Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 13;70(Pt 10):203–206. doi: 10.1107/S1600536814020169

Crystal structures of 4-(pyrimidin-2-yl)piperazin-1-ium chloride and 4-(pyrimidin-2-yl)piperazin-1-ium nitrate

Thammarse S Yamuna a, Jerry P Jasinski b,*, Manpreet Kaur a, Brian J Anderson b, H S Yathirajan a
PMCID: PMC4257175  PMID: 25484652

The title salts, C8H13N4 +·Cl, (I), and C8H13N4 +·NO3 , (II), contain linked pyridinium–piperazine heterocycles. In the crystal of (I), weak N—H⋯Cl inter­actions lead to zigzag chains along [100] while in the crystal of (II), bifurcated N—H⋯(O,O) hydrogen bonds and weak C—H⋯O inter­actions collectively link the components into infinite chains along [100].

Keywords: crystal structure, pyrimidine–piperazine heterocyclic salts, chloride salt, nitrate salt, bifurcated hydrogen bonds

Abstract

The title salts, C8H13N4 +·Cl, (I), and C8H13N4 +·NO3 , (II), contain linked pyridinium–piperazine heterocycles. In both salts, the piperazine ring adopts a chair conformation with protonation at the N atom not linked to the other ring. In the crystal of (I), weak N—H⋯Cl inter­actions are observed, leading to zigzag chains along [100]. In the crystal of (II), both H atoms on the NH2 + group form bifurcated N—H⋯(O,O) hydrogen bonds. Weak C—H⋯O inter­actions are also observed. These bonds collectively link the components into infinite chains along [100].

Chemical context  

Pyrimidine-containing compounds exhibit various biological activities (Goldmann & Stoltefuss, 1991) and related fused heterocycles are unique classes of heterocyclic compounds that exhibit a broad spectrum of biological activities such as anti­cancer (Amin et al., 2009; Pandey et al., 2004), anti­viral (Ibrahim & El-Metwally, 2010), anti­bacterial (Kuyper et al., 1996) and anti-oxidant (Padmaja et al., 2009), anti­depressant (Kim et al., 2010) and possess anti-inflammatory effects (Clark et al., 2007). In addition, several piperazine derivatives have reached the stage of clinical application; among the known drugs that are used to treat anxiety is a pyrimidinylpiperazinyl compound, bu­spirone (trade name BuSpar®) (Tollefson et al., 1991). Our research group has published a number of papers on incorporated heterocyclic ring structures, viz. imatinibium dipicrate (Jasinski et al., 2010), 1-(2-hy­droxy­eth­yl)-4-[3-(2-tri­fluoro­methyl-9H-thioxanthen-9-yl­idene)prop­yl]piperazine-1,4-diium dichloride, which is the di­hydro­chloride salt of flupentixol (Siddegowda et al., 2011a ) and opipramolium fumarate (Siddegowda et al., 2011b ). Other related crystal structures are 4-(pyrimidin-2-yl)piperazin-1-ium (E)-3-carb­oxy­prop-2-enoate (Yamuna et al., 2014a ), flupentixol tartarate and enrofloxacinium oxalate (Yamuna et al., 2014b ,c ). As part of our ongoing studies in this area, we report herein the crystal structures of the title salts, (I) and (II).graphic file with name e-70-00203-scheme1.jpg

Structural commentary  

The structure of (I) and its atom numbering are shown in Fig. 1. It consists of a pyrimidylpiperazine cation joined by the C1/N3 atoms of each unit and a chloride anion. The C1—N3 bond is 1.373 (3) Å long, which compares favorably with similar ionic structures containing this cation [1.369 (3) (Yamuna et al., 2014a ), and 1.36 (6) and 1.37 (1) Å (Ding et al., 2014)]. The N3/C5/C6/N4/C7/C8 piperazine unit adopts a slightly distorted chair conformation with protonation at the N4 nitro­gen atom. The structure of (II) and its atom numbering are shown in Fig. 2. Similarly, it consists of a pyrimidylpiperazine cation joined by the C1/N3 atoms of each unit and a nitrate anion. The C1—N3 bond is 1.369 (3) Å, also in the range of the related structures described above. The N3/C5/C6/N4/C7/C8 piperazine unit also adopts a slightly distorted chair conformation with protonation at the N4 atom.

Figure 1.

Figure 1

ORTEP drawing of C8H13N4 +·Cl, (I), showing 30% probability displacement ellipsoids.

Figure 2.

Figure 2

ORTEP drawing of C8H13N4 +·NO3 , (II), showing 30% probability displacement ellipsoids.

Supra­molecular features  

In the crystal of (I), N4—H4A⋯Cl1 and N4—H4B⋯Cl1 inter­actions are observed between pyrimidylpiperazine cations and chloride anions, forming zigzag chains along [100] (Fig. 3 and Table 1). In the crystal of (II), both of the H atoms on the N4 atom of the pyrimidylpiperazine cation are bifurcated, forming N—H⋯(O,O) hydrogen bonds (Fig. 4 and Table 2). Additional C—H⋯O inter­actions between the pyrimidyl unit and the nitrate anion are present which, in concert with the N—H⋯O hydrogen bonds between the piperazine group and nitrate anions, form infinite chains along [100].

Figure 3.

Figure 3

Mol­ecular packing for C8H13N4 +·Cl, (I), viewed along the b axis. Dashed lines indicate N—H⋯Cl inter­actions forming zigzag chains along the a axis (see Table 1 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯Cl1 0.91 2.21 3.102 (2) 167
N4—H4B⋯Cl1i 0.91 2.21 3.114 (2) 175

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

Mol­ecular packing for C8H13N4 +·NO3 , (II), viewed along the c axis. Dashed lines indicate N—H⋯O hydrogen bonds and additional C—H⋯O inter­actions forming infinite chains along [100] (see Table 2 for details). H atoms not involved in hydrogen bonding have been omitted for clarity.

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯O2i 0.91 1.92 2.829 (3) 177
N4—H4A⋯O3i 0.91 2.52 3.138 (3) 126
N4—H4B⋯O1 0.91 2.35 3.197 (3) 155
N4—H4B⋯O2 0.91 2.10 2.900 (3) 146
C3—H3⋯O1ii 0.95 2.46 3.240 (3) 140
C4—H4⋯O2iii 0.95 2.51 3.291 (3) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.35, last update May 2014: Allen 2002) revealed only three structures containing the 4-(pyrimidin-2-yl)piperazin-1-ium cation similar to the structures reported here. These include the salts of 4-(pyrimidin-2-yl)piperazin-1-ium 3-carb­oxy­prop-2-enoate (Yamuna et al. 2014a ), 4-(pyrimidin-2-yl)piperazin-1-ium hydrogen d-tartrate monohydrate (Ding et al., 2014) and 4-(pyrimidin-2-yl)piperazin-1-ium hydrogen l-tartrate monohydrate (Ding et al. 2014). The 3-carb­oxy­prop-2-enoate complex crystallizes in space group P21/c while the two hydrogen (D and L)-tartrate monohydrate salts both crystallize in P212121. In comparison, title salt (I) crystallizes in P212121 while (II) crystallizes in space group P21/c. In addition, as a related observation, 109 structures containing the pyrimidine–piperazine unit were also identified in this search. Some of these include, uniquely, the 4-(pyrimidin-2-yl)piperazin-1-yl unit itself. These include 1-[4-(pyrimidin-2-yl)piperazin-1-yl]ethanone, (1-methyl-1H-pyrrol-2-yl)[4-(pyrimidin-2-yl)piperazin-1-yl]methanone, [4-(pyrimidin-2-yl)piperazin-1-yl](2-thien­yl)methanone, (4-fluoro­phen­yl)[4-(pyrimidin-2-yl)piperazin-1-yl]methanone (Spencer et al., 2011), (E)-1-phenyl-3-[4-(pyrimidin-2-yl)piperazin-1-yl]propan-1-one oxime (Kolasa et al., 2006), N-(4-chloro­phen­yl)-4-(pyrimidin-2-yl)piperazine-1-carboxamide (Li, 2011) and 6-{3-[4-(pyrimidin-2-yl)piperazin-1-yl]prop­yl}-2,3-di­hydro-5H-[1,4]dithiino[2,3-c]pyrrole-5,7(6H)-dione (Bielenica et al., 2011).

Synthesis and crystallization  

For the preparation of title salt (I), a mixture of 1-(pyrimidin-2-yl)piperazine (0.2 g) and concentrated hydro­chloric acid (5 ml) was stirred well over a magnetic stirrer at room temperature for 10 min and then warmed at 313 K for another 10 min. A white precipitate was obtained, which was dried in the open air overnight and then dissolved in hot dimethyl sulfoxide solvent. After few days, colourless blocks were obtained on slow evaporation (m.p. above 563 K).

For the preparation of title salt (II), a mixture of 1-(pyrim­idin-2-yl)piperazine, from Sigma–Aldrich (0.2 g), and concentrated nitric acid (5 ml) was stirred well over a magnetic stirrer at room temperature for 10 min. A white precipitate was obtained immediately, which was dried in the open air overnight and then dissolved in water. After a few days, colourless blocks were obtained on slow evaporation (m.p. 463–470 K).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. In both (I) and (II), all of the H atoms were placed in their calculated positions and then refined using a riding model with C—H bond lengths of 0.93 (CH) or 0.97 Å (CH2) and N—H bond lengths of 0.97 Å. Isotropic displacement parameters for these atoms were set at 1.2U eq(CH,CH2,NH).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C8H13N4 +·Cl C8H13N4 +·NO3
M r 200.67 227.23
Crystal system, space group Orthorhombic, P212121 Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 6.84764 (17), 7.27667 (18), 19.1751 (5) 10.5272 (6), 7.2230 (3), 14.1575 (7)
α, β, γ (°) 90, 90, 90 90, 107.341 (6), 90
V3) 955.46 (4) 1027.58 (9)
Z 4 4
Radiation type Cu Kα Cu Kα
μ (mm−1) 3.21 0.98
Crystal size (mm) 0.26 × 0.14 × 0.08 0.22 × 0.16 × 0.06
 
Data collection
Diffractometer Agilent Agilent Eos Gemini Agilent Agilent Eos Gemini
Absorption correction Multi-scan (CrysAlis RED; Agilent, 2012) Multi-scan (CrysAlis RED; Agilent, 2012)
T min, T max 0.417, 1.000 0.727, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 5514, 1841, 1761 6218, 1960, 1752
R int 0.045 0.040
(sin θ/λ)max−1) 0.615 0.613
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.035, 0.091, 1.08 0.058, 0.163, 1.10
No. of reflections 1841 1960
No. of parameters 119 146
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.23, −0.20 0.42, −0.25
Absolute structure Flack x determined using 687 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al. (2013)
Absolute structure parameter 0.056 (15)

Computer programs: CrysAlis PRO and CrysAlis RED (Agilent, 2012), SUPERFLIP (Palatinus & Chapuis, 2007), SHELXL2012 (Sheldrick, 2008) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S1600536814020169/hb7279sup1.cif

e-70-00203-sup1.cif (36.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020169/hb7279Isup2.hkl

e-70-00203-Isup2.hkl (101.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S1600536814020169/hb7279IIsup3.hkl

e-70-00203-IIsup3.hkl (107.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814020169/hb7279Isup4.cml

Supporting information file. DOI: 10.1107/S1600536814020169/hb7279IIsup5.cml

CCDC references: 1023201, 1023202

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani’s Science College for Women, Mysore, for giving permission to undertake research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

supplementary crystallographic information

Crystal data

C8H13N4+·NO3 F(000) = 480
Mr = 227.23 Dx = 1.469 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54184 Å
a = 10.5272 (6) Å Cell parameters from 2763 reflections
b = 7.2230 (3) Å θ = 6.2–71.4°
c = 14.1575 (7) Å µ = 0.98 mm1
β = 107.341 (6)° T = 173 K
V = 1027.58 (9) Å3 Irregular, colourless
Z = 4 0.22 × 0.16 × 0.06 mm

Data collection

Agilent Agilent Eos Gemini diffractometer 1960 independent reflections
Radiation source: Cu Kα 1752 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1 Rint = 0.040
ω scans θmax = 71.0°, θmin = 4.4°
Absorption correction: multi-scan (CrysAlis RED; Agilent, 2012) h = −9→12
Tmin = 0.727, Tmax = 1.000 k = −8→8
6218 measured reflections l = −17→16

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.058 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.9595P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163 (Δ/σ)max < 0.001
S = 1.10 Δρmax = 0.42 e Å3
1960 reflections Δρmin = −0.25 e Å3
146 parameters Extinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0099 (14)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4119 (2) 0.6964 (4) 0.41222 (17) 0.0615 (7)
O2 0.50951 (18) 0.6257 (2) 0.30424 (14) 0.0381 (5)
O3 0.55020 (17) 0.8884 (2) 0.37996 (13) 0.0323 (5)
N5 0.49103 (17) 0.7390 (3) 0.36677 (13) 0.0238 (4)
N1 0.00592 (19) 0.2396 (3) 0.48106 (14) 0.0291 (5)
N2 −0.11846 (18) 0.3821 (3) 0.32856 (15) 0.0273 (5)
N3 0.10930 (18) 0.3372 (3) 0.36702 (14) 0.0268 (5)
N4 0.33344 (18) 0.3134 (3) 0.29632 (15) 0.0278 (5)
H4A 0.3814 0.2536 0.2617 0.033*
H4B 0.3777 0.4191 0.3216 0.033*
C1 −0.0049 (2) 0.3204 (3) 0.39365 (16) 0.0220 (5)
C2 −0.1085 (3) 0.2126 (3) 0.50188 (19) 0.0346 (6)
H2 −0.1054 0.1544 0.5627 0.042*
C3 −0.2307 (2) 0.2647 (4) 0.4398 (2) 0.0362 (6)
H3 −0.3111 0.2420 0.4553 0.043*
C4 −0.2290 (2) 0.3519 (3) 0.3537 (2) 0.0329 (6)
H4 −0.3113 0.3927 0.3097 0.039*
C5 0.2387 (2) 0.2876 (4) 0.43489 (16) 0.0282 (5)
H5A 0.2266 0.2035 0.4867 0.034*
H5B 0.2848 0.4005 0.4676 0.034*
C6 0.3222 (2) 0.1932 (3) 0.37877 (17) 0.0270 (5)
H6A 0.4121 0.1674 0.4242 0.032*
H6B 0.2808 0.0738 0.3519 0.032*
C7 0.1993 (2) 0.3620 (3) 0.22801 (17) 0.0277 (5)
H7A 0.1537 0.2483 0.1960 0.033*
H7B 0.2095 0.4461 0.1755 0.033*
C8 0.1166 (2) 0.4552 (3) 0.28517 (17) 0.0276 (5)
H8A 0.1571 0.5756 0.3112 0.033*
H8B 0.0258 0.4789 0.2407 0.033*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0614 (14) 0.0836 (17) 0.0562 (13) −0.0362 (13) 0.0431 (11) −0.0184 (12)
O2 0.0436 (10) 0.0314 (10) 0.0460 (11) −0.0072 (8) 0.0238 (8) −0.0153 (8)
O3 0.0379 (9) 0.0249 (9) 0.0353 (9) −0.0045 (7) 0.0129 (7) −0.0021 (7)
N5 0.0175 (9) 0.0301 (10) 0.0240 (9) −0.0015 (7) 0.0064 (7) 0.0012 (8)
N1 0.0292 (10) 0.0327 (11) 0.0282 (10) 0.0020 (8) 0.0126 (8) 0.0038 (8)
N2 0.0210 (9) 0.0270 (10) 0.0331 (11) 0.0037 (7) 0.0071 (8) 0.0001 (8)
N3 0.0189 (9) 0.0380 (11) 0.0243 (9) 0.0068 (8) 0.0075 (7) 0.0087 (8)
N4 0.0231 (9) 0.0278 (10) 0.0368 (11) −0.0042 (8) 0.0153 (8) −0.0045 (8)
C1 0.0207 (10) 0.0220 (10) 0.0246 (11) 0.0023 (8) 0.0087 (8) −0.0035 (8)
C2 0.0416 (14) 0.0328 (13) 0.0372 (13) −0.0021 (11) 0.0235 (11) −0.0014 (10)
C3 0.0300 (13) 0.0340 (13) 0.0525 (15) −0.0049 (10) 0.0247 (11) −0.0130 (12)
C4 0.0224 (11) 0.0304 (12) 0.0456 (15) 0.0020 (9) 0.0098 (10) −0.0063 (11)
C5 0.0208 (11) 0.0395 (13) 0.0234 (11) 0.0087 (9) 0.0054 (9) 0.0023 (9)
C6 0.0219 (10) 0.0296 (12) 0.0293 (11) 0.0038 (9) 0.0074 (9) 0.0014 (9)
C7 0.0291 (11) 0.0305 (12) 0.0255 (11) −0.0013 (9) 0.0111 (9) 0.0039 (9)
C8 0.0267 (11) 0.0290 (12) 0.0283 (11) 0.0033 (9) 0.0098 (9) 0.0080 (9)

Geometric parameters (Å, º)

O1—N5 1.233 (3) C2—C3 1.376 (4)
O2—N5 1.263 (2) C3—H3 0.9500
O3—N5 1.232 (2) C3—C4 1.377 (4)
N1—C1 1.342 (3) C4—H4 0.9500
N1—C2 1.337 (3) C5—H5A 0.9900
N2—C1 1.349 (3) C5—H5B 0.9900
N2—C4 1.333 (3) C5—C6 1.512 (3)
N3—C1 1.369 (3) C6—H6A 0.9900
N3—C5 1.459 (3) C6—H6B 0.9900
N3—C8 1.459 (3) C7—H7A 0.9900
N4—H4A 0.9100 C7—H7B 0.9900
N4—H4B 0.9100 C7—C8 1.512 (3)
N4—C6 1.487 (3) C8—H8A 0.9900
N4—C7 1.496 (3) C8—H8B 0.9900
C2—H2 0.9500
O1—N5—O2 118.2 (2) C3—C4—H4 118.2
O3—N5—O1 121.9 (2) N3—C5—H5A 109.7
O3—N5—O2 119.82 (18) N3—C5—H5B 109.7
C2—N1—C1 115.6 (2) N3—C5—C6 109.86 (18)
C4—N2—C1 115.5 (2) H5A—C5—H5B 108.2
C1—N3—C5 121.45 (19) C6—C5—H5A 109.7
C1—N3—C8 121.92 (18) C6—C5—H5B 109.7
C5—N3—C8 114.01 (18) N4—C6—C5 110.12 (18)
H4A—N4—H4B 108.0 N4—C6—H6A 109.6
C6—N4—H4A 109.4 N4—C6—H6B 109.6
C6—N4—H4B 109.4 C5—C6—H6A 109.6
C6—N4—C7 111.33 (17) C5—C6—H6B 109.6
C7—N4—H4A 109.4 H6A—C6—H6B 108.2
C7—N4—H4B 109.4 N4—C7—H7A 109.7
N1—C1—N2 126.0 (2) N4—C7—H7B 109.7
N1—C1—N3 116.88 (19) N4—C7—C8 109.99 (18)
N2—C1—N3 117.06 (19) H7A—C7—H7B 108.2
N1—C2—H2 118.3 C8—C7—H7A 109.7
N1—C2—C3 123.4 (2) C8—C7—H7B 109.7
C3—C2—H2 118.3 N3—C8—C7 109.85 (18)
C2—C3—H3 122.1 N3—C8—H8A 109.7
C2—C3—C4 115.8 (2) N3—C8—H8B 109.7
C4—C3—H3 122.1 C7—C8—H8A 109.7
N2—C4—C3 123.6 (2) C7—C8—H8B 109.7
N2—C4—H4 118.2 H8A—C8—H8B 108.2
N1—C2—C3—C4 −1.3 (4) C4—N2—C1—N1 −2.7 (3)
N3—C5—C6—N4 55.5 (3) C4—N2—C1—N3 175.4 (2)
N4—C7—C8—N3 −55.3 (2) C5—N3—C1—N1 −6.3 (3)
C1—N1—C2—C3 −0.7 (4) C5—N3—C1—N2 175.4 (2)
C1—N2—C4—C3 0.2 (3) C5—N3—C8—C7 56.9 (3)
C1—N3—C5—C6 141.1 (2) C6—N4—C7—C8 56.9 (2)
C1—N3—C8—C7 −141.2 (2) C7—N4—C6—C5 −57.0 (2)
C2—N1—C1—N2 2.9 (3) C8—N3—C1—N1 −166.9 (2)
C2—N1—C1—N3 −175.2 (2) C8—N3—C1—N2 14.8 (3)
C2—C3—C4—N2 1.6 (4) C8—N3—C5—C6 −57.0 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N4—H4A···O2i 0.91 1.92 2.829 (3) 177
N4—H4A···O3i 0.91 2.52 3.138 (3) 126
N4—H4B···O1 0.91 2.35 3.197 (3) 155
N4—H4B···O2 0.91 2.10 2.900 (3) 146
C3—H3···O1ii 0.95 2.46 3.240 (3) 140
C4—H4···O2iii 0.95 2.51 3.291 (3) 139

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) −x, −y+1, −z+1; (iii) x−1, y, z.

References

  1. Agilent (2012). CrysAlis PRO and CrysAlis RED Agilent Technologies, Yarnton, England.
  2. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  3. Amin, K. M., Hanna, M. M., Abo-Youssef, H. E., Riham, F. & George, R. F. (2009). Eur. J. Med. Chem. 44, 4572–4584. [DOI] [PubMed]
  4. Bielenica, A., Kossakowski, J., Struga, M., Dybala, I., La Colla, P., Tamburini, E. & Loddo, R. (2011). Med. Chem. Res. 20, 1411–1420.
  5. Clark, M. P., George, K. M. & Bookland, R. G. (2007). Bioorg. Med. Chem. Lett. 17, 1250–1253. [DOI] [PubMed]
  6. Ding, X.-H., Li, Y.-H., Wang, S. & Huang, W. (2014). J. Mol. Struct. 1062, 61–67.
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Goldmann, S. & Stoltefuss, J. (1991). Angew. Chem. Int. Ed. Engl. 30, 1559–1578.
  9. Ibrahim, D. A. & El-Metwally, A. M. (2010). Eur. J. Med. Chem. 45, 1158–1166. [DOI] [PubMed]
  10. Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010). Acta Cryst. E66, o411–o412. [DOI] [PMC free article] [PubMed]
  11. Kim, J. Y., Kim, D. & Kang, S. Y. (2010). Bioorg. Med. Chem. Lett. 20, 6439–6442. [DOI] [PubMed]
  12. Kolasa, T., et al. (2006). J. Med. Chem. 49, 5093–5109. [DOI] [PubMed]
  13. Kuyper, L. F., Garvey, J. M., Baccanari, D. P., Champness, J. N., Stammers, D. K. & Beddell, C. R. (1996). Bioorg. Med. Chem. Lett. 4, 593–602. [DOI] [PubMed]
  14. Li, Y.-F. (2011). Acta Cryst. E67, o2575. [DOI] [PMC free article] [PubMed]
  15. Padmaja, A., Payani, T., Reddy, G. D., Dinneswara Reddy, G. & Padmavathi, V. (2009). Eur. J. Med. Chem. 44, 4557–4566. [DOI] [PubMed]
  16. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  17. Pandey, S., Suryawanshi, S. N., Gupta, S. & Srivastava, V. M. L. (2004). Eur. J. Med. Chem. 39, 969–973. [DOI] [PubMed]
  18. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  20. Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2079–o2080. [DOI] [PMC free article] [PubMed]
  21. Siddegowda, M. S., Jasinski, J. P., Golen, J. A., Yathirajan, H. S. & Swamy, M. T. (2011b). Acta Cryst. E67, o2296. [DOI] [PMC free article] [PubMed]
  22. Spencer, J., Patel, H., Callear, S. K., Coles, S. J. & Deadman, J. J. (2011). Tetrahedron Lett., 52, 5905–5909.
  23. Tollefson, G. D., Lancaster, S. P. & Montague-Clouse, J. (1991). Psychopharmacol. Bull. 27, 163–170. [PubMed]
  24. Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014b). Acta Cryst. E70, o206–o207. [DOI] [PMC free article] [PubMed]
  25. Yamuna, T. S., Kaur, M., Anderson, B. J., Jasinski, J. P. & Yathirajan, H. S. (2014c). Acta Cryst. E70, o200–o201. [DOI] [PMC free article] [PubMed]
  26. Yamuna, T. S., Kaur, M., Jasinski, J. P. & Yathirajan, H. S. (2014a). Acta Cryst. E70, o702–o703. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S1600536814020169/hb7279sup1.cif

e-70-00203-sup1.cif (36.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020169/hb7279Isup2.hkl

e-70-00203-Isup2.hkl (101.4KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S1600536814020169/hb7279IIsup3.hkl

e-70-00203-IIsup3.hkl (107.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814020169/hb7279Isup4.cml

Supporting information file. DOI: 10.1107/S1600536814020169/hb7279IIsup5.cml

CCDC references: 1023201, 1023202

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES