V3) 2689.81 (9)
Z 4
Radiation type Cu Kα
μ (mm−1) 0.66
Crystal size (mm) 0.50 × 0.35 × 0.10
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
Absorption correction Numerical (NUMABS; Higashi, 1999)
T min, T max 0.732, 0.937
No. of measured, independent and observed [I > 2σ(I)] reflections 49716, 4924, 4506
R int 0.041
(sin θ/λ)max−1) 0.602
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.097, 1.04
No. of reflections 4924
No. of parameters 362
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.19

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku, 2007), SIR2004 (Burla et al., 2007), SHELXL97 (Sheldrick, 2008) and ORTEPIII (Burnett & Johnson, 1996).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814019758/gk2618sup1.cif

e-70-00170-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019758/gk2618Isup2.hkl

e-70-00170-Isup2.hkl (241.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup3.pdf

e-70-00170-Isup3.pdf (252.6KB, pdf)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup4.pdf

e-70-00170-Isup4.pdf (230.1KB, pdf)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup5.pdf

e-70-00170-Isup5.pdf (59.2KB, pdf)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup6.pdf

e-70-00170-Isup6.pdf (361.7KB, pdf)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup7.cml

CCDC reference: 1022493

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors express their gratitude to Mr Rei Sakamoto, Department of Organic and Polymer Materials Chemistry, Tokyo University of Agriculture and Technology, and Professor Keiichi Noguchi, Instrumentation Analysis Center, Tokyo University of Agriculture and Technology, for technical advice. This work was partially supported by the Ogasawara Foundation for the Promotion of Science Engineering, Tokyo, Japan.

supplementary crystallographic information

Crystal data

C36H24O4 F(000) = 1088
Mr = 520.55 Dx = 1.285 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54187 Å
Hall symbol: -P 2ybc Cell parameters from 26940 reflections
a = 12.7734 (2) Å θ = 3.4–68.2°
b = 16.4106 (3) Å µ = 0.66 mm1
c = 12.9012 (2) Å T = 193 K
β = 95.939 (1)° Platelet, colorless
V = 2689.81 (9) Å3 0.50 × 0.35 × 0.10 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 4924 independent reflections
Radiation source: fine-focus sealed tube 4506 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.041
Detector resolution: 10.000 pixels mm-1 θmax = 68.2°, θmin = 3.5°
ω scans h = −15→14
Absorption correction: numerical (NUMABS; Higashi, 1999) k = −19→19
Tmin = 0.732, Tmax = 0.937 l = −15→15
49716 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0558P)2 + 0.4291P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
4924 reflections Δρmax = 0.21 e Å3
362 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00272 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.50123 (6) 0.17091 (5) 0.26210 (6) 0.0420 (2)
O2 0.68204 (6) 0.28487 (5) 0.43151 (6) 0.0423 (2)
O3 0.29940 (6) 0.17736 (5) 0.40091 (6) 0.04128 (19)
O4 0.13200 (6) 0.30376 (5) 0.23233 (6) 0.0453 (2)
C1 0.50205 (8) 0.28673 (6) 0.37033 (7) 0.0324 (2)
C2 0.59047 (8) 0.32915 (7) 0.40983 (8) 0.0357 (2)
C3 0.59303 (9) 0.41494 (7) 0.41644 (8) 0.0410 (3)
H3 0.6547 0.4423 0.4456 0.049*
C4 0.50574 (9) 0.45778 (7) 0.38032 (8) 0.0400 (3)
H4 0.5076 0.5156 0.3823 0.048*
C5 0.32265 (9) 0.46409 (6) 0.30298 (8) 0.0401 (3)
H5 0.3258 0.5218 0.3075 0.048*
C6 0.23228 (9) 0.42820 (7) 0.26128 (8) 0.0417 (3)
H6 0.1739 0.4603 0.2341 0.050*
C7 0.22675 (8) 0.34215 (7) 0.25911 (8) 0.0372 (2)
C8 0.31057 (8) 0.29366 (6) 0.29617 (7) 0.0332 (2)
C9 0.40819 (8) 0.33102 (6) 0.33549 (7) 0.0329 (2)
C10 0.41238 (8) 0.41796 (6) 0.33991 (7) 0.0358 (2)
C11 0.51520 (7) 0.19679 (6) 0.35110 (8) 0.0322 (2)
C12 0.54959 (7) 0.14356 (6) 0.44108 (8) 0.0317 (2)
C13 0.53226 (8) 0.16529 (6) 0.54194 (8) 0.0356 (2)
H13 0.4984 0.2154 0.5544 0.043*
C14 0.56439 (9) 0.11396 (7) 0.62452 (9) 0.0426 (3)
H14 0.5524 0.1289 0.6934 0.051*
C15 0.61378 (8) 0.04119 (7) 0.60686 (10) 0.0455 (3)
H15 0.6352 0.0061 0.6636 0.055*
C16 0.63217 (8) 0.01926 (7) 0.50689 (10) 0.0450 (3)
H16 0.6671 −0.0305 0.4951 0.054*
C17 0.59953 (8) 0.06985 (6) 0.42409 (9) 0.0384 (2)
H17 0.6112 0.0543 0.3553 0.046*
C18 0.75171 (8) 0.30897 (6) 0.51655 (9) 0.0409 (3)
C19 0.85574 (10) 0.31908 (8) 0.50004 (12) 0.0541 (3)
H19 0.8777 0.3125 0.4324 0.065*
C20 0.92813 (11) 0.33918 (9) 0.58451 (15) 0.0703 (5)
H20 1.0000 0.3470 0.5743 0.084*
C21 0.89623 (12) 0.34786 (9) 0.68263 (14) 0.0722 (5)
H21 0.9460 0.3617 0.7398 0.087*
C22 0.79282 (12) 0.33645 (8) 0.69766 (11) 0.0630 (4)
H22 0.7712 0.3418 0.7656 0.076*
C23 0.71910 (10) 0.31718 (7) 0.61457 (10) 0.0485 (3)
H23 0.6472 0.3098 0.6251 0.058*
C24 0.28832 (8) 0.20438 (6) 0.31252 (8) 0.0335 (2)
C25 0.24927 (8) 0.15255 (6) 0.22211 (8) 0.0336 (2)
C26 0.26596 (8) 0.17354 (7) 0.12080 (8) 0.0399 (2)
H26 0.3020 0.2225 0.1078 0.048*
C27 0.22996 (9) 0.12298 (7) 0.03865 (9) 0.0467 (3)
H27 0.2418 0.1374 −0.0305 0.056*
C28 0.17703 (9) 0.05188 (7) 0.05675 (10) 0.0479 (3)
H28 0.1523 0.0176 0.0001 0.057*
C29 0.15999 (9) 0.03062 (7) 0.15734 (10) 0.0468 (3)
H29 0.1233 −0.0182 0.1697 0.056*
C30 0.19624 (8) 0.08026 (7) 0.23989 (9) 0.0394 (2)
H30 0.1850 0.0652 0.3090 0.047*
C31 0.06162 (8) 0.33949 (7) 0.15531 (9) 0.0404 (3)
C32 0.09041 (10) 0.35598 (9) 0.05780 (10) 0.0531 (3)
H32 0.1604 0.3465 0.0419 0.064*
C33 0.01505 (12) 0.38679 (10) −0.01674 (11) 0.0679 (4)
H33 0.0339 0.3994 −0.0842 0.082*
C34 −0.08662 (11) 0.39936 (10) 0.00530 (12) 0.0675 (4)
H34 −0.1377 0.4199 −0.0469 0.081*
C35 −0.11407 (10) 0.38220 (9) 0.10278 (13) 0.0616 (4)
H35 −0.1844 0.3908 0.1182 0.074*
C36 −0.03952 (9) 0.35228 (8) 0.17909 (10) 0.0486 (3)
H36 −0.0581 0.3408 0.2470 0.058*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0491 (4) 0.0440 (4) 0.0323 (4) 0.0028 (3) 0.0023 (3) −0.0061 (3)
O2 0.0355 (4) 0.0421 (4) 0.0487 (4) −0.0006 (3) 0.0015 (3) −0.0073 (3)
O3 0.0456 (4) 0.0421 (4) 0.0358 (4) −0.0013 (3) 0.0026 (3) 0.0084 (3)
O4 0.0368 (4) 0.0427 (4) 0.0551 (5) 0.0022 (3) −0.0015 (3) 0.0100 (4)
C1 0.0378 (5) 0.0323 (5) 0.0276 (5) −0.0010 (4) 0.0056 (4) 0.0017 (4)
C2 0.0369 (5) 0.0379 (6) 0.0324 (5) −0.0011 (4) 0.0048 (4) −0.0001 (4)
C3 0.0449 (6) 0.0389 (6) 0.0388 (6) −0.0084 (5) 0.0028 (5) −0.0033 (4)
C4 0.0546 (7) 0.0305 (5) 0.0352 (5) −0.0033 (5) 0.0064 (5) −0.0014 (4)
C5 0.0553 (7) 0.0307 (5) 0.0350 (5) 0.0050 (5) 0.0069 (5) 0.0033 (4)
C6 0.0477 (6) 0.0373 (6) 0.0395 (6) 0.0095 (5) 0.0019 (5) 0.0065 (4)
C7 0.0396 (6) 0.0387 (6) 0.0334 (5) 0.0024 (4) 0.0039 (4) 0.0033 (4)
C8 0.0379 (5) 0.0329 (5) 0.0291 (5) 0.0018 (4) 0.0048 (4) 0.0015 (4)
C9 0.0394 (6) 0.0325 (5) 0.0273 (5) 0.0008 (4) 0.0056 (4) 0.0019 (4)
C10 0.0467 (6) 0.0328 (5) 0.0285 (5) 0.0003 (4) 0.0066 (4) 0.0011 (4)
C11 0.0282 (5) 0.0361 (5) 0.0327 (5) −0.0010 (4) 0.0049 (4) −0.0026 (4)
C12 0.0280 (5) 0.0307 (5) 0.0363 (5) −0.0020 (4) 0.0023 (4) −0.0008 (4)
C13 0.0357 (5) 0.0350 (5) 0.0362 (5) −0.0006 (4) 0.0043 (4) −0.0003 (4)
C14 0.0404 (6) 0.0497 (7) 0.0373 (6) −0.0047 (5) 0.0016 (4) 0.0056 (5)
C15 0.0339 (5) 0.0459 (6) 0.0545 (7) −0.0030 (5) −0.0060 (5) 0.0162 (5)
C16 0.0323 (5) 0.0335 (5) 0.0681 (8) 0.0029 (4) 0.0000 (5) 0.0040 (5)
C17 0.0333 (5) 0.0350 (5) 0.0470 (6) 0.0004 (4) 0.0043 (4) −0.0047 (4)
C18 0.0352 (5) 0.0317 (5) 0.0541 (7) −0.0020 (4) −0.0038 (5) −0.0007 (5)
C19 0.0393 (6) 0.0459 (7) 0.0767 (9) −0.0044 (5) 0.0044 (6) 0.0080 (6)
C20 0.0355 (7) 0.0543 (8) 0.1166 (14) −0.0062 (6) −0.0134 (7) 0.0059 (8)
C21 0.0621 (9) 0.0542 (8) 0.0917 (12) 0.0063 (7) −0.0322 (8) −0.0148 (8)
C22 0.0722 (9) 0.0498 (7) 0.0619 (8) 0.0152 (7) −0.0172 (7) −0.0131 (6)
C23 0.0466 (7) 0.0427 (6) 0.0548 (7) 0.0038 (5) −0.0010 (5) −0.0077 (5)
C24 0.0293 (5) 0.0358 (5) 0.0358 (5) 0.0022 (4) 0.0052 (4) 0.0042 (4)
C25 0.0292 (5) 0.0326 (5) 0.0390 (5) 0.0034 (4) 0.0029 (4) 0.0020 (4)
C26 0.0401 (6) 0.0396 (6) 0.0408 (6) −0.0016 (4) 0.0072 (4) 0.0014 (4)
C27 0.0496 (6) 0.0513 (7) 0.0396 (6) 0.0037 (5) 0.0066 (5) −0.0045 (5)
C28 0.0446 (6) 0.0435 (6) 0.0536 (7) 0.0041 (5) −0.0043 (5) −0.0107 (5)
C29 0.0413 (6) 0.0354 (6) 0.0622 (7) −0.0021 (5) −0.0019 (5) 0.0004 (5)
C30 0.0348 (5) 0.0362 (5) 0.0468 (6) 0.0018 (4) 0.0024 (4) 0.0066 (4)
C31 0.0362 (6) 0.0358 (5) 0.0479 (6) 0.0041 (4) −0.0012 (4) 0.0016 (5)
C32 0.0428 (6) 0.0652 (8) 0.0512 (7) −0.0024 (6) 0.0052 (5) 0.0040 (6)
C33 0.0655 (9) 0.0857 (11) 0.0499 (8) −0.0132 (8) −0.0071 (6) 0.0131 (7)
C34 0.0547 (8) 0.0672 (9) 0.0744 (10) −0.0014 (7) −0.0229 (7) 0.0138 (7)
C35 0.0385 (6) 0.0567 (8) 0.0881 (10) 0.0112 (6) −0.0015 (6) −0.0009 (7)
C36 0.0423 (6) 0.0471 (7) 0.0571 (7) 0.0076 (5) 0.0079 (5) −0.0018 (5)

Geometric parameters (Å, º)

O1—C11 1.2199 (12) C18—C19 1.3774 (17)
O2—C2 1.3808 (13) C18—C23 1.3784 (17)
O2—C18 1.3964 (13) C19—C20 1.394 (2)
O3—C24 1.2181 (12) C19—H19 0.9500
O4—C7 1.3763 (13) C20—C21 1.377 (2)
O4—C31 1.3979 (13) C20—H20 0.9500
C1—C2 1.3786 (14) C21—C22 1.368 (2)
C1—C9 1.4338 (14) C21—H21 0.9500
C1—C11 1.5090 (14) C22—C23 1.3882 (17)
C2—C3 1.4107 (15) C22—H22 0.9500
C3—C4 1.3590 (16) C23—H23 0.9500
C3—H3 0.9500 C24—C25 1.4873 (14)
C4—C10 1.4115 (15) C25—C26 1.3893 (15)
C4—H4 0.9500 C25—C30 1.3967 (15)
C5—C6 1.3566 (16) C26—C27 1.3863 (16)
C5—C10 1.4145 (15) C26—H26 0.9500
C5—H5 0.9500 C27—C28 1.3805 (17)
C6—C7 1.4141 (16) C27—H27 0.9500
C6—H6 0.9500 C28—C29 1.3827 (18)
C7—C8 1.3791 (14) C28—H28 0.9500
C8—C9 1.4343 (14) C29—C30 1.3821 (16)
C8—C24 1.5115 (14) C29—H29 0.9500
C9—C10 1.4286 (15) C30—H30 0.9500
C11—C12 1.4826 (14) C31—C32 1.3736 (17)
C12—C13 1.3889 (14) C31—C36 1.3744 (16)
C12—C17 1.3952 (14) C32—C33 1.3840 (19)
C13—C14 1.3866 (15) C32—H32 0.9500
C13—H13 0.9500 C33—C34 1.374 (2)
C14—C15 1.3803 (17) C33—H33 0.9500
C14—H14 0.9500 C34—C35 1.369 (2)
C15—C16 1.3823 (18) C34—H34 0.9500
C15—H15 0.9500 C35—C36 1.3868 (18)
C16—C17 1.3827 (16) C35—H35 0.9500
C16—H16 0.9500 C36—H36 0.9500
C17—H17 0.9500
C2—O2—C18 117.89 (8) C23—C18—O2 121.33 (10)
C7—O4—C31 118.07 (8) C18—C19—C20 118.69 (14)
C2—C1—C9 119.10 (9) C18—C19—H19 120.7
C2—C1—C11 116.98 (9) C20—C19—H19 120.7
C9—C1—C11 123.23 (9) C21—C20—C19 120.52 (14)
C1—C2—O2 116.98 (9) C21—C20—H20 119.7
C1—C2—C3 122.63 (10) C19—C20—H20 119.7
O2—C2—C3 119.94 (9) C22—C21—C20 119.89 (13)
C4—C3—C2 118.85 (10) C22—C21—H21 120.1
C4—C3—H3 120.6 C20—C21—H21 120.1
C2—C3—H3 120.6 C21—C22—C23 120.64 (15)
C3—C4—C10 121.26 (10) C21—C22—H22 119.7
C3—C4—H4 119.4 C23—C22—H22 119.7
C10—C4—H4 119.4 C18—C23—C22 119.05 (13)
C6—C5—C10 121.86 (10) C18—C23—H23 120.5
C6—C5—H5 119.1 C22—C23—H23 120.5
C10—C5—H5 119.1 O3—C24—C25 121.54 (9)
C5—C6—C7 118.69 (10) O3—C24—C8 118.57 (9)
C5—C6—H6 120.7 C25—C24—C8 119.84 (8)
C7—C6—H6 120.7 C26—C25—C30 119.29 (10)
O4—C7—C8 117.00 (9) C26—C25—C24 121.63 (9)
O4—C7—C6 120.19 (9) C30—C25—C24 119.07 (9)
C8—C7—C6 122.27 (10) C27—C26—C25 119.99 (10)
C7—C8—C9 119.43 (9) C27—C26—H26 120.0
C7—C8—C24 117.21 (9) C25—C26—H26 120.0
C9—C8—C24 122.28 (9) C28—C27—C26 120.40 (11)
C10—C9—C1 117.84 (9) C28—C27—H27 119.8
C10—C9—C8 117.94 (9) C26—C27—H27 119.8
C1—C9—C8 124.22 (9) C27—C28—C29 119.96 (11)
C4—C10—C5 120.05 (10) C27—C28—H28 120.0
C4—C10—C9 120.25 (9) C29—C28—H28 120.0
C5—C10—C9 119.70 (10) C30—C29—C28 120.12 (11)
O1—C11—C12 122.31 (9) C30—C29—H29 119.9
O1—C11—C1 119.17 (9) C28—C29—H29 119.9
C12—C11—C1 118.47 (8) C29—C30—C25 120.24 (10)
C13—C12—C17 119.31 (9) C29—C30—H30 119.9
C13—C12—C11 121.28 (9) C25—C30—H30 119.9
C17—C12—C11 119.41 (9) C32—C31—C36 121.41 (11)
C14—C13—C12 120.04 (10) C32—C31—O4 121.35 (10)
C14—C13—H13 120.0 C36—C31—O4 117.10 (10)
C12—C13—H13 120.0 C31—C32—C33 118.39 (12)
C15—C14—C13 120.18 (11) C31—C32—H32 120.8
C15—C14—H14 119.9 C33—C32—H32 120.8
C13—C14—H14 119.9 C34—C33—C32 121.04 (14)
C14—C15—C16 120.26 (10) C34—C33—H33 119.5
C14—C15—H15 119.9 C32—C33—H33 119.5
C16—C15—H15 119.9 C35—C34—C33 119.78 (12)
C15—C16—C17 119.84 (10) C35—C34—H34 120.1
C15—C16—H16 120.1 C33—C34—H34 120.1
C17—C16—H16 120.1 C34—C35—C36 120.16 (13)
C16—C17—C12 120.36 (10) C34—C35—H35 119.9
C16—C17—H17 119.8 C36—C35—H35 119.9
C12—C17—H17 119.8 C31—C36—C35 119.21 (13)
C19—C18—C23 121.21 (11) C31—C36—H36 120.4
C19—C18—O2 117.33 (11) C35—C36—H36 120.4
C9—C1—C2—O2 −172.98 (8) C11—C12—C13—C14 179.40 (9)
C11—C1—C2—O2 −2.16 (13) C12—C13—C14—C15 0.07 (16)
C9—C1—C2—C3 −0.74 (15) C13—C14—C15—C16 0.44 (16)
C11—C1—C2—C3 170.07 (9) C14—C15—C16—C17 −0.98 (16)
C18—O2—C2—C1 −145.91 (9) C15—C16—C17—C12 1.01 (16)
C18—O2—C2—C3 41.63 (13) C13—C12—C17—C16 −0.51 (15)
C1—C2—C3—C4 −1.54 (16) C11—C12—C17—C16 −179.95 (9)
O2—C2—C3—C4 170.48 (9) C2—O2—C18—C19 −129.66 (11)
C2—C3—C4—C10 2.13 (16) C2—O2—C18—C23 54.45 (14)
C10—C5—C6—C7 2.80 (16) C23—C18—C19—C20 −0.98 (18)
C31—O4—C7—C8 −151.93 (10) O2—C18—C19—C20 −176.87 (11)
C31—O4—C7—C6 36.35 (14) C18—C19—C20—C21 0.7 (2)
C5—C6—C7—O4 170.07 (9) C19—C20—C21—C22 0.2 (2)
C5—C6—C7—C8 −1.19 (16) C20—C21—C22—C23 −0.8 (2)
O4—C7—C8—C9 −173.51 (8) C19—C18—C23—C22 0.36 (18)
C6—C7—C8—C9 −1.98 (15) O2—C18—C23—C22 176.10 (11)
O4—C7—C8—C24 −5.11 (14) C21—C22—C23—C18 0.6 (2)
C6—C7—C8—C24 166.42 (10) C7—C8—C24—O3 −114.72 (11)
C2—C1—C9—C10 2.35 (13) C9—C8—C24—O3 53.32 (14)
C11—C1—C9—C10 −167.86 (9) C7—C8—C24—C25 62.62 (13)
C2—C1—C9—C8 −177.90 (9) C9—C8—C24—C25 −129.33 (10)
C11—C1—C9—C8 11.89 (14) O3—C24—C25—C26 −160.13 (10)
C7—C8—C9—C10 3.46 (14) C8—C24—C25—C26 22.61 (14)
C24—C8—C9—C10 −164.32 (9) O3—C24—C25—C30 18.66 (15)
C7—C8—C9—C1 −176.29 (9) C8—C24—C25—C30 −158.60 (9)
C24—C8—C9—C1 15.92 (14) C30—C25—C26—C27 0.10 (16)
C3—C4—C10—C5 179.91 (10) C24—C25—C26—C27 178.89 (10)
C3—C4—C10—C9 −0.47 (15) C25—C26—C27—C28 0.31 (17)
C6—C5—C10—C4 178.39 (10) C26—C27—C28—C29 −0.23 (18)
C6—C5—C10—C9 −1.23 (15) C27—C28—C29—C30 −0.26 (17)
C1—C9—C10—C4 −1.79 (14) C28—C29—C30—C25 0.68 (17)
C8—C9—C10—C4 178.44 (9) C26—C25—C30—C29 −0.59 (15)
C1—C9—C10—C5 177.84 (8) C24—C25—C30—C29 −179.41 (9)
C8—C9—C10—C5 −1.94 (14) C7—O4—C31—C32 56.41 (15)
C2—C1—C11—O1 −115.66 (11) C7—O4—C31—C36 −127.86 (11)
C9—C1—C11—O1 54.74 (13) C36—C31—C32—C33 0.6 (2)
C2—C1—C11—C12 61.54 (12) O4—C31—C32—C33 176.12 (12)
C9—C1—C11—C12 −128.06 (10) C31—C32—C33—C34 −1.1 (2)
O1—C11—C12—C13 −158.43 (10) C32—C33—C34—C35 0.8 (2)
C1—C11—C12—C13 24.46 (14) C33—C34—C35—C36 0.1 (2)
O1—C11—C12—C17 21.00 (14) C32—C31—C36—C35 0.24 (19)
C1—C11—C12—C17 −156.11 (9) O4—C31—C36—C35 −175.48 (11)
C17—C12—C13—C14 −0.03 (15) C34—C35—C36—C31 −0.6 (2)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C4/C10/C9 and C5–C10 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C14—H14···Cg1i 0.95 2.50 3.4192 (12) 163
C27—H27···Cg2ii 0.95 2.51 3.4002 (12) 155

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  3. Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII Report ORNL-6895. Oak Ridge National Laboratory. Tennessee, USA.
  4. Gvishi, R., Reisfeld, R. & Burshtein, Z. (1993). Chem. Phys. Lett. 213, 338–344.
  5. Higashi, T. (1999). NUMABS Rigaku Corporation, Tokyo, Japan.
  6. Hijikata, D., Sasagawa, K., Yoshiwaka, S., Okamoto, A. & Yonezawa, N. (2012). Acta Cryst. E68, o3246. [DOI] [PMC free article] [PubMed]
  7. Jiang, Y. L., Gao, X. N., Zhou, G. N., Patel, A. & Javer, A. (2010). J. Org. Chem. 75, 324–333. [DOI] [PubMed]
  8. Jiao, C. J., Huang, K. W., Luo, J., Zhang, K., Chi, C. Y. & Wu, J. S. (2009). Org. Lett. 11, 4508–4511. [DOI] [PubMed]
  9. Mei, X. F., Martin, R. M. & Wolf, C. (2006). J. Org. Chem. 71, 2854–2861. [DOI] [PubMed]
  10. Nakaema, K., Watanabe, S., Okamoto, A., Noguchi, K. & Yonezawa, N. (2008). Acta Cryst. E64, o807. [DOI] [PMC free article] [PubMed]
  11. Okamoto, A., Mitsui, R., Oike, H. & Yonezawa, N. (2011). Chem. Lett. 40, 1283–1284.
  12. Okamoto, A. & Yonezawa, N. (2009). Chem. Lett. 38, 914–915.
  13. Okamoto, A., Yoshiwaka, S., Mohri, S., Hijikata, D. & Yonezawa, N. (2014). Eur. Chem. Bull. 3, 829–834.
  14. Oneil, M. P., Niemczyk, M. P., Svec, W. A., Gosztola, D., Gaines, G. L. & Wasielewski, M. R. (1992). Science, 257, 63–65. [DOI] [PubMed]
  15. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  16. Rigaku (2007). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  17. Seo, H.-S., Kim, D. K., Oh, J. D., Shin, E. S. & Choi, J. H. (2013). J. Phys. Chem. C, 117, 4764–4770.
  18. Shao, P., Jia, N., Zhang, S. & Bai, M. (2014). Chem. Commun. 50, 5648–5651. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Shibano, Y., Imahori, H. & Adachi, C. (2009). J. Phys. Chem. C, 113, 15454–15466.
  21. Shinamura, S., Miyazaki, E. & Takiyama, K. (2010). J. Org. Chem. 75, 1228–1234. [DOI] [PubMed]
  22. Wang, B. & Yu, C. (2010). Angew. Chem. Int. Ed. 49, 1485–1488.
  23. Würthner, F. (2004). Chem. Commun. pp. 1564–1579. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814019758/gk2618sup1.cif

e-70-00170-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019758/gk2618Isup2.hkl

e-70-00170-Isup2.hkl (241.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup3.pdf

e-70-00170-Isup3.pdf (252.6KB, pdf)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup4.pdf

e-70-00170-Isup4.pdf (230.1KB, pdf)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup5.pdf

e-70-00170-Isup5.pdf (59.2KB, pdf)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup6.pdf

e-70-00170-Isup6.pdf (361.7KB, pdf)

Supporting information file. DOI: 10.1107/S1600536814019758/gk2618Isup7.cml

CCDC reference: 1022493

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES