Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 6;70(Pt 10):o1092–o1093. doi: 10.1107/S1600536814019333

Crystal structure of (E)-13-{4-[(Z)-2-cyano-2-(3,4,5-tri­meth­oxy­phen­yl)ethen­yl]phen­yl}parthenolide methanol hemisolvate

Narsimha Reddy Penthala a, Shobanbabu Bommagani a, Venumadhav Janganati a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC4257209  PMID: 25484689

Abstract

The title compound, C33H35NO6 [systematic name: (Z)-3-(4-{(E)-[(E)-1a,5-dimethyl-9-oxo-2,3,7,7a-tetra­hydro­oxireno[2′,3′:9,10]cyclo­deca­[1,2-b]furan-8(1aH,6H,9H,10aH,10bH)-yl­idene]meth­yl}phen­yl)-2-(3,4,5-tri­meth­oxy­phen­yl)acrylo­ni­trile methanol hemisolvate], C33H35NO6·0.5CH3OH, was prepared by the reaction of (Z)-3-(4-iodo­phen­yl)-2-(3,4,5-tri­meth­oxy­phen­yl)acrylo­nitrile with parthenolide [systematic name: (E)-1a,5-dimethyl-8-methyl­ene-2,3,6,7,7a,8,10a,10b-octa­hy­dro­oxireno[2′,3′:9,10]cyclo­deca­[1,2-b]furan-9(1aH)-one] under Heck reaction conditions. The mol­ecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings with a {4-[(Z)-2-cyano-2-(3,4,5-tri­meth­oxy­phen­yl)ethen­yl]phen­yl}methyl­idene group as a substituent. The 4-[(Z)-2-cyano-2-(3,4,5-tri­meth­oxy­phen­yl)ethen­yl]phenyl group on the parthenolide exocyclic double bond is oriented in a trans position to the lactone ring to form the E isomer. The dihedral angle between the benzene ring of the phenyl moiety and the lactone ring mean plane is 21.93 (4)°.

Keywords: crystal structure, parthenolide derivatives, Heck synthesis, biological activity

Related literature  

For the biological activity of parthenolide, see: Hall et al. (1979). For the biological activity of parthenolide derivatives similar to the title compound, see: Hanson et al. (1970); Hehner et al. (1998); Kupchan et al. (1971); Neelakantan et al. (2009); Oka et al., 2007); Ralstin et al. (2006); Sun et al. (2006); Penthala et al. (2013b ). For the synthesis and crystal structures of similar mol­ecules, see: Han et al. (2009); Penthala et al. (2013a ). For details of the experimental procedure, see: Hope (1994); Parkin & Hope (1998);graphic file with name e-70-o1092-scheme1.jpg

Experimental  

Crystal data  

  • C33H35NO6·0.5CH4O

  • M r = 557.64

  • Orthorhombic, Inline graphic

  • a = 9.3347 (2) Å

  • b = 16.2442 (3) Å

  • c = 19.2580 (4) Å

  • V = 2920.18 (10) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.71 mm−1

  • T = 90 K

  • 0.18 × 0.15 × 0.10 mm

Data collection  

  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b ) T min = 0.836, T max = 0.963

  • 40379 measured reflections

  • 5349 independent reflections

  • 5303 reflections with I > 2σ(I)

  • R int = 0.036

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.024

  • wR(F 2) = 0.065

  • S = 1.03

  • 5349 reflections

  • 387 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack x determined using 2283 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)

  • Absolute structure parameter: 0.02 (2)

Data collection: APEX2 (Bruker, 2006); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a ); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008a ); molecular graphics: XP in SHELXTL (Sheldrick, 2008a ); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008a ), CIFFIX (Parkin, 2013), PLATON (Spek, 2009) and local program (Parkin, 2000).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814019333/sj5404sup1.cif

e-70-o1092-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019333/sj5404Isup2.hkl

e-70-o1092-Isup2.hkl (293.3KB, hkl)

. DOI: 10.1107/S1600536814019333/sj5404fig1.tif

A view of the mol­ecule with displacement ellipsoids drawn at the 50% probability level.

CCDC reference: 1021449

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by NIH/NCI (grant No. CA158275).

supplementary crystallographic information

S1. Comment

Parthenolide (PTL) and its analogs belong to the class of sesquiterpene lactones. These compounds are currently being used in the development of anti-cancer agents for the treatment of hematological tumours (Sun et al., 2006; Hehner et al., 1998; Ralstin et al. 2006; Oka et al., 2007; Kupchan et al., 1971 and Hanson et al., 1970). Recently, we have reported the crystal structure of (E)-13-(4-aminophenyl)parthenolide, a Heck reaction derivative of parthenolide (Penthala et al. 2013a), and we have also reported on Z-2-(3,4,5-trimethoxyphenyl)acrylonitrile analogs (Penthala et al. 2013b) as anti-cancer agents. As part of a program for the development of parthenolide analogs as anti-leukemic agents (Neelakantan et al. 2009), and small molecule analogs as anti-cancer agents, our research group is focusing on the synthesis of E-olefinic analogues of PTL which can be obtained from the reaction of parthenolide with iodoaromatic reagents utilizing Heck chemistry (Han et al. 2009). The title compound was obtained from the reaction of parthenolide with (Z)-3-(4-iodophenyl) -2-(3,4,5- trimethoxyphenylacrylonitrile under Heck reaction conditions. To obtain detailed information on the structure of the title compound and to establish the geometry of the exocyclic C13—C14 double bond, a single-crystal X-ray structure determination has been carried out.

Recrystallization of the title compound from methanol afforded light yellow coloured crystals that were suitable for X-ray analysis. The X-ray studies revealed that the title compound was identified as the E-isomer (conformation about the exocyclic methylidene C═C bond; the conformation about the C═C bond in the ten-membered ring is also E). The molecule is built up from fused ten-, five- (lactone) and three-membered (epoxide) rings with a (Z)-3-(4-phenyl)-2-(3,4,5- trimethoxyphenyl)acrylonitrile group as a substituent. The dihedral angle between the benzene ring of the phenyl moiety and the lactone ring mean plane is 21.93 (4) Å.

S2. Experimental

A mixture of parthenolide (1.0 mmol), diisopropylethylamine (3.0 mmol), and (Z)-3-(4-iodophenyl)-2-(3,4,5-trimethoxyphenyl acrylonitrile (1.1 mmol) in toluene (1 ml) was treated with palladium (II) ferrocene (0.01 mmol) and then stirred at 353 K for 24 h. The reaction mixture was cooled to room temperature, water (8 ml) was added, and the mixture was extracted with ethyl acetate (10 mlx3). The separated organics were dried over anhydrous Na2SO4 and concentrated under reduced pressure. The obtained crude residue was purified using silica flash chromatography (7:3, hexanes/EtOAc) to afford the title compound, which was recrystallized from methanol as light yellow coloured crystals suitable for X-ray analysis (87% yield; M·P.: 478–480 K); 1H NMR (400 MHz, CDCl3): δ 7.95 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 3.6 Hz, 1H), 7.52 (d, J = 8.4 Hz, 2H), 7.46 (s, 1H), 6.88 (s, 2H), 5.29 (d, J = 11.2 Hz, 1H), 3.94 (s, 6H, 2xOCH3), 3.90 (s, 3H, OCH3), 3.3 (m, 1H), 2.85 (d, J = 8.4 Hz, 1H), 2.41–2.46 (m, 1H), 2.10–2.27 (m, 5H), 1.69 (s, 3H, CH3), 1.46–1.55 (m, 2H), 1.32 (s, 3H, CH3), 1.27–1.30 (m, 1H) p.p.m.. 13C NMR (100 MHz, CDCl3): δ 17.60,17.70, 24.54, 30.58, 36.33, 42.13, 47.16, 55.60, 61.27, 61.94, 66.71, 83.30, 103.75, 113.21, 118.04, 125.48, 129.53, 129.95, 130.56, 130.97, 134.88, 134.96, 135.69, 137.06, 139.77, 140.34, 153.89, 170.85 p.p.m..

S3. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms were found in difference Fourier maps, but subsequently included in the refinement using riding models, with constrained distances set to 0.95%A (Csp2H), 0.98Å (RCH3), 0.99Å (R2CH2), 1.00Å (R3CH) and 0.84Å (OH). Uiso(H) parameters were set to values of either 1.2Ueq or 1.5Ueq (RCH3 and OH only) of the attached atom.

The partial occupancy methanol molecule refined to an occupancy of about one half. For the final rounds of refinement its occupancy was fixed at exactly 0.5 for the sake of simplicity. This is reasonable because other crystals from the same batch would almost certainly have had varying amounts of solvent incorporated, due to unpredictable rates of solvent loss dependent on such things as crystal handling. The position of this half-occupancy methanol is consistent with an O—H···π weak hydrogen bonding interaction in which the distance between atom O1M and the centroid of the trimethoxyphenyl ring (C24-C29) is 3.212 (3)Å.

Figures

Fig. 1.

Fig. 1.

A view of the molecule with displacement ellipsoids drawn at the 50% probability level.

Crystal data

C33H35NO6·0.5CH4O Dx = 1.268 Mg m3
Mr = 557.64 Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121 Cell parameters from 9693 reflections
a = 9.3347 (2) Å θ = 3.6–68.4°
b = 16.2442 (3) Å µ = 0.71 mm1
c = 19.2580 (4) Å T = 90 K
V = 2920.18 (10) Å3 Irregular cut wedge, pale yellow
Z = 4 0.18 × 0.15 × 0.10 mm
F(000) = 1188

Data collection

Bruker X8 Proteum diffractometer 5349 independent reflections
Radiation source: fine-focus rotating anode 5303 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1 Rint = 0.036
φ and ω scans θmax = 68.4°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008b) h = −11→11
Tmin = 0.836, Tmax = 0.963 k = −13→19
40379 measured reflections l = −20→23

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.024 w = 1/[σ2(Fo2) + (0.0363P)2 + 0.5907P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.065 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.14 e Å3
5349 reflections Δρmin = −0.13 e Å3
387 parameters Extinction correction: SHELXL2014 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.00092 (14)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack x determined using 2283 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.02 (2)

Special details

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.48351 (13) 0.18048 (7) 0.54248 (6) 0.0242 (3)
O2 0.35142 (13) 0.32648 (7) 0.48438 (5) 0.0210 (2)
O3 0.34451 (13) 0.45934 (7) 0.45520 (6) 0.0237 (3)
O4 0.02191 (12) 0.41510 (7) −0.22367 (6) 0.0225 (3)
O5 0.14060 (12) 0.30869 (7) −0.31036 (5) 0.0219 (2)
O6 0.30389 (14) 0.18270 (7) −0.26366 (6) 0.0261 (3)
N1 0.35753 (19) 0.14312 (9) 0.01607 (8) 0.0311 (4)
C1 0.35744 (17) 0.04178 (10) 0.37932 (8) 0.0203 (3)
H1 0.4318 0.0590 0.3489 0.024*
C2 0.40090 (19) −0.01340 (10) 0.43865 (9) 0.0231 (3)
H2A 0.4617 −0.0586 0.4208 0.028*
H2B 0.3143 −0.0381 0.4598 0.028*
C3 0.48435 (19) 0.03537 (10) 0.49458 (9) 0.0249 (4)
H3A 0.5000 0.0001 0.5358 0.030*
H3B 0.5792 0.0516 0.4761 0.030*
C4 0.40199 (18) 0.11124 (10) 0.51545 (8) 0.0213 (3)
C5 0.42653 (17) 0.18504 (10) 0.47296 (8) 0.0187 (3)
H5 0.5005 0.1772 0.4360 0.022*
C6 0.31309 (17) 0.24713 (9) 0.45417 (8) 0.0180 (3)
H6 0.2182 0.2288 0.4727 0.022*
C7 0.30239 (17) 0.26039 (9) 0.37424 (8) 0.0170 (3)
H7 0.3909 0.2376 0.3522 0.020*
C8 0.17085 (17) 0.21982 (10) 0.33974 (8) 0.0197 (3)
H8A 0.0932 0.2152 0.3745 0.024*
H8B 0.1362 0.2559 0.3019 0.024*
C9 0.20236 (18) 0.13380 (10) 0.30982 (8) 0.0211 (3)
H9A 0.1211 0.1168 0.2801 0.025*
H9B 0.2887 0.1370 0.2801 0.025*
C10 0.22602 (17) 0.06913 (9) 0.36481 (8) 0.0189 (3)
C11 0.30617 (16) 0.35309 (9) 0.36819 (8) 0.0175 (3)
C12 0.33264 (17) 0.38809 (9) 0.43821 (8) 0.0191 (3)
C13 0.29827 (17) 0.40414 (9) 0.31380 (8) 0.0188 (3)
H13 0.2959 0.4610 0.3254 0.023*
C14 0.09048 (18) 0.04115 (11) 0.39995 (9) 0.0253 (4)
H14A 0.1121 −0.0048 0.4313 0.038*
H14B 0.0213 0.0231 0.3648 0.038*
H14C 0.0498 0.0869 0.4267 0.038*
C15 0.2653 (2) 0.09726 (11) 0.55515 (9) 0.0265 (4)
H15A 0.2874 0.0715 0.5999 0.040*
H15B 0.2021 0.0610 0.5283 0.040*
H15C 0.2175 0.1501 0.5631 0.040*
C16 0.29273 (16) 0.38648 (9) 0.23919 (8) 0.0175 (3)
C17 0.33360 (19) 0.31137 (10) 0.20977 (8) 0.0217 (3)
H17 0.3699 0.2690 0.2389 0.026*
C18 0.32232 (19) 0.29741 (10) 0.13921 (8) 0.0226 (3)
H18 0.3514 0.2459 0.1207 0.027*
C19 0.26861 (17) 0.35823 (10) 0.09458 (8) 0.0182 (3)
C20 0.23537 (17) 0.43490 (10) 0.12358 (8) 0.0189 (3)
H20 0.2037 0.4782 0.0942 0.023*
C21 0.24764 (17) 0.44897 (9) 0.19415 (8) 0.0191 (3)
H21 0.2252 0.5018 0.2123 0.023*
C22 0.24427 (18) 0.34952 (10) 0.01995 (8) 0.0202 (3)
H22 0.2131 0.3986 −0.0022 0.024*
C23 0.25803 (18) 0.28451 (10) −0.02315 (8) 0.0201 (3)
C24 0.22173 (17) 0.28790 (10) −0.09850 (8) 0.0201 (3)
C25 0.13268 (17) 0.35015 (10) −0.12349 (8) 0.0194 (3)
H25 0.0903 0.3882 −0.0922 0.023*
C26 0.10621 (17) 0.35628 (10) −0.19439 (8) 0.0188 (3)
C27 0.16914 (17) 0.30063 (10) −0.24085 (8) 0.0189 (3)
C28 0.25283 (18) 0.23611 (10) −0.21509 (8) 0.0213 (3)
C29 0.27962 (18) 0.22993 (10) −0.14397 (8) 0.0229 (3)
H29 0.3372 0.1863 −0.1266 0.027*
C30 −0.07334 (18) 0.45919 (11) −0.17877 (8) 0.0228 (3)
H30A −0.1350 0.4201 −0.1541 0.034*
H30B −0.1327 0.4966 −0.2064 0.034*
H30C −0.0175 0.4910 −0.1451 0.034*
C31 0.26452 (18) 0.32355 (10) −0.35293 (8) 0.0219 (3)
H31A 0.3352 0.3552 −0.3265 0.033*
H31B 0.2362 0.3547 −0.3943 0.033*
H31C 0.3065 0.2709 −0.3671 0.033*
C32 0.3951 (2) 0.11810 (11) −0.24020 (9) 0.0294 (4)
H32A 0.4758 0.1416 −0.2143 0.044*
H32B 0.4314 0.0873 −0.2802 0.044*
H32C 0.3409 0.0810 −0.2099 0.044*
C33 0.31313 (19) 0.20649 (10) 0.00030 (8) 0.0219 (3)
O1M 0.4544 (3) 0.42249 (17) −0.16592 (16) 0.0371 (6) 0.5
H1M 0.3705 0.4054 −0.1596 0.056* 0.5
C1M 0.5516 (4) 0.3704 (3) −0.1313 (2) 0.0338 (8) 0.5
H1M1 0.6414 0.4001 −0.1230 0.051* 0.5
H1M2 0.5705 0.3218 −0.1600 0.051* 0.5
H1M3 0.5104 0.3532 −0.0868 0.051* 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0286 (6) 0.0255 (6) 0.0187 (5) −0.0042 (5) −0.0075 (5) 0.0020 (5)
O2 0.0323 (6) 0.0182 (5) 0.0125 (5) −0.0012 (5) −0.0003 (5) −0.0012 (4)
O3 0.0345 (7) 0.0187 (5) 0.0181 (5) −0.0004 (5) −0.0002 (5) −0.0042 (4)
O4 0.0247 (6) 0.0275 (6) 0.0153 (5) 0.0082 (5) −0.0013 (5) 0.0017 (5)
O5 0.0190 (6) 0.0349 (6) 0.0118 (5) 0.0016 (5) −0.0008 (4) 0.0001 (5)
O6 0.0331 (7) 0.0291 (6) 0.0161 (5) 0.0110 (5) −0.0011 (5) −0.0044 (5)
N1 0.0477 (10) 0.0227 (7) 0.0228 (7) 0.0045 (7) −0.0131 (7) −0.0036 (6)
C1 0.0219 (8) 0.0184 (7) 0.0205 (8) −0.0015 (6) 0.0034 (6) −0.0030 (6)
C2 0.0208 (8) 0.0193 (7) 0.0293 (9) 0.0014 (6) 0.0023 (7) 0.0014 (7)
C3 0.0251 (8) 0.0239 (8) 0.0258 (8) 0.0009 (7) −0.0036 (7) 0.0060 (7)
C4 0.0245 (8) 0.0228 (8) 0.0165 (7) −0.0033 (7) −0.0049 (7) 0.0017 (6)
C5 0.0200 (8) 0.0223 (8) 0.0137 (7) −0.0030 (6) −0.0017 (6) −0.0007 (6)
C6 0.0217 (8) 0.0178 (7) 0.0145 (7) −0.0029 (6) 0.0008 (6) −0.0011 (6)
C7 0.0189 (7) 0.0183 (7) 0.0137 (7) 0.0018 (6) 0.0008 (6) −0.0001 (6)
C8 0.0226 (8) 0.0192 (7) 0.0172 (7) 0.0022 (6) −0.0032 (6) −0.0011 (6)
C9 0.0252 (8) 0.0208 (8) 0.0174 (7) −0.0003 (6) −0.0019 (6) −0.0049 (6)
C10 0.0232 (8) 0.0165 (7) 0.0169 (7) −0.0015 (6) 0.0018 (6) −0.0057 (6)
C11 0.0179 (7) 0.0192 (7) 0.0154 (7) 0.0020 (6) 0.0005 (6) −0.0017 (6)
C12 0.0209 (8) 0.0205 (8) 0.0158 (7) 0.0009 (6) 0.0022 (6) 0.0000 (6)
C13 0.0206 (7) 0.0175 (7) 0.0183 (7) 0.0008 (6) −0.0012 (6) −0.0012 (6)
C14 0.0209 (8) 0.0256 (8) 0.0295 (9) 0.0005 (7) 0.0010 (7) 0.0009 (7)
C15 0.0329 (9) 0.0265 (8) 0.0201 (8) −0.0039 (7) 0.0032 (7) 0.0039 (7)
C16 0.0160 (7) 0.0200 (7) 0.0165 (7) −0.0013 (6) −0.0008 (6) 0.0002 (6)
C17 0.0293 (9) 0.0201 (7) 0.0158 (7) 0.0052 (7) −0.0011 (6) 0.0029 (6)
C18 0.0316 (9) 0.0192 (8) 0.0172 (7) 0.0065 (7) −0.0005 (7) −0.0003 (6)
C19 0.0194 (7) 0.0205 (7) 0.0147 (7) 0.0005 (6) 0.0011 (6) 0.0015 (6)
C20 0.0196 (7) 0.0192 (7) 0.0178 (7) 0.0018 (6) −0.0006 (6) 0.0040 (6)
C21 0.0226 (8) 0.0164 (7) 0.0183 (7) 0.0002 (6) 0.0002 (6) −0.0005 (6)
C22 0.0245 (8) 0.0202 (7) 0.0159 (7) 0.0027 (7) −0.0007 (6) 0.0042 (6)
C23 0.0226 (8) 0.0219 (8) 0.0158 (7) 0.0015 (7) −0.0013 (6) 0.0023 (6)
C24 0.0237 (8) 0.0215 (7) 0.0151 (7) −0.0016 (6) −0.0008 (6) 0.0014 (6)
C25 0.0215 (8) 0.0227 (7) 0.0140 (7) 0.0003 (6) 0.0002 (6) −0.0006 (6)
C26 0.0177 (7) 0.0217 (7) 0.0170 (7) −0.0006 (6) −0.0011 (6) 0.0024 (6)
C27 0.0174 (7) 0.0263 (8) 0.0130 (7) −0.0016 (6) −0.0006 (6) 0.0010 (6)
C28 0.0225 (8) 0.0245 (8) 0.0168 (7) 0.0003 (7) 0.0003 (6) −0.0029 (6)
C29 0.0277 (8) 0.0229 (8) 0.0181 (8) 0.0047 (7) −0.0028 (6) 0.0007 (6)
C30 0.0222 (8) 0.0269 (8) 0.0192 (8) 0.0048 (7) −0.0010 (6) −0.0031 (7)
C31 0.0230 (8) 0.0264 (8) 0.0165 (7) 0.0005 (7) 0.0029 (6) 0.0007 (6)
C32 0.0359 (10) 0.0292 (9) 0.0231 (8) 0.0125 (8) −0.0005 (8) −0.0024 (7)
C33 0.0301 (8) 0.0225 (8) 0.0130 (7) −0.0001 (7) −0.0046 (6) −0.0031 (6)
O1M 0.0289 (13) 0.0360 (14) 0.0465 (16) −0.0027 (12) 0.0055 (12) 0.0064 (13)
C1M 0.0213 (17) 0.044 (2) 0.0359 (19) −0.0039 (15) 0.0058 (16) −0.0010 (18)

Geometric parameters (Å, º)

O1—C5 1.4426 (18) C14—H14B 0.9800
O1—C4 1.454 (2) C14—H14C 0.9800
O2—C12 1.3500 (19) C15—H15A 0.9800
O2—C6 1.4587 (18) C15—H15B 0.9800
O3—C12 1.208 (2) C15—H15C 0.9800
O4—C26 1.3602 (19) C16—C17 1.398 (2)
O4—C30 1.4321 (19) C16—C21 1.400 (2)
O5—C27 1.3713 (18) C17—C18 1.382 (2)
O5—C31 1.4381 (19) C17—H17 0.9500
O6—C28 1.3619 (19) C18—C19 1.402 (2)
O6—C32 1.425 (2) C18—H18 0.9500
N1—C33 1.151 (2) C19—C20 1.400 (2)
C1—C10 1.334 (2) C19—C22 1.462 (2)
C1—C2 1.508 (2) C20—C21 1.383 (2)
C1—H1 0.9500 C20—H20 0.9500
C2—C3 1.547 (2) C21—H21 0.9500
C2—H2A 0.9900 C22—C23 1.349 (2)
C2—H2B 0.9900 C22—H22 0.9500
C3—C4 1.507 (2) C23—C33 1.440 (2)
C3—H3A 0.9900 C23—C24 1.491 (2)
C3—H3B 0.9900 C24—C29 1.395 (2)
C4—C5 1.470 (2) C24—C25 1.395 (2)
C4—C15 1.505 (2) C25—C26 1.391 (2)
C5—C6 1.506 (2) C25—H25 0.9500
C5—H5 1.0000 C26—C27 1.401 (2)
C6—C7 1.558 (2) C27—C28 1.398 (2)
C6—H6 1.0000 C28—C29 1.396 (2)
C7—C11 1.511 (2) C29—H29 0.9500
C7—C8 1.544 (2) C30—H30A 0.9800
C7—H7 1.0000 C30—H30B 0.9800
C8—C9 1.540 (2) C30—H30C 0.9800
C8—H8A 0.9900 C31—H31A 0.9800
C8—H8B 0.9900 C31—H31B 0.9800
C9—C10 1.508 (2) C31—H31C 0.9800
C9—H9A 0.9900 C32—H32A 0.9800
C9—H9B 0.9900 C32—H32B 0.9800
C10—C14 1.505 (2) C32—H32C 0.9800
C11—C13 1.338 (2) O1M—C1M 1.408 (5)
C11—C12 1.484 (2) O1M—H1M 0.8400
C13—C16 1.466 (2) C1M—H1M1 0.9800
C13—H13 0.9500 C1M—H1M2 0.9800
C14—H14A 0.9800 C1M—H1M3 0.9800
C5—O1—C4 60.96 (10) C4—C15—H15A 109.5
C12—O2—C6 111.14 (11) C4—C15—H15B 109.5
C26—O4—C30 117.40 (12) H15A—C15—H15B 109.5
C27—O5—C31 114.60 (12) C4—C15—H15C 109.5
C28—O6—C32 117.42 (12) H15A—C15—H15C 109.5
C10—C1—C2 127.16 (15) H15B—C15—H15C 109.5
C10—C1—H1 116.4 C17—C16—C21 117.62 (14)
C2—C1—H1 116.4 C17—C16—C13 123.93 (14)
C1—C2—C3 111.01 (13) C21—C16—C13 118.42 (14)
C1—C2—H2A 109.4 C18—C17—C16 121.39 (15)
C3—C2—H2A 109.4 C18—C17—H17 119.3
C1—C2—H2B 109.4 C16—C17—H17 119.3
C3—C2—H2B 109.4 C17—C18—C19 120.96 (14)
H2A—C2—H2B 108.0 C17—C18—H18 119.5
C4—C3—C2 110.34 (14) C19—C18—H18 119.5
C4—C3—H3A 109.6 C20—C19—C18 117.49 (14)
C2—C3—H3A 109.6 C20—C19—C22 116.35 (14)
C4—C3—H3B 109.6 C18—C19—C22 126.16 (15)
C2—C3—H3B 109.6 C21—C20—C19 121.39 (14)
H3A—C3—H3B 108.1 C21—C20—H20 119.3
O1—C4—C5 59.12 (10) C19—C20—H20 119.3
O1—C4—C15 112.24 (13) C20—C21—C16 120.93 (14)
C5—C4—C15 122.56 (15) C20—C21—H21 119.5
O1—C4—C3 117.45 (14) C16—C21—H21 119.5
C5—C4—C3 116.05 (14) C23—C22—C19 131.73 (15)
C15—C4—C3 116.40 (14) C23—C22—H22 114.1
O1—C5—C4 59.92 (10) C19—C22—H22 114.1
O1—C5—C6 121.09 (13) C22—C23—C33 122.00 (14)
C4—C5—C6 124.78 (14) C22—C23—C24 123.24 (15)
O1—C5—H5 113.6 C33—C23—C24 114.74 (14)
C4—C5—H5 113.6 C29—C24—C25 120.25 (14)
C6—C5—H5 113.6 C29—C24—C23 119.87 (14)
O2—C6—C5 108.87 (12) C25—C24—C23 119.86 (14)
O2—C6—C7 106.71 (12) C26—C25—C24 119.76 (15)
C5—C6—C7 112.02 (12) C26—C25—H25 120.1
O2—C6—H6 109.7 C24—C25—H25 120.1
C5—C6—H6 109.7 O4—C26—C25 124.05 (14)
C7—C6—H6 109.7 O4—C26—C27 115.54 (13)
C11—C7—C8 114.26 (13) C25—C26—C27 120.41 (15)
C11—C7—C6 102.28 (12) O5—C27—C28 121.77 (14)
C8—C7—C6 114.66 (13) O5—C27—C26 118.71 (14)
C11—C7—H7 108.4 C28—C27—C26 119.43 (14)
C8—C7—H7 108.4 O6—C28—C29 124.43 (15)
C6—C7—H7 108.4 O6—C28—C27 115.43 (13)
C9—C8—C7 113.36 (13) C29—C28—C27 120.14 (14)
C9—C8—H8A 108.9 C24—C29—C28 119.87 (15)
C7—C8—H8A 108.9 C24—C29—H29 120.1
C9—C8—H8B 108.9 C28—C29—H29 120.1
C7—C8—H8B 108.9 O4—C30—H30A 109.5
H8A—C8—H8B 107.7 O4—C30—H30B 109.5
C10—C9—C8 113.42 (12) H30A—C30—H30B 109.5
C10—C9—H9A 108.9 O4—C30—H30C 109.5
C8—C9—H9A 108.9 H30A—C30—H30C 109.5
C10—C9—H9B 108.9 H30B—C30—H30C 109.5
C8—C9—H9B 108.9 O5—C31—H31A 109.5
H9A—C9—H9B 107.7 O5—C31—H31B 109.5
C1—C10—C14 125.32 (15) H31A—C31—H31B 109.5
C1—C10—C9 120.92 (15) O5—C31—H31C 109.5
C14—C10—C9 113.76 (14) H31A—C31—H31C 109.5
C13—C11—C12 118.88 (14) H31B—C31—H31C 109.5
C13—C11—C7 132.60 (14) O6—C32—H32A 109.5
C12—C11—C7 108.40 (13) O6—C32—H32B 109.5
O3—C12—O2 121.34 (14) H32A—C32—H32B 109.5
O3—C12—C11 128.93 (15) O6—C32—H32C 109.5
O2—C12—C11 109.63 (13) H32A—C32—H32C 109.5
C11—C13—C16 130.38 (15) H32B—C32—H32C 109.5
C11—C13—H13 114.8 N1—C33—C23 177.04 (16)
C16—C13—H13 114.8 C1M—O1M—H1M 109.5
C10—C14—H14A 109.5 O1M—C1M—H1M1 109.5
C10—C14—H14B 109.5 O1M—C1M—H1M2 109.5
H14A—C14—H14B 109.5 H1M1—C1M—H1M2 109.5
C10—C14—H14C 109.5 O1M—C1M—H1M3 109.5
H14A—C14—H14C 109.5 H1M1—C1M—H1M3 109.5
H14B—C14—H14C 109.5 H1M2—C1M—H1M3 109.5
C10—C1—C2—C3 −107.33 (19) C11—C13—C16—C17 −18.2 (3)
C1—C2—C3—C4 51.42 (18) C11—C13—C16—C21 163.60 (17)
C5—O1—C4—C15 −115.66 (16) C21—C16—C17—C18 −3.6 (2)
C5—O1—C4—C3 105.42 (16) C13—C16—C17—C18 178.17 (16)
C2—C3—C4—O1 −154.06 (13) C16—C17—C18—C19 −0.3 (3)
C2—C3—C4—C5 −87.00 (17) C17—C18—C19—C20 3.8 (2)
C2—C3—C4—C15 68.71 (18) C17—C18—C19—C22 −176.49 (17)
C4—O1—C5—C6 114.86 (17) C18—C19—C20—C21 −3.4 (2)
C15—C4—C5—O1 98.13 (16) C22—C19—C20—C21 176.89 (15)
C3—C4—C5—O1 −107.79 (15) C19—C20—C21—C16 −0.6 (2)
O1—C4—C5—C6 −108.93 (16) C17—C16—C21—C20 4.1 (2)
C15—C4—C5—C6 −10.8 (2) C13—C16—C21—C20 −177.64 (15)
C3—C4—C5—C6 143.28 (15) C20—C19—C22—C23 −176.47 (17)
C12—O2—C6—C5 135.46 (13) C18—C19—C22—C23 3.8 (3)
C12—O2—C6—C7 14.37 (17) C19—C22—C23—C33 −4.2 (3)
O1—C5—C6—O2 44.08 (18) C19—C22—C23—C24 177.52 (16)
C4—C5—C6—O2 116.99 (15) C22—C23—C24—C29 159.30 (17)
O1—C5—C6—C7 161.85 (13) C33—C23—C24—C29 −19.1 (2)
C4—C5—C6—C7 −125.24 (16) C22—C23—C24—C25 −19.2 (3)
O2—C6—C7—C11 −11.56 (16) C33—C23—C24—C25 162.36 (15)
C5—C6—C7—C11 −130.62 (13) C29—C24—C25—C26 −2.5 (2)
O2—C6—C7—C8 −135.79 (13) C23—C24—C25—C26 175.96 (15)
C5—C6—C7—C8 105.15 (15) C30—O4—C26—C25 −16.8 (2)
C11—C7—C8—C9 147.81 (13) C30—O4—C26—C27 164.02 (14)
C6—C7—C8—C9 −94.58 (15) C24—C25—C26—O4 −179.51 (15)
C7—C8—C9—C10 70.67 (17) C24—C25—C26—C27 −0.4 (2)
C2—C1—C10—C14 −8.4 (3) C31—O5—C27—C28 −63.9 (2)
C2—C1—C10—C9 171.04 (14) C31—O5—C27—C26 119.53 (16)
C8—C9—C10—C1 −104.35 (17) O4—C26—C27—O5 −0.7 (2)
C8—C9—C10—C14 75.17 (18) C25—C26—C27—O5 −179.93 (14)
C8—C7—C11—C13 −54.0 (2) O4—C26—C27—C28 −177.44 (14)
C6—C7—C11—C13 −178.52 (17) C25—C26—C27—C28 3.4 (2)
C8—C7—C11—C12 130.10 (14) C32—O6—C28—C29 −2.5 (2)
C6—C7—C11—C12 5.60 (16) C32—O6—C28—C27 177.21 (15)
C6—O2—C12—O3 172.42 (15) O5—C27—C28—O6 0.3 (2)
C6—O2—C12—C11 −10.86 (17) C26—C27—C28—O6 176.89 (14)
C13—C11—C12—O3 2.6 (3) O5—C27—C28—C29 179.97 (15)
C7—C11—C12—O3 179.18 (17) C26—C27—C28—C29 −3.4 (2)
C13—C11—C12—O2 −173.76 (14) C25—C24—C29—C28 2.5 (2)
C7—C11—C12—O2 2.78 (18) C23—C24—C29—C28 −176.03 (15)
C12—C11—C13—C16 170.76 (16) O6—C28—C29—C24 −179.82 (16)
C7—C11—C13—C16 −4.8 (3) C27—C28—C29—C24 0.5 (2)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5404).

References

  1. Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hall, I. H., Lee, K. H., Starnes, C. O., Sumida, Y., Wu, R. Y., Waddell, T. G., Cochran, J. W. & Gerhart, K. G. (1979). J. Pharm. Sci. 68, 537–542. [DOI] [PubMed]
  3. Han, C., Barrios, F. J., Riofski, M. V. & Colby, D. A. (2009). J. Org. Chem. 74, 7176–7179. [DOI] [PubMed]
  4. Hanson, R. L., Lardy, H. A. & Kupchan, S. M. (1970). Science, 168, 378–380. [DOI] [PubMed]
  5. Hehner, S. P., Heinrich, M., Bork, P. M., Vogt, M., Ratter, F., Lehmann, V., Osthoff, K. S., Dröge, W. & Schmitz, M. L. (1998). J. Biol. Chem. 273, 1288–1297. [DOI] [PubMed]
  6. Hope, H. (1994). Prog. Inorg. Chem. 41, 1–19.
  7. Kupchan, S. M., Eakin, M. A. & Thomas, A. M. (1971). J. Med. Chem. 14, 1147–1152. [DOI] [PubMed]
  8. Neelakantan, S., Nasim, S., Guzman, M. L., Jordan, C. T. & Crooks, P. A. (2009). Bioorg. Med. Chem. Lett. 19, 4346–4349. [DOI] [PubMed]
  9. Oka, D., Nishimura, K., Shiba, M., Nakai, Y., Arai, Y., Nakayama, M., Takayama, H., Inoue, H., Okuyama, A. & Nonomura, N. (2007). Int. J. Cancer, 120, 2576–2581. [DOI] [PubMed]
  10. Parkin, S. (2000). Acta Cryst. A56, 157–162. [DOI] [PubMed]
  11. Parkin, S. (2013). CIFFIX, http://xray.uky.edu/people/parkin/programs/ciffix.
  12. Parkin, S. & Hope, H. (1998). J. Appl. Cryst. 31, 945–953.
  13. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  14. Penthala, N. R., Janganati, V., Parkin, S., Varughese, K. I. & Crooks, P. A. (2013a). Acta Cryst. E69, o1709–o1710. [DOI] [PMC free article] [PubMed]
  15. Penthala, N. R., Sonar, V. N., Horn, J., Leggas, M., Yadlapalli, J. S. & Crooks, P. A. (2013b). Medchemcomm, 4, 1073–1078. [DOI] [PMC free article] [PubMed]
  16. Ralstin, M. C., Gage, E. A., Yip-Schneider, M. T., Klein, P. J., Wiebke, E. A. & Schmidt, C. M. (2006). Mol. Cancer Res. 4, 387–399. [DOI] [PubMed]
  17. Sheldrick, G. M. (2008a). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2008b). SADABS University of Göttingen, Germany.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Sun, H.-X., Zheng, Q.-F. & Tu, J. (2006). Bioorg. Med. Chem. 14, 1189–1198. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814019333/sj5404sup1.cif

e-70-o1092-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019333/sj5404Isup2.hkl

e-70-o1092-Isup2.hkl (293.3KB, hkl)

. DOI: 10.1107/S1600536814019333/sj5404fig1.tif

A view of the mol­ecule with displacement ellipsoids drawn at the 50% probability level.

CCDC reference: 1021449

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES