Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Mar;67(3):525–529. doi: 10.1104/pp.67.3.525

Measurement of Metabolites Associated with Nonaqueously Isolated Starch Granules from Immature Zea mays L. Endosperm 1

Ting-Ting Y Liu 1, Jack C Shannon 1
PMCID: PMC425718  PMID: 16661707

Abstract

Starch granules with associated metabolites were isolated from immature Zea mays L. endosperm by a nonaqueous procedure using glycerol and 3-chloro-1,2-propanediol. The soluble extract of the granule preparation contained varying amounts of neutral sugars, inorganic phosphate, hexose and triose phosphates, organic acids, adenosine and uridine nucleotides, sugar nucleotides, and amino acids. Based on the metabolites present and on information about translocators in chloroplast membranes, which function in transferring metabolites from the chloroplast stroma into the cytoplasm, it is suggested that sucrose is degraded in the cytoplasm, via glycolysis, to triose phosphates which cross the amyloplast membrane by means of a phosphate translocator. It is further postulated that hexose phosphates and sugars are produced from the triose phosphates in the amyloplast stroma by gluconeogenesis with starch being formed from glucose 1-phosphate via pyrophosphorylase and starch synthase enzymes. The glucose 1-phosphate to inorganic phosphate ratio in the granule preparation was such that starch synthesis by phosphorylase is highly unlikely in maize endosperm.

Full text

PDF
525

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyer C. D., Preiss J. Properties of Citrate-stimulated Starch Synthesis Catalyzed by Starch Synthase I of Developing Maize Kernels. Plant Physiol. 1979 Dec;64(6):1039–1042. doi: 10.1104/pp.64.6.1039. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Dickinson D. B., Preiss J. ADP glucose pyrophosphorylase from maize endosperm. Arch Biochem Biophys. 1969 Mar;130(1):119–128. doi: 10.1016/0003-9861(69)90017-4. [DOI] [PubMed] [Google Scholar]
  3. Ghosh H. P., Preiss J. Adenosine diphosphate glucose pyrophosphorylase. A regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. J Biol Chem. 1966 Oct 10;241(19):4491–4504. [PubMed] [Google Scholar]
  4. Heldt H. W., Rapley L. Specific transport of inorganic phosphate, 3-phosphoglycerate and dihydroxyacetonephosphate, and of dicarboxylates across the inner membrane of spinach chloroplasts. FEBS Lett. 1970 Oct 5;10(3):143–148. doi: 10.1016/0014-5793(70)80438-0. [DOI] [PubMed] [Google Scholar]
  5. Kirsch W. M., Leitner J. W., Gainey M., Schulz D., Lasher R., Nakane P. Bulk isolation in nonaqueous media of nuclei from lyophilized cells. Science. 1970 Jun 26;168(3939):1592–1595. doi: 10.1126/science.168.3939.1592. [DOI] [PubMed] [Google Scholar]
  6. Levi C., Preiss J. Amylopectin degradation in pea chloroplast extracts. Plant Physiol. 1978 Feb;61(2):218–220. doi: 10.1104/pp.61.2.218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Liu T. T., Shannon J. C. A Nonaqueous Procedure for Isolating Starch Granules with Associated Metabolites from Maize (Zea mays L.) Endosperm. Plant Physiol. 1981 Mar;67(3):518–524. doi: 10.1104/pp.67.3.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Ozbun J. L., Hawker J. S., Preiss J. Adenosine diphosphoglucose-starch glucosyltransferases from developing kernels of waxy maize. Plant Physiol. 1971 Dec;48(6):765–769. doi: 10.1104/pp.48.6.765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Shannon J. C. Carbon-14 Distribution in Carbohydrates of Immature Zea mays. Kernels Following CO(2) Treatment of Intact Plants. Plant Physiol. 1968 Aug;43(8):1215–1220. doi: 10.1104/pp.43.8.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Shannon J. C., Creech R. G. Genetics of storage polyglucosides in Zea mays L. Ann N Y Acad Sci. 1973 Feb 9;210:279–289. doi: 10.1111/j.1749-6632.1973.tb47579.x. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES