Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 24;70(Pt 10):238–241. doi: 10.1107/S1600536814020674

Crystal structure of 3-{1′-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]ferrocenyl}-4-bromo­thio­phene

Elisabeth A Poppitz a, Marcus Korb a, Heinrich Lang a,*
PMCID: PMC4257188  PMID: 25484662

The first five-membered group-VI 3-ferrocenyl heterocycle bearing a further aromatic substituent at the 1′ position of the ferrocene backbone is reported.

Keywords: crystal structure, ferrocenyl backbone, thio­phene, Negishi cross-coupling

Abstract

The mol­ecular structure of the title compound, [Fe(C9H6BrS)(C13H7F6)], consists of a ferrocene backbone with a bis­(tri­fluoro­meth­yl)phenyl group at one cyclo­penta­dienyl ring and a thio­phene heterocycle at the other cyclo­penta­dienyl ring. The latter is disordered over two sets of sites in a 0.6:0.4 ratio. In the crystal structure, intra­molecular π–π inter­actions between the thienyl and the phenyl substituent [centroid–centroid distance 3.695 (4) Å] and additional weak T-shaped π–π inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl ring [4.688 (6) Å] consolidate the crystal packing.

Chemical context  

The use of ferrocenyl (Fc) functionalized thio­phenes as redox-active metal-based monomers offers the possibility of designing new conductive materials, such as polymers and mol­ecular wires (see, for example: MacDiarmid et al., 2001; Barsch et al., 1994; Heeger et al., 2001; Speck et al., 2012; Pfaff et al., 2013; Hildebrandt et al., 2011; Hildebrandt & Lang, 2013; Wolf, 2001; Zhu & Wolf, 2000; Zotti et al., 1995). The electrochemical inter­action between the thio­phene donor and the ferrocenyl acceptor with different conjugated 2-Fc—C C-(5-cC4H2S)n(cC4H3S) (n = 0, 1, 2), 2-Fc—C C-[5-(3,4-OCH2CH2O)(cC4S)]n(3,4-OCH2CH2O)cC4HS (n = 0, 1, 2) and 2,5-(Fc—C C)2-(cC4H2S)n (n = 1, 2, 3), 2,5-(Fc—C C)2-[(3,4-OCH2CH2O)(cC4S)]n (n = 1, 2, 3) were studied by Zhu & Wolf (1999). The results of the spectro- and electrochemical measurements showed an inter­esting insight into the conductibility, which may lead to an improvement of sensor technology using conductive polymers. Electron-withdrawing and donating groups on the ferrocenyl or the thienyl moieties have been used to modify the charge-transfer properties. This has been shown for a series of different 2,5-diferrocenyl thio­phenes (Speck et al., 2014). In continuation of this work, we present herein the synthesis and crystal structure of 3-{1′-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]-1,1′-ferrocenedi­yl}-4-bromo­thio­phene, [Fe((C9H6BrS)C13H7F6)], (I). The synthesis of this compound was realized using typical Negishi C,C-cross-coupling reaction conditions.graphic file with name e-70-00238-scheme1.jpg

Structural commentary  

The title compound contains one mol­ecule in the asymmetric unit with an intra­molecular π–π distance between the centroids (D) of the thio­phene and the phenyl substituents (Fig. 1) of 3.695 (4) Å (Table 1) (Sinnokrot et al., 2002) favoured by the nearly coplanar cylo­penta­dienyl rings [D(C5H4)—Fe—D(C5H4): 175.84 (3) and 175.66 (3)°] in the ferrocenyl backbone. For the disordered part (′-labeled, see: Refinement and additional Figure in the supporting information), however, the distance of 3.871 (6) Å is too long for a π–π inter­action caused by the increased torsion angle between the substituents in the 1- and 1′-position [9.2 (4)° for the main part; 16.7 (5)° for the disordered part]. The mean planes of the cyclo­penta­dienyl rings and the bonded aromatic rings are almost coplanar with each other [C6H3—C5H4, 16.2 (3)°; C4H3S—C5H4, 17.3 (6) (main part) and 16.9 (10)° (other part)] and thus, a nearly parallel arranged stacking between the phenyl and the thio­phene rings [8.9 (3)° for the main part and 9.7 (6)° for the other part] is realized.

Figure 1.

Figure 1

The mol­ecular structure of (I) showing short intra­molecular π–π inter­actions between the thienyl and the phenyl substituents, with displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms, the minor disordered part of the structure and further π–π inter­actions have been omitted for clarity.

Table 1. T-shaped π–π inter­action geometries (Å, °) for (I) .

DD DD α(i)
C6H3(CF3)2⋯C4H2BrS(ii) 3.695 (4) 8.8 (3)
C4H2BrS⋯C5H4 (iii) 4.943 (4) 88.3 (3)
C4H2BrS(iv)⋯C5H4 (iii) 4.688 (6) 86.8 (5)

D denotes the centroids of the respective aromatic rings. (i) The angle α is described by the inter­section of the involved aromatics. (ii) Intra­molecular inter­action. (iii) Inter­molecular inter­action with symmetry code: –x + Inline graphic, y – Inline graphic, –z + Inline graphic. (iv): Disordered (′-labeled) part.

Supra­molecular features  

Inter­molecular T-shaped π–π inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl rings (Fig. 2) are observed. The disordered part (labeled with ′) exhibits a stronger inter­action of 4.688 (6) Å; in contrast, it is 4.943 (4) Å for the other disordered part, which is rather weak (Table 1).

Figure 2.

Figure 2

Inter­molecular T-shaped π–π inter­actions between the thienyl and the phenyl-substituted cyclo­penta­dienyl rings, with displacement ellipsoids drawn at the 50% probability level. All hydrogen atoms, the minor disordered part of the structure and further π–π distances have been omitted for clarity. [Symmetry code: (A) − x + Inline graphic, y − Inline graphic, −z + Inline graphic.]

Database survey  

The only reported examples of 3-ferrocenyl-substituted five-membered group-VI heterocycles (Speck et al., 2012; Hildebrandt et al., 2011; Claus et al., 2011) exhibit a similar co-planarity between non-sterically hindered thio­phenes and the cyclo­penta­dienyl rings [10.4 (2)°, Speck et al., 2012; −6.4 (4)°, Claus et al., 2011], but a high distortion for thio­phenes bearing further ortho-substituents [40.1 (9) to 56.6 (9)°, Speck et al., 2012; 70.9 (3) and 42.7 (3)°, Hildebrandt et al., 2011]. The conformations of reported ferrocene derivatives bearing aromatic substituents in the 1 and 1′ positions range from anti­periplanar [180.0 (4), plane twisting 13.99 (15)°, Braga et al., 2003] and anti­clinal [147.02 (14), plane twisting 33.7 (9)°, Deck et al., 2004] to synperiplanar [0.3 (3)°, Deck et al., 2000; −0.5 (9)°, Blanchard et al., 2000; 4.09 (19)°, Gallagher et al., 2010; −6.5 (6)°, Hursthouse et al., 2003; 14.4 (8)°, Foxman et al., 1991] with plane twists from 12.8 (9) (Gallagher et al., 2010) to 82.8 (4)° (Foxman et al., 1993). Furthermore, for all synperiplanar examples, intra­molecular inter­actions between the aromatic planes are present with distances smaller than 3.42 Å (Hursthouse et al., 2003).

Synthesis and crystallization  

1-Bromo-1′-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)ferrocene was prepared according to synthetic methodologies reported by Speck et al. (2014). The synthesis of ferrocenyl thio­phene (I) was realized using typical Negishi C,C-cross-coupling conditions by reacting 1-bromo-1′-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)ferrocene with 3,4-di­bromo­thio­phene (Negishi et al., 1977).

Synthesis of (I): For the Negishi C,C-cross-coupling reaction, 1-bromo-1′-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)ferrocene (1.0 g, 2.10 mmol) was dissolved in 50 ml of tetra­hydro­furan (THF) and 1.2 equivalents (0.9 ml, 2.52 mmol) of a 2.5 M solution of n-butyl­lithium in n-hexane were added dropwise at 193 K. After 1 h of stirring at this temperature, 1.2 equivalents (0.71 g, 2.52 mmol) of [ZnCl2·2THF] were added in a single portion. The reaction was kept for 10 min at this temperature and was then allowed to warm to 273 K during an additional hour. Afterwards, 0.25 mol% of [P(t-C4H9)2C(CH3)2CH2Pd(μ-Cl)]2 and 1.5 equivalents (0.76 g, 3.15 mmol) of 3,4-di­bromo­thio­phene were added in a single portion. The resulting mixture was stirred for 10 h at 323 K. After evaporation of all volatiles, the crude product was dissolved in 30 ml of di­chloro­methane and was washed twice with 50 ml portions of water. The organic phase was dried over MgSO4 and the solvent was removed with a rotary evaporator. The remaining orange solid was purified by column chromatography on silica gel using a n-hexa­ne/diethyl ether 1/1 (v/v) mixture. Red crystals of (I) were obtained by slow evaporation of a saturated n-hexa­ne/methanol 1/5 (v/v) solution at ambient temperature. Yield: 660 mg (1.18 mmol, 56% based on 1-bromo-1′-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)ferrocene). IR (KBr, cm−1): ν = 1275 (s, C—F), 1504 (s, C=C), 1615 (m, C=C) 2848, 3095 (w, C—H). 1H NMR (500.3 MHz, CDCl3, 298 K, ppm): δ = 7.61 (s, 3H, C8H3F6), 7.09 (d, 1H, J H,H = 3.6 Hz, C4H2S), 6.90 (d, 1H, J H,H = 3.6 Hz, C4H2S), 4.73 (pt, 2H, J H,H = 1.9 Hz, C5H4), 4.69 (pt, 2H, J H,H = 1.9 Hz, C5H4), 4.46 (pt, 2H, J H,H = 1.9 Hz, C5H4), 4.25 (pt, 2H, J H,H = 1.9 Hz, C5H4). 13C{1H} NMR (125.7 MHz, CDCl3, 298 K, ppm): δ = 140.64 (s, Ci-C6H3), 135.56 (s, Ci-C4H2S), 131.54 (q, J C,F = 33 Hz, Ci-C6H3), 125,63 (m, C6H3), 124.88 (s, C4H2S), 123.50 (q, J C,F =273 Hz, CF3), 121.12 (s, C4H2S), 119.05 (m, C6H3), 109.78 (s, Ci-C4H2S), 82.98 (s, Ci-C5H4), 82.01 (s, Ci-C5H4), 71.40 (s, C5H4), 70.17 (s, C5H4), 68.81 (s, C5H4), 68.20 (s, C5H4). HRMS (ESI–TOF, M +): C23H16F6FeSO: m/z = 557.9291 (calc. 557.9171).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. C-bonded hydrogen atoms were placed in calculated positions and constrained to ride on their parent atoms with U iso(H) = 1.2U eq(C) and a C—H distance of 0.93 Å for the aromatic protons. The thienyl and the attached cyclo­penta­dienyl ring were refined as disordered over two sets of sites with occupancies of 0.6 and 0.4. The spatial proximity of the sulfur and the bromine atom of the disordered part required DFIX [C1—C2 1.51 (2), C2—C3 1.33 (2), C3—C4 1.35 (2) S1—C1 1.62 (2), S1—C4 1.82 (2), C3—Br1 1.94 (2) Å) and DANG (C4—Br1 2.75 (4), C1—C3 2.27 (4), C2—C4 2.38 (4), C4—Br1 2.75 (4) Å] instructions, which were used for the minor disordered part (′-labeled). For both disordered parts, some anisotropic displacement ellipsoids were rather elongated and hence SIMU/ISOR restraints (McArdle, 1995; Sheldrick, 2008) were also applied. Both cyclo­penta­dienyl rings were generated by using the AFIX 56 command. For atom pair C9/C9′, a further EADP instruction was applied to achieve reasonable anisotropic displacement ellipsoids.

Table 2. Experimental details.

Crystal data
Chemical formula [Fe(C9H6BrS)(C13H7F6)]
M r 559.14
Crystal system, space group Monoclinic, C2/c
Temperature (K) 110
a, b, c (Å) 18.056 (5), 10.294 (5), 21.451 (5)
β (°) 93.268 (5)
V3) 3981 (2)
Z 8
Radiation type Mo Kα
μ (mm−1) 2.93
Crystal size (mm) 0.4 × 0.4 × 0.2
 
Data collection
Diffractometer Oxford Gemini CCD
Absorption correction Multi-scan (CrysAlis RED; Oxford Diffraction, 2006)
T min, T max 0.436, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11002, 3687, 2887
R int 0.035
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.044, 0.125, 1.00
No. of reflections 3687
No. of parameters 357
No. of restraints 258
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.94, −0.61

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2006), SHELXS2013, SHELXL2013 and SHELXTL(Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, new_global_publ_block. DOI: 10.1107/S1600536814020674/wm5048sup1.cif

e-70-00238-sup1.cif (428.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020674/wm5048Isup2.hkl

e-70-00238-Isup2.hkl (202.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814020674/wm5048Isup3.png

CCDC reference: 1018554

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Federal Cluster of Excellence EXC 1075 "MERGE Technologies for Multifunctional Lightweight Structures". MK thanks the Fonds der Chemischen Industrie for a Chemiefonds fellowship.

supplementary crystallographic information

Crystal data

[Fe(C9H6BrS)(C13H7F6)] F(000) = 2208
Mr = 559.14 Dx = 1.866 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 18.056 (5) Å Cell parameters from 3003 reflections
b = 10.294 (5) Å θ = 3.8–27.2°
c = 21.451 (5) Å µ = 2.93 mm1
β = 93.268 (5)° T = 110 K
V = 3981 (2) Å3 Block, orange
Z = 8 0.4 × 0.4 × 0.2 mm

Data collection

Oxford Gemini CCD diffractometer 2887 reflections with I > 2σ(I)
ω scans Rint = 0.035
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) θmax = 25.5°, θmin = 2.9°
Tmin = 0.436, Tmax = 1.000 h = −21→21
11002 measured reflections k = −12→12
3687 independent reflections l = −23→25

Refinement

Refinement on F2 258 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044 H-atom parameters constrained
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0737P)2 + 7.0529P] where P = (Fo2 + 2Fc2)/3
S = 1.00 (Δ/σ)max = 0.004
3687 reflections Δρmax = 0.94 e Å3
357 parameters Δρmin = −0.61 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used, when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.59952 (12) −0.21423 (19) 0.60297 (8) 0.0419 (4) 0.6
Br1 0.63183 (5) 0.10861 (8) 0.73209 (4) 0.0409 (2) 0.6
C1 0.6910 (4) −0.2085 (6) 0.6296 (3) 0.0323 (13) 0.6
H1 0.7272 −0.2654 0.6168 0.039* 0.6
C2 0.7045 (3) −0.1088 (5) 0.6724 (3) 0.0259 (11) 0.6
C3 0.6392 (4) −0.0394 (6) 0.6811 (3) 0.0297 (13) 0.6
C4 0.5776 (5) −0.0824 (8) 0.6470 (3) 0.0342 (17) 0.6
H4 0.5307 −0.0454 0.6477 0.041* 0.6
C5 0.7792 (3) −0.0860 (8) 0.7008 (3) 0.0274 (17) 0.6
C6 0.7990 (4) −0.0156 (9) 0.7562 (3) 0.034 (2) 0.6
H6 0.7667 0.0301 0.7804 0.041* 0.6
C7 0.8769 (4) −0.0272 (8) 0.7683 (3) 0.037 (2) 0.6
H7 0.9045 0.0095 0.8017 0.045* 0.6
C8 0.9052 (3) −0.1047 (6) 0.7204 (3) 0.0367 (18) 0.6
H8 0.9546 −0.1277 0.7169 0.044* 0.6
C9 0.8449 (3) −0.1410 (6) 0.6786 (2) 0.0303 (14) 0.6
H9 0.8478 −0.1920 0.6431 0.036* 0.6
S1' 0.56009 (19) 0.0774 (3) 0.7152 (2) 0.0816 (12) 0.4
Br1' 0.64769 (11) −0.25200 (13) 0.61634 (6) 0.0613 (4) 0.4
C1' 0.6502 (7) 0.0577 (13) 0.7354 (8) 0.063 (4) 0.4
H1' 0.6753 0.1051 0.7669 0.076* 0.4
C2' 0.6844 (6) −0.0381 (9) 0.6999 (5) 0.037 (2) 0.4
C3' 0.6298 (7) −0.1011 (10) 0.6644 (5) 0.046 (3) 0.4
C4' 0.5597 (7) −0.0537 (14) 0.6654 (7) 0.060 (4) 0.4
H4' 0.5183 −0.0866 0.6429 0.072* 0.4
C5' 0.7644 (4) −0.0653 (12) 0.7128 (5) 0.030 (3) 0.4
C6' 0.8083 (7) −0.0167 (14) 0.7647 (5) 0.035 (3) 0.4
H6' 0.7916 0.0346 0.7967 0.042* 0.4
C7' 0.8823 (5) −0.0602 (13) 0.7592 (5) 0.040 (3) 0.4
H7' 0.9225 −0.0424 0.7869 0.047* 0.4
C8' 0.8841 (5) −0.1356 (10) 0.7039 (5) 0.039 (3) 0.4
H8' 0.9257 −0.1759 0.6890 0.047* 0.4
C9' 0.8113 (5) −0.1388 (9) 0.6752 (4) 0.0303 (14) 0.4
H9' 0.7968 −0.1814 0.6383 0.036* 0.4
C10 0.81000 (19) 0.1698 (3) 0.61277 (16) 0.0300 (8)
C11 0.8794 (2) 0.1132 (4) 0.59760 (18) 0.0387 (9)
H11 0.8870 0.0601 0.5635 0.046*
C12 0.9345 (2) 0.1522 (4) 0.6438 (2) 0.0467 (10)
H12 0.9844 0.1291 0.6451 0.056*
C13 0.9005 (2) 0.2321 (4) 0.6870 (2) 0.0442 (10)
H13 0.9241 0.2712 0.7218 0.053*
C14 0.8247 (2) 0.2427 (3) 0.66885 (18) 0.0345 (8)
H14 0.7898 0.2896 0.6899 0.041*
C15 0.73864 (19) 0.1567 (3) 0.57697 (14) 0.0271 (7)
C16 0.7274 (2) 0.0608 (3) 0.53160 (15) 0.0311 (8)
H16 0.7651 0.0018 0.5247 0.037*
C17 0.6609 (2) 0.0524 (3) 0.49668 (16) 0.0356 (9)
C18 0.6033 (2) 0.1366 (4) 0.50595 (16) 0.0345 (8)
H18 0.5585 0.1296 0.4825 0.041*
C19 0.6138 (2) 0.2321 (4) 0.55113 (15) 0.0318 (8)
C20 0.6805 (2) 0.2420 (3) 0.58615 (15) 0.0299 (8)
H20 0.6865 0.3067 0.6163 0.036*
C21 0.6527 (3) −0.0494 (4) 0.44666 (19) 0.0481 (11)
C22 0.5538 (2) 0.3269 (4) 0.56256 (17) 0.0434 (10)
F1 0.67577 (17) −0.1660 (2) 0.46565 (11) 0.0628 (8)
F2 0.6945 (2) −0.0225 (3) 0.39867 (11) 0.0786 (10)
F3 0.5850 (2) −0.0629 (4) 0.42356 (19) 0.1139 (16)
F4 0.52097 (15) 0.3028 (3) 0.61561 (11) 0.0669 (8)
F5 0.50019 (14) 0.3292 (3) 0.51730 (11) 0.0582 (7)
F6 0.57912 (16) 0.4492 (2) 0.56767 (14) 0.0655 (8)
Fe1 0.85187 (3) 0.05282 (5) 0.68322 (2) 0.02830 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0414 (11) 0.0476 (11) 0.0357 (9) −0.0166 (9) −0.0064 (8) −0.0030 (8)
Br1 0.0436 (5) 0.0359 (4) 0.0437 (4) 0.0049 (3) 0.0063 (3) −0.0053 (3)
C1 0.025 (3) 0.029 (3) 0.042 (3) −0.017 (3) −0.007 (3) 0.003 (2)
C2 0.029 (3) 0.022 (2) 0.028 (2) −0.005 (2) 0.005 (2) 0.002 (2)
C3 0.031 (3) 0.029 (3) 0.030 (3) −0.004 (3) 0.002 (3) 0.003 (3)
C4 0.028 (4) 0.039 (4) 0.036 (4) −0.004 (3) 0.005 (3) 0.007 (3)
C5 0.033 (3) 0.029 (3) 0.020 (3) −0.005 (3) 0.001 (3) 0.001 (3)
C6 0.038 (4) 0.043 (4) 0.021 (3) −0.008 (3) −0.002 (3) 0.001 (3)
C7 0.039 (4) 0.037 (4) 0.035 (3) −0.007 (3) −0.009 (3) 0.002 (3)
C8 0.039 (4) 0.029 (3) 0.040 (4) 0.001 (3) −0.011 (3) −0.003 (3)
C9 0.024 (4) 0.0264 (19) 0.039 (2) −0.003 (3) −0.005 (3) 0.0004 (18)
S1' 0.0422 (18) 0.0499 (17) 0.156 (4) 0.0105 (14) 0.037 (2) 0.023 (2)
Br1' 0.0844 (11) 0.0503 (8) 0.0479 (7) −0.0304 (8) −0.0074 (7) −0.0028 (5)
C1' 0.062 (7) 0.044 (6) 0.085 (7) 0.010 (5) 0.007 (5) 0.006 (6)
C2' 0.033 (4) 0.032 (4) 0.048 (4) −0.002 (4) 0.006 (4) 0.011 (4)
C3' 0.039 (5) 0.043 (5) 0.056 (5) −0.013 (4) −0.009 (4) 0.020 (4)
C4' 0.043 (6) 0.071 (7) 0.064 (7) −0.018 (5) −0.001 (5) 0.028 (5)
C5' 0.028 (4) 0.031 (5) 0.032 (5) −0.010 (4) 0.010 (4) 0.007 (4)
C6' 0.035 (5) 0.044 (5) 0.026 (5) −0.007 (4) 0.005 (4) 0.006 (4)
C7' 0.033 (5) 0.047 (6) 0.039 (5) 0.003 (4) 0.004 (4) 0.011 (4)
C8' 0.038 (6) 0.039 (5) 0.042 (6) 0.007 (5) 0.013 (5) 0.007 (5)
C9' 0.024 (4) 0.0264 (19) 0.039 (2) −0.003 (3) −0.005 (3) 0.0004 (18)
C10 0.031 (2) 0.0257 (17) 0.0336 (18) −0.0006 (14) 0.0084 (15) 0.0061 (14)
C11 0.039 (2) 0.042 (2) 0.036 (2) 0.0058 (18) 0.0173 (17) 0.0097 (17)
C12 0.028 (2) 0.051 (2) 0.062 (3) −0.0058 (19) 0.0121 (19) 0.012 (2)
C13 0.030 (2) 0.038 (2) 0.064 (3) −0.0095 (17) −0.0013 (19) 0.0023 (19)
C14 0.033 (2) 0.0271 (18) 0.043 (2) −0.0035 (15) 0.0017 (16) 0.0000 (15)
C15 0.0324 (19) 0.0267 (17) 0.0229 (16) 0.0003 (15) 0.0074 (14) 0.0068 (13)
C16 0.041 (2) 0.0266 (18) 0.0267 (17) 0.0064 (15) 0.0072 (15) 0.0029 (14)
C17 0.054 (3) 0.0280 (18) 0.0248 (17) 0.0008 (17) 0.0014 (17) −0.0025 (14)
C18 0.041 (2) 0.0336 (19) 0.0281 (18) 0.0007 (16) −0.0017 (16) −0.0015 (15)
C19 0.036 (2) 0.0347 (19) 0.0249 (17) 0.0057 (16) 0.0043 (15) 0.0016 (14)
C20 0.040 (2) 0.0271 (17) 0.0235 (17) 0.0034 (15) 0.0065 (15) −0.0001 (13)
C21 0.069 (3) 0.037 (2) 0.038 (2) 0.006 (2) −0.002 (2) −0.0067 (18)
C22 0.043 (2) 0.055 (3) 0.031 (2) 0.0147 (19) −0.0054 (18) −0.0054 (18)
F1 0.116 (2) 0.0309 (13) 0.0419 (13) 0.0021 (13) 0.0113 (14) −0.0070 (10)
F2 0.161 (3) 0.0460 (15) 0.0316 (13) 0.0019 (17) 0.0266 (16) −0.0061 (11)
F3 0.087 (3) 0.115 (3) 0.133 (3) 0.034 (2) −0.053 (2) −0.093 (3)
F4 0.0594 (17) 0.101 (2) 0.0415 (14) 0.0347 (16) 0.0151 (12) −0.0019 (14)
F5 0.0474 (15) 0.0777 (18) 0.0474 (14) 0.0252 (13) −0.0145 (11) −0.0153 (13)
F6 0.0636 (18) 0.0427 (15) 0.088 (2) 0.0220 (13) −0.0152 (15) −0.0183 (13)
Fe1 0.0262 (3) 0.0287 (3) 0.0302 (3) −0.0004 (2) 0.0033 (2) 0.0008 (2)

Geometric parameters (Å, º)

S1—C1 1.717 (6) C7'—Fe1 2.052 (12)
S1—C4 1.713 (8) C7'—H7' 0.9300
Br1—C3 1.885 (7) C8'—C9' 1.4200
C1—C2 1.389 (8) C8'—Fe1 2.066 (9)
C1—H1 0.9300 C8'—H8' 0.9300
C2—C3 1.399 (8) C9'—Fe1 2.107 (9)
C2—C5 1.469 (7) C9'—H9' 0.9300
C3—C4 1.370 (10) C10—C14 1.430 (5)
C4—H4 0.9300 C10—C11 1.436 (5)
C5—C9 1.4200 C10—C15 1.468 (5)
C5—C6 1.4200 C10—Fe1 2.043 (3)
C5—Fe1 1.990 (8) C11—C12 1.422 (6)
C6—C7 1.4200 C11—Fe1 2.027 (4)
C6—Fe1 2.007 (9) C11—H11 0.9300
C6—H6 0.9300 C12—C13 1.407 (6)
C7—C8 1.4200 C12—Fe1 2.033 (4)
C7—Fe1 2.029 (8) C12—H12 0.9300
C7—H7 0.9300 C13—C14 1.406 (5)
C8—C9 1.4200 C13—Fe1 2.043 (4)
C8—Fe1 2.026 (6) C13—H13 0.9300
C8—H8 0.9300 C14—Fe1 2.035 (4)
C9—Fe1 2.002 (6) C14—H14 0.9300
C9—H9 0.9300 C15—C16 1.392 (5)
S1'—C1' 1.672 (13) C15—C20 1.391 (5)
S1'—C4' 1.721 (13) C16—C17 1.381 (5)
Br1'—C3' 1.902 (11) C16—H16 0.9300
C1'—C2' 1.410 (14) C17—C18 1.377 (5)
C1'—H1' 0.9300 C17—C21 1.501 (5)
C2'—C3' 1.373 (13) C18—C19 1.386 (5)
C2'—C5' 1.483 (13) C18—H18 0.9300
C3'—C4' 1.359 (14) C19—C20 1.386 (5)
C4'—H4' 0.9300 C19—C22 1.489 (5)
C5'—C6' 1.4200 C20—H20 0.9300
C5'—C9' 1.4200 C21—F3 1.300 (6)
C5'—Fe1 2.118 (11) C21—F1 1.327 (5)
C6'—C7' 1.4200 C21—F2 1.339 (5)
C6'—Fe1 2.084 (14) C22—F5 1.332 (4)
C6'—H6' 0.9300 C22—F4 1.336 (5)
C7'—C8' 1.4200 C22—F6 1.341 (5)
C1—S1—C4 92.1 (4) C13—C12—H12 126.0
C2—C1—S1 112.0 (5) C11—C12—H12 126.0
C2—C1—H1 124.0 Fe1—C12—H12 126.1
S1—C1—H1 124.0 C12—C13—C14 108.5 (4)
C1—C2—C3 110.4 (6) C12—C13—Fe1 69.4 (2)
C1—C2—C5 121.0 (6) C14—C13—Fe1 69.5 (2)
C3—C2—C5 128.5 (6) C12—C13—H13 125.8
C4—C3—C2 115.3 (6) C14—C13—H13 125.8
C4—C3—Br1 119.3 (5) Fe1—C13—H13 126.9
C2—C3—Br1 125.4 (5) C13—C14—C10 108.9 (3)
C3—C4—S1 110.2 (6) C13—C14—Fe1 70.1 (2)
C3—C4—H4 124.9 C10—C14—Fe1 69.8 (2)
S1—C4—H4 124.9 C13—C14—H14 125.6
C9—C5—C6 108.0 C10—C14—H14 125.6
C9—C5—C2 124.2 (5) Fe1—C14—H14 126.1
C6—C5—C2 127.7 (5) C16—C15—C20 117.7 (3)
C9—C5—Fe1 69.6 (3) C16—C15—C10 121.3 (3)
C6—C5—Fe1 69.8 (3) C20—C15—C10 121.0 (3)
C2—C5—Fe1 129.5 (5) C17—C16—C15 120.7 (3)
C7—C6—C5 108.0 C17—C16—H16 119.6
C7—C6—Fe1 70.3 (3) C15—C16—H16 119.6
C5—C6—Fe1 68.5 (3) C18—C17—C16 121.5 (3)
C7—C6—H6 126.0 C18—C17—C21 119.9 (4)
C5—C6—H6 126.0 C16—C17—C21 118.6 (4)
Fe1—C6—H6 126.8 C17—C18—C19 118.2 (4)
C6—C7—C8 108.0 C17—C18—H18 120.9
C6—C7—Fe1 68.6 (3) C19—C18—H18 120.9
C8—C7—Fe1 69.4 (3) C18—C19—C20 120.8 (3)
C6—C7—H7 126.0 C18—C19—C22 120.5 (3)
C8—C7—H7 126.0 C20—C19—C22 118.7 (3)
Fe1—C7—H7 127.6 C19—C20—C15 121.1 (3)
C9—C8—C7 108.0 C19—C20—H20 119.5
C9—C8—Fe1 68.4 (3) C15—C20—H20 119.5
C7—C8—Fe1 69.6 (3) F3—C21—F1 107.0 (4)
C9—C8—H8 126.0 F3—C21—F2 106.7 (4)
C7—C8—H8 126.0 F1—C21—F2 104.0 (3)
Fe1—C8—H8 127.5 F3—C21—C17 113.5 (4)
C8—C9—C5 108.0 F1—C21—C17 113.3 (3)
C8—C9—Fe1 70.3 (3) F2—C21—C17 111.6 (4)
C5—C9—Fe1 68.7 (3) F5—C22—F4 106.5 (3)
C8—C9—H9 126.0 F5—C22—F6 105.9 (3)
C5—C9—H9 126.0 F4—C22—F6 105.7 (3)
Fe1—C9—H9 126.6 F5—C22—C19 113.4 (3)
C1'—S1'—C4' 92.0 (7) F4—C22—C19 112.4 (3)
C2'—C1'—S1' 113.2 (11) F6—C22—C19 112.4 (4)
C2'—C1'—H1' 123.4 C5—Fe1—C9 41.68 (12)
S1'—C1'—H1' 123.4 C5—Fe1—C6 41.62 (17)
C3'—C2'—C1' 107.9 (11) C9—Fe1—C6 69.9 (2)
C3'—C2'—C5' 132.5 (10) C5—Fe1—C11 126.2 (2)
C1'—C2'—C5' 118.8 (10) C9—Fe1—C11 106.21 (19)
C4'—C3'—C2' 117.5 (11) C6—Fe1—C11 165.1 (2)
C4'—C3'—Br1' 119.3 (9) C5—Fe1—C8 69.79 (16)
C2'—C3'—Br1' 123.2 (8) C9—Fe1—C8 41.28 (10)
C3'—C4'—S1' 108.7 (10) C6—Fe1—C8 69.5 (2)
C3'—C4'—H4' 125.6 C11—Fe1—C8 117.8 (2)
S1'—C4'—H4' 125.6 C5—Fe1—C7 69.7 (2)
C6'—C5'—C9' 108.0 C9—Fe1—C7 69.49 (16)
C6'—C5'—C2' 125.1 (9) C6—Fe1—C7 41.19 (17)
C9'—C5'—C2' 126.8 (9) C11—Fe1—C7 152.3 (2)
C6'—C5'—Fe1 69.0 (4) C8—Fe1—C7 40.99 (13)
C9'—C5'—Fe1 70.0 (4) C5—Fe1—C14 124.2 (2)
C2'—C5'—Fe1 124.8 (8) C9—Fe1—C14 159.5 (2)
C5'—C6'—C7' 108.0 C6—Fe1—C14 109.5 (2)
C5'—C6'—Fe1 71.5 (4) C11—Fe1—C14 68.76 (15)
C7'—C6'—Fe1 68.7 (4) C8—Fe1—C14 159.0 (2)
C5'—C6'—H6' 126.0 C7—Fe1—C14 124.4 (2)
C7'—C6'—H6' 126.0 C5—Fe1—C12 161.4 (2)
Fe1—C6'—H6' 125.3 C9—Fe1—C12 121.8 (2)
C8'—C7'—C6' 108.0 C6—Fe1—C12 153.4 (2)
C8'—C7'—Fe1 70.4 (4) C11—Fe1—C12 40.99 (16)
C6'—C7'—Fe1 71.2 (4) C8—Fe1—C12 102.9 (2)
C8'—C7'—H7' 126.0 C7—Fe1—C12 116.6 (3)
C6'—C7'—H7' 126.0 C14—Fe1—C12 68.27 (17)
Fe1—C7'—H7' 124.1 C5—Fe1—C13 158.0 (2)
C9'—C8'—C7' 108.0 C9—Fe1—C13 158.2 (2)
C9'—C8'—Fe1 71.7 (4) C6—Fe1—C13 120.5 (2)
C7'—C8'—Fe1 69.3 (5) C11—Fe1—C13 68.45 (17)
C9'—C8'—H8' 126.0 C8—Fe1—C13 120.9 (2)
C7'—C8'—H8' 126.0 C7—Fe1—C13 104.9 (2)
Fe1—C8'—H8' 124.6 C14—Fe1—C13 40.33 (15)
C8'—C9'—C5' 108.0 C12—Fe1—C13 40.38 (18)
C8'—C9'—Fe1 68.6 (4) C5—Fe1—C10 110.1 (2)
C5'—C9'—Fe1 70.8 (4) C9—Fe1—C10 122.11 (19)
C8'—C9'—H9' 126.0 C6—Fe1—C10 127.7 (2)
C5'—C9'—H9' 126.0 C11—Fe1—C10 41.30 (14)
Fe1—C9'—H9' 126.2 C8—Fe1—C10 155.5 (2)
C14—C10—C11 106.3 (3) C7—Fe1—C10 163.4 (2)
C14—C10—C15 127.1 (3) C14—Fe1—C10 41.06 (14)
C11—C10—C15 126.5 (3) C12—Fe1—C10 69.21 (16)
C14—C10—Fe1 69.2 (2) C13—Fe1—C10 68.75 (16)
C11—C10—Fe1 68.8 (2) C11—Fe1—C7' 145.6 (3)
C15—C10—Fe1 127.6 (2) C14—Fe1—C7' 135.8 (3)
C12—C11—C10 108.2 (3) C12—Fe1—C7' 116.5 (3)
C12—C11—Fe1 69.7 (2) C13—Fe1—C7' 112.7 (3)
C10—C11—Fe1 69.93 (19) C10—Fe1—C7' 173.1 (3)
C12—C11—H11 125.9 C11—Fe1—C8' 113.7 (3)
C10—C11—H11 125.9 C14—Fe1—C8' 175.6 (3)
Fe1—C11—H11 126.0 C12—Fe1—C8' 110.9 (3)
C13—C12—C11 108.1 (4) C13—Fe1—C8' 136.4 (3)
C13—C12—Fe1 70.2 (2) C10—Fe1—C8' 143.1 (3)
C11—C12—Fe1 69.3 (2) C7'—Fe1—C8' 40.34 (19)
C4—S1—C1—C2 1.1 (5) Fe1—C7'—C8'—C9' −61.6 (4)
S1—C1—C2—C3 −0.8 (6) C6'—C7'—C8'—Fe1 61.6 (4)
S1—C1—C2—C5 −179.7 (5) C7'—C8'—C9'—C5' 0.0
C1—C2—C3—C4 0.1 (8) Fe1—C8'—C9'—C5' −60.0 (5)
C5—C2—C3—C4 178.8 (7) C7'—C8'—C9'—Fe1 60.0 (5)
C1—C2—C3—Br1 −177.0 (4) C6'—C5'—C9'—C8' 0.0
C5—C2—C3—Br1 1.7 (9) C2'—C5'—C9'—C8' 177.7 (12)
C2—C3—C4—S1 0.7 (8) Fe1—C5'—C9'—C8' 58.6 (4)
Br1—C3—C4—S1 178.0 (4) C6'—C5'—C9'—Fe1 −58.6 (4)
C1—S1—C4—C3 −1.0 (6) C2'—C5'—C9'—Fe1 119.1 (12)
C1—C2—C5—C9 14.0 (10) C14—C10—C11—C12 −0.2 (4)
C3—C2—C5—C9 −164.6 (6) C15—C10—C11—C12 178.8 (3)
C1—C2—C5—C6 −161.0 (6) Fe1—C10—C11—C12 −59.4 (3)
C3—C2—C5—C6 20.4 (10) C14—C10—C11—Fe1 59.2 (2)
C1—C2—C5—Fe1 104.9 (7) C15—C10—C11—Fe1 −121.7 (3)
C3—C2—C5—Fe1 −73.8 (8) C10—C11—C12—C13 −0.1 (4)
C9—C5—C6—C7 0.0 Fe1—C11—C12—C13 −59.7 (3)
C2—C5—C6—C7 175.7 (8) C10—C11—C12—Fe1 59.6 (2)
Fe1—C5—C6—C7 −59.4 (3) C11—C12—C13—C14 0.4 (5)
C9—C5—C6—Fe1 59.4 (3) Fe1—C12—C13—C14 −58.7 (3)
C2—C5—C6—Fe1 −125.0 (7) C11—C12—C13—Fe1 59.1 (3)
C5—C6—C7—C8 0.0 C12—C13—C14—C10 −0.6 (4)
Fe1—C6—C7—C8 −58.3 (2) Fe1—C13—C14—C10 −59.2 (2)
C5—C6—C7—Fe1 58.3 (2) C12—C13—C14—Fe1 58.6 (3)
C6—C7—C8—C9 0.0 C11—C10—C14—C13 0.5 (4)
Fe1—C7—C8—C9 −57.8 (3) C15—C10—C14—C13 −178.6 (3)
C6—C7—C8—Fe1 57.8 (3) Fe1—C10—C14—C13 59.4 (3)
C7—C8—C9—C5 0.0 C11—C10—C14—Fe1 −59.0 (2)
Fe1—C8—C9—C5 −58.5 (3) C15—C10—C14—Fe1 122.0 (3)
C7—C8—C9—Fe1 58.5 (3) C14—C10—C15—C16 −165.3 (3)
C6—C5—C9—C8 0.0 C11—C10—C15—C16 15.8 (5)
C2—C5—C9—C8 −175.9 (8) Fe1—C10—C15—C16 −74.2 (4)
Fe1—C5—C9—C8 59.5 (3) C14—C10—C15—C20 16.3 (5)
C6—C5—C9—Fe1 −59.5 (3) C11—C10—C15—C20 −162.5 (3)
C2—C5—C9—Fe1 124.6 (7) Fe1—C10—C15—C20 107.4 (3)
C4'—S1'—C1'—C2' 7.1 (12) C20—C15—C16—C17 0.7 (5)
S1'—C1'—C2'—C3' −8.6 (14) C10—C15—C16—C17 −177.7 (3)
S1'—C1'—C2'—C5' 179.8 (9) C15—C16—C17—C18 −1.0 (5)
C1'—C2'—C3'—C4' 6.2 (16) C15—C16—C17—C21 177.6 (3)
C5'—C2'—C3'—C4' 176.2 (12) C16—C17—C18—C19 0.7 (5)
C1'—C2'—C3'—Br1' −172.1 (9) C21—C17—C18—C19 −177.9 (3)
C5'—C2'—C3'—Br1' −2.1 (17) C17—C18—C19—C20 −0.2 (5)
C2'—C3'—C4'—S1' −1.2 (15) C17—C18—C19—C22 179.2 (3)
Br1'—C3'—C4'—S1' 177.2 (6) C18—C19—C20—C15 0.0 (5)
C1'—S1'—C4'—C3' −3.4 (12) C22—C19—C20—C15 −179.4 (3)
C3'—C2'—C5'—C6' −159.0 (11) C16—C15—C20—C19 −0.2 (5)
C1'—C2'—C5'—C6' 10.1 (15) C10—C15—C20—C19 178.1 (3)
C3'—C2'—C5'—C9' 23.6 (18) C18—C17—C21—F3 −11.8 (6)
C1'—C2'—C5'—C9' −167.3 (11) C16—C17—C21—F3 169.6 (4)
C3'—C2'—C5'—Fe1 113.6 (12) C18—C17—C21—F1 −134.1 (4)
C1'—C2'—C5'—Fe1 −77.3 (13) C16—C17—C21—F1 47.3 (5)
C9'—C5'—C6'—C7' 0.0 C18—C17—C21—F2 108.9 (5)
C2'—C5'—C6'—C7' −177.8 (12) C16—C17—C21—F2 −69.7 (5)
Fe1—C5'—C6'—C7' −59.3 (4) C18—C19—C22—F5 −14.8 (5)
C9'—C5'—C6'—Fe1 59.3 (4) C20—C19—C22—F5 164.6 (3)
C2'—C5'—C6'—Fe1 −118.5 (10) C18—C19—C22—F4 106.1 (4)
C5'—C6'—C7'—C8' 0.0 C20—C19—C22—F4 −74.5 (5)
Fe1—C6'—C7'—C8' −61.1 (4) C18—C19—C22—F6 −134.8 (4)
C5'—C6'—C7'—Fe1 61.1 (4) C20—C19—C22—F6 44.6 (5)
C6'—C7'—C8'—C9' 0.0

References

  1. Barsch, U., Beck, F., Hambitzer, G., Holze, R., Lippe, J. & Stassen, I. (1994). J. Electroanal. Chem. 369, 97–101.
  2. Blanchard, M. D., Hughes, R. P., Concolino, T. E. & Rheingold, A. L. (2000). Chem. Mater. 12, 1604–1610.
  3. Braga, D., Polito, M., Bracaccini, M., D’Addario, D., Tagliavini, E., Sturba, L. & Grepioni, F. (2003). Organometallics, 22, 2142–2150.
  4. Claus, R. (2011). Dissertation TU Chemnitz, Germany.
  5. Deck, P. A., Konaté, M. M., Kelly, B. V. & Slebodnick, C. (2004). Organometallics, 23, 1089–1097.
  6. Deck, P. A., Lane, M. J., Montgomery, J. L., Slebodnick, C. & Fronczek, F. R. (2000). Organometallics, 19, 1013–1024.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Foxman, B. M., Gronbeck, D. A., Khruschova, N. & Rosenblum, M. (1993). J. Org. Chem. 58, 4078–4082.
  9. Foxman, B. M., Gronbeck, D. A. & Rosenblum, M. (1991). J. Organomet. Chem. 413, 287–294.
  10. Gallagher, J. F., Alley, S., Brosnan, M. & Lough, A. J. (2010). Acta Cryst. B66, 196–205. [DOI] [PubMed]
  11. Heeger, A. J. (2001). Angew. Chem. Int. Ed. 40, 2591–2611.
  12. Hildebrandt, A. & Lang, H. (2013). Organometallics, 32, 5640–5653.
  13. Hildebrandt, A., Pfaff, U. & Lang, H. (2011). Rev. Inorg. Chem. 31, 111–141.
  14. Hursthouse, M. B., Light, M. E. & Butler, I. R. (2003). Private Communication
  15. MacDiarmid, A. G. (2001). Angew. Chem. Int. Ed. 40, 2581–2590.
  16. McArdle, P. (1995). J. Appl. Cryst. 28, 65. [DOI] [PMC free article] [PubMed]
  17. Negishi, E., King, A. O. & Okukado, N. (1977). J. Org. Chem. 42, 1821–1823.
  18. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, England.
  19. Pfaff, U., Hildebrandt, A., Schaarschmidt, D., Rüffer, T., Low, P. J. & Lang, H. (2013). Organometallics, 32, 6106–6117.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Sinnokrot, M. O., Valeev, E. F. & Sherrill, C. D. (2002). J. Am. Chem. Soc. 124, 10887–10893. [DOI] [PubMed]
  22. Speck, J. M., Claus, R., Hildebrandt, A., Rüffer, T., Erasmus, E., van As, L., Swarts, J. C. & Lang, H. (2012). Organometallics, 31, 6373–6380.
  23. Speck, J. M., Korb, M., Rüffer, T., Hildebrandt, A. & Lang, H. (2014). Organometallics, 10.1021/om500062h.
  24. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  25. Wolf, M. O. (2001). Adv. Mater. 13, 545–553.
  26. Zhu, Y. & Wolf, M. O. (1999). Chem. Mater. 11, 2995–3001.
  27. Zhu, Y. & Wolf, M. O. (2000). J. Am. Chem. Soc. 122, 10121–10125.
  28. Zotti, G., Zecchin, S., Schiavon, G., Berlin, A., Pagani, G. & Canavesi, A. (1995). Chem. Mater. 7, 2309–2315.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, new_global_publ_block. DOI: 10.1107/S1600536814020674/wm5048sup1.cif

e-70-00238-sup1.cif (428.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020674/wm5048Isup2.hkl

e-70-00238-Isup2.hkl (202.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814020674/wm5048Isup3.png

CCDC reference: 1018554

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES