Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 13;70(Pt 10):o1104–o1105. doi: 10.1107/S1600536814020121

Crystal structure of (E)-2-(2-{5-[(2-acet­oxy­eth­yl)(meth­yl)amino]­thio­phen-2-yl}vin­yl)-3-methyl­benzo­thia­zolium iodide monohydrate

Xian-Shun Sun a,b, Ming-Ming Wang a,b, Dan-Dan Li a,b,*
PMCID: PMC4257210  PMID: 25484696

Abstract

In the cation of the title hydrated salt, C19H21N2O2S2 +·I·H2O, the benzo­thia­zolium ring system is approximately planar [maximum deviation = 0.0251 (15) Å], and it makes a small dihedral angle of 1.16 (18)° with the plane of the thio­phene ring. In the crystal, the cations, anions and crystalline water mol­ecules are linked by classical O—H⋯O, O—H⋯I and weak C—H⋯O hydrogn bonds, forming a three-dimensional supra­molecular network. π–π stacking is observed between parallel thia­zole rings of adjacent cations [centroid–centroid distance = 3.5945 (16) Å].

Keywords: crystal structure, benzo­thia­zolium iodide salt, hydrogen bonding

Related literature  

Interest in organic compounds with non-linear optical (NLO) properties is driven by the prospective of their applications in optical information technologies. The most common design of molecules with large NLO-activity comprises strong electron donors and acceptors connected by a π-conjugated system, see: Hao et al. (2009); Zhou et al. (2011). For the crystal structures of related benzo­thia­zolium derivatives, see: Quist et al. (2009).graphic file with name e-70-o1104-scheme1.jpg

Experimental  

Crystal data  

  • C19H21N2O2S2 +·I·H2O

  • M r = 518.43

  • Triclinic, Inline graphic

  • a = 9.6689 (9) Å

  • b = 11.1237 (11) Å

  • c = 11.1693 (11) Å

  • α = 94.420 (1)°

  • β = 110.067 (1)°

  • γ = 99.919 (1)°

  • V = 1099.40 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.67 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.18 mm

Data collection  

  • Bruker SMART 1000 CCD area-detector diffractometer

  • 8450 measured reflections

  • 4211 independent reflections

  • 3638 reflections with I > 2σ(I)

  • R int = 0.016

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.071

  • S = 0.97

  • 4211 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.67 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814020121/xu5820sup1.cif

e-70-o1104-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020121/xu5820Isup2.hkl

e-70-o1104-Isup2.hkl (206.3KB, hkl)

. DOI: 10.1107/S1600536814020121/xu5820fig1.tif

The mol­ecular structure of the title compound (I) showing 30% probability displacement ellipsoids.

CCDC reference: 1023218

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯I1i 0.85 2.95 3.647 (3) 140
O2—H2C⋯O3ii 0.85 2.35 3.056 (5) 140
C7—H7A⋯O3i 0.96 2.46 3.364 (5) 157
C19—H19A⋯O2 0.96 2.60 3.554 (6) 173

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant No. 21271004), the Education Committee of Anhui Province, China (grant No. KJ2010A030), and the Undergraduate Innovative Test Program in Anhui University (grant No. 201310357260).

supplementary crystallographic information

S1. Comment

Interest in organic compounds with non-linear optical (NLO) properties is driven by the prospective of their applications in optical information technologies. The most common design of molecules with large NLO-active comprises strong electron-donors and acceptors connected by a π-conjugated system (Hao et al., 2009; Zhou et al., 2011). Besides, the introduction about the highpolarizability of sulfur atoms in thiophene rings leads to a stabilization of the conjugated chain and to excellent charge transport properties. In the title compound (I) (Fig. 1), the benzothiazolium-CH═CH-thiophene part of the molecule is nearly coplanar (plane of CH═CH makes angles of 0.663 (8)° and 0.847 (1)° with the planes of the benzothiazolium and the thiophene rings), while in related benzothiazolium derivatives (Quist et al. 2009), the corresponding angles are 5.61 (18)° and 1.78 (19)°, respectively.

S2. Experimental

A mixture of 2,3-dimethylbenzothiazolium iodide (1 mmol), 5-[(2-hydroxyethyl)methylamino]thiophene-2-carbaldehyde (1 mmol) and acetic anhydride (20 ml) was refluxed for 20 min, than poured into a warm solution of potassium iodide (4 mmol) in water (20 ml). The precipitated product was filtered, washed with water and recrystallized from a methanol/water solution. 1H NMR: (400 Hz, DMSO-d6), d(p.p.m.):8.14 (d, 1H), 8.11 (d, 1H), 7.89 (d, 1H), 7.83 (s, 1H), 7.66 (t, 1H), 7.53 (t, 1H), 6.73 (s, 1H), 6.54 (d, 1H), 4.33 (t, 2H), 4.00 (s, 3H), 3.85 (t, 2H), 3.24 (s, 3H), 1.94 (s, 3H).

S3. Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with O—H = 0.85, C—H = 0.93–0.97 Å, Uiso(H) = 1.5Ueq(C,O) for methyl H and water H atoms, and 1.2Ueq(C) for the others.

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound (I) showing 30% probability displacement ellipsoids.

Crystal data

C19H21N2O2S2+·I·H2O Z = 2
Mr = 518.43 F(000) = 520
Triclinic, P1 Dx = 1.566 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6689 (9) Å Cell parameters from 3223 reflections
b = 11.1237 (11) Å θ = 2.6–26.8°
c = 11.1693 (11) Å µ = 1.67 mm1
α = 94.420 (1)° T = 293 K
β = 110.067 (1)° Block, red
γ = 99.919 (1)° 0.20 × 0.20 × 0.18 mm
V = 1099.40 (18) Å3

Data collection

Bruker SMART 1000 CCD area-detector diffractometer 3638 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.016
Graphite monochromator θmax = 26.0°, θmin = 1.9°
phi and ω scans h = −11→11
8450 measured reflections k = −13→13
4211 independent reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071 H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.036P)2 + 0.5766P] where P = (Fo2 + 2Fc2)/3
4211 reflections (Δ/σ)max < 0.001
247 parameters Δρmax = 0.67 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8392 (4) 1.1137 (3) 1.1880 (3) 0.0617 (8)
H1 0.9151 1.1225 1.1540 0.074*
C2 0.8380 (4) 1.2036 (3) 1.2804 (4) 0.0735 (10)
H2 0.9138 1.2747 1.3076 0.088*
C3 0.7274 (4) 1.1903 (3) 1.3330 (3) 0.0710 (9)
H3 0.7318 1.2513 1.3968 0.085*
C4 0.6105 (4) 1.0881 (3) 1.2926 (3) 0.0608 (8)
H4 0.5353 1.0797 1.3274 0.073*
C5 0.6088 (3) 0.9985 (2) 1.1986 (3) 0.0476 (6)
C6 0.7227 (3) 1.0101 (3) 1.1481 (3) 0.0483 (6)
C7 0.8124 (4) 0.8983 (3) 0.9953 (3) 0.0698 (9)
H7A 0.7863 0.8181 0.9452 0.105*
H7B 0.9112 0.9100 1.0600 0.105*
H7C 0.8113 0.9604 0.9401 0.105*
C8 0.5782 (3) 0.8216 (2) 1.0354 (2) 0.0432 (6)
C9 0.5304 (3) 0.7106 (3) 0.9491 (3) 0.0481 (6)
H9 0.5890 0.6925 0.9021 0.058*
C10 0.4006 (3) 0.6289 (3) 0.9325 (3) 0.0485 (6)
H10 0.3468 0.6512 0.9824 0.058*
C11 0.3379 (3) 0.5172 (3) 0.8514 (3) 0.0498 (6)
C12 0.2052 (3) 0.4370 (3) 0.8388 (3) 0.0565 (7)
H12 0.1471 0.4533 0.8869 0.068*
C13 0.1650 (3) 0.3322 (3) 0.7507 (3) 0.0553 (7)
H13 0.0780 0.2720 0.7329 0.066*
C14 0.2699 (3) 0.3259 (3) 0.6907 (3) 0.0481 (6)
C15 0.1367 (4) 0.1291 (3) 0.5589 (3) 0.0627 (8)
H15A 0.1256 0.0933 0.6314 0.094*
H15B 0.1532 0.0685 0.5022 0.094*
H15C 0.0469 0.1569 0.5134 0.094*
C16 0.3834 (4) 0.2325 (3) 0.5509 (3) 0.0616 (8)
H16A 0.4097 0.1522 0.5533 0.074*
H16B 0.4725 0.2934 0.6045 0.074*
C17 0.3371 (4) 0.2598 (3) 0.4147 (3) 0.0679 (9)
H17A 0.4175 0.2563 0.3821 0.081*
H17B 0.2482 0.1996 0.3597 0.081*
C18 0.2295 (4) 0.4128 (3) 0.3042 (4) 0.0652 (9)
C19 0.1969 (5) 0.5379 (4) 0.3189 (5) 0.1004 (14)
H19A 0.1788 0.5703 0.2390 0.151*
H19B 0.2815 0.5915 0.3852 0.151*
H19C 0.1093 0.5326 0.3420 0.151*
I1 0.77902 (2) 0.097609 (18) 0.70194 (2) 0.06164 (9)
N1 0.7029 (3) 0.9082 (2) 1.0575 (2) 0.0474 (5)
N2 0.2650 (3) 0.2336 (2) 0.6039 (2) 0.0543 (6)
O1 0.3053 (3) 0.38152 (19) 0.4157 (2) 0.0676 (6)
O2 0.0975 (4) 0.6590 (3) 0.0227 (3) 0.1165 (11)
H2A 0.0901 0.7284 0.0548 0.175*
H2C 0.0115 0.6207 −0.0300 0.175*
O3 0.1931 (4) 0.3467 (3) 0.2039 (3) 0.1068 (10)
S1 0.47604 (8) 0.86129 (6) 1.12820 (7) 0.04896 (17)
S2 0.41617 (9) 0.45592 (7) 0.74660 (7) 0.05390 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0601 (19) 0.0565 (18) 0.0615 (19) 0.0025 (15) 0.0177 (16) 0.0112 (15)
C2 0.076 (2) 0.0509 (19) 0.074 (2) −0.0031 (17) 0.0110 (19) 0.0046 (16)
C3 0.081 (2) 0.0509 (18) 0.070 (2) 0.0110 (17) 0.0186 (19) −0.0075 (16)
C4 0.068 (2) 0.0529 (17) 0.0599 (18) 0.0168 (15) 0.0211 (16) 0.0001 (14)
C5 0.0508 (16) 0.0426 (14) 0.0440 (15) 0.0127 (12) 0.0091 (12) 0.0068 (12)
C6 0.0536 (16) 0.0468 (15) 0.0409 (14) 0.0120 (13) 0.0110 (12) 0.0107 (12)
C7 0.066 (2) 0.082 (2) 0.066 (2) 0.0033 (18) 0.0367 (17) 0.0024 (17)
C8 0.0467 (15) 0.0472 (15) 0.0371 (13) 0.0148 (12) 0.0143 (11) 0.0091 (11)
C9 0.0509 (16) 0.0527 (16) 0.0423 (14) 0.0135 (13) 0.0187 (12) 0.0030 (12)
C10 0.0521 (16) 0.0505 (15) 0.0436 (15) 0.0154 (13) 0.0172 (12) 0.0015 (12)
C11 0.0511 (16) 0.0530 (16) 0.0466 (15) 0.0145 (13) 0.0192 (13) 0.0008 (12)
C12 0.0516 (17) 0.0603 (18) 0.0597 (18) 0.0108 (14) 0.0255 (14) −0.0024 (14)
C13 0.0455 (16) 0.0543 (17) 0.0610 (18) 0.0055 (13) 0.0174 (14) −0.0010 (14)
C14 0.0468 (15) 0.0492 (15) 0.0424 (14) 0.0137 (13) 0.0080 (12) 0.0025 (12)
C15 0.067 (2) 0.0493 (17) 0.0566 (18) 0.0091 (15) 0.0084 (15) −0.0061 (14)
C16 0.0627 (19) 0.0632 (19) 0.0597 (18) 0.0244 (16) 0.0203 (15) −0.0024 (15)
C17 0.097 (3) 0.0546 (18) 0.063 (2) 0.0304 (18) 0.0367 (19) 0.0014 (15)
C18 0.067 (2) 0.0576 (19) 0.076 (2) 0.0120 (16) 0.0336 (19) 0.0065 (18)
C19 0.114 (4) 0.069 (2) 0.126 (4) 0.039 (2) 0.042 (3) 0.019 (2)
I1 0.06545 (15) 0.05325 (13) 0.06963 (15) 0.00855 (9) 0.03333 (11) −0.00352 (9)
N1 0.0494 (13) 0.0504 (13) 0.0425 (12) 0.0090 (11) 0.0174 (10) 0.0077 (10)
N2 0.0555 (14) 0.0523 (14) 0.0496 (13) 0.0115 (11) 0.0149 (11) −0.0053 (11)
O1 0.0943 (17) 0.0500 (12) 0.0587 (13) 0.0227 (12) 0.0266 (12) −0.0024 (10)
O2 0.121 (3) 0.121 (3) 0.106 (2) 0.028 (2) 0.044 (2) −0.013 (2)
O3 0.150 (3) 0.093 (2) 0.0662 (17) 0.045 (2) 0.0181 (18) −0.0002 (15)
S1 0.0494 (4) 0.0476 (4) 0.0501 (4) 0.0109 (3) 0.0197 (3) −0.0004 (3)
S2 0.0526 (4) 0.0543 (4) 0.0534 (4) 0.0047 (3) 0.0237 (3) −0.0065 (3)

Geometric parameters (Å, º)

C1—C2 1.384 (5) C12—C13 1.372 (4)
C1—C6 1.387 (4) C12—H12 0.9300
C1—H1 0.9300 C13—C14 1.403 (4)
C2—C3 1.379 (5) C13—H13 0.9300
C2—H2 0.9300 C14—N2 1.340 (3)
C3—C4 1.379 (5) C14—S2 1.741 (3)
C3—H3 0.9300 C15—N2 1.459 (4)
C4—C5 1.385 (4) C15—H15A 0.9600
C4—H4 0.9300 C15—H15B 0.9600
C5—C6 1.391 (4) C15—H15C 0.9600
C5—S1 1.745 (3) C16—N2 1.459 (4)
C6—N1 1.401 (3) C16—C17 1.503 (5)
C7—N1 1.465 (4) C16—H16A 0.9700
C7—H7A 0.9600 C16—H16B 0.9700
C7—H7B 0.9600 C17—O1 1.439 (4)
C7—H7C 0.9600 C17—H17A 0.9700
C8—N1 1.343 (3) C17—H17B 0.9700
C8—C9 1.408 (4) C18—O3 1.196 (4)
C8—S1 1.740 (3) C18—O1 1.318 (4)
C9—C10 1.362 (4) C18—C19 1.489 (5)
C9—H9 0.9300 C19—H19A 0.9600
C10—C11 1.387 (4) C19—H19B 0.9600
C10—H10 0.9300 C19—H19C 0.9600
C11—C12 1.387 (4) O2—H2A 0.8500
C11—S2 1.752 (3) O2—H2C 0.8500
C2—C1—C6 117.4 (3) C14—C13—H13 123.8
C2—C1—H1 121.3 N2—C14—C13 126.6 (3)
C6—C1—H1 121.3 N2—C14—S2 122.6 (2)
C3—C2—C1 121.7 (3) C13—C14—S2 110.8 (2)
C3—C2—H2 119.2 N2—C15—H15A 109.5
C1—C2—H2 119.2 N2—C15—H15B 109.5
C2—C3—C4 121.1 (3) H15A—C15—H15B 109.5
C2—C3—H3 119.4 N2—C15—H15C 109.5
C4—C3—H3 119.4 H15A—C15—H15C 109.5
C3—C4—C5 117.8 (3) H15B—C15—H15C 109.5
C3—C4—H4 121.1 N2—C16—C17 112.6 (3)
C5—C4—H4 121.1 N2—C16—H16A 109.1
C4—C5—C6 121.1 (3) C17—C16—H16A 109.1
C4—C5—S1 128.1 (3) N2—C16—H16B 109.1
C6—C5—S1 110.7 (2) C17—C16—H16B 109.1
C1—C6—C5 120.8 (3) H16A—C16—H16B 107.8
C1—C6—N1 126.9 (3) O1—C17—C16 107.5 (2)
C5—C6—N1 112.3 (2) O1—C17—H17A 110.2
N1—C7—H7A 109.5 C16—C17—H17A 110.2
N1—C7—H7B 109.5 O1—C17—H17B 110.2
H7A—C7—H7B 109.5 C16—C17—H17B 110.2
N1—C7—H7C 109.5 H17A—C17—H17B 108.5
H7A—C7—H7C 109.5 O3—C18—O1 122.8 (3)
H7B—C7—H7C 109.5 O3—C18—C19 125.1 (4)
N1—C8—C9 126.3 (2) O1—C18—C19 112.2 (3)
N1—C8—S1 111.84 (19) C18—C19—H19A 109.5
C9—C8—S1 121.9 (2) C18—C19—H19B 109.5
C10—C9—C8 121.8 (2) H19A—C19—H19B 109.5
C10—C9—H9 119.1 C18—C19—H19C 109.5
C8—C9—H9 119.1 H19A—C19—H19C 109.5
C9—C10—C11 128.8 (3) H19B—C19—H19C 109.5
C9—C10—H10 115.6 C8—N1—C6 114.3 (2)
C11—C10—H10 115.6 C8—N1—C7 123.9 (2)
C10—C11—C12 126.4 (3) C6—N1—C7 121.8 (2)
C10—C11—S2 124.4 (2) C14—N2—C15 119.5 (3)
C12—C11—S2 109.2 (2) C14—N2—C16 122.8 (3)
C13—C12—C11 115.8 (3) C15—N2—C16 117.7 (2)
C13—C12—H12 122.1 C18—O1—C17 117.4 (2)
C11—C12—H12 122.1 H2A—O2—H2C 109.5
C12—C13—C14 112.4 (3) C8—S1—C5 90.83 (14)
C12—C13—H13 123.8 C14—S2—C11 91.88 (14)
C6—C1—C2—C3 1.2 (5) C9—C8—N1—C7 −1.4 (4)
C1—C2—C3—C4 −2.0 (6) S1—C8—N1—C7 178.5 (2)
C2—C3—C4—C5 0.8 (5) C1—C6—N1—C8 −178.9 (3)
C3—C4—C5—C6 1.1 (4) C5—C6—N1—C8 1.3 (3)
C3—C4—C5—S1 −179.4 (3) C1—C6—N1—C7 2.1 (4)
C2—C1—C6—C5 0.6 (4) C5—C6—N1—C7 −177.7 (3)
C2—C1—C6—N1 −179.2 (3) C13—C14—N2—C15 3.2 (4)
C4—C5—C6—C1 −1.8 (4) S2—C14—N2—C15 −178.3 (2)
S1—C5—C6—C1 178.6 (2) C13—C14—N2—C16 −177.0 (3)
C4—C5—C6—N1 178.0 (3) S2—C14—N2—C16 1.5 (4)
S1—C5—C6—N1 −1.6 (3) C17—C16—N2—C14 −105.5 (3)
N1—C8—C9—C10 −179.3 (3) C17—C16—N2—C15 74.3 (4)
S1—C8—C9—C10 0.7 (4) O3—C18—O1—C17 −3.4 (5)
C8—C9—C10—C11 179.5 (3) C19—C18—O1—C17 177.0 (3)
C9—C10—C11—C12 179.7 (3) C16—C17—O1—C18 −164.4 (3)
C9—C10—C11—S2 −0.9 (5) N1—C8—S1—C5 −0.4 (2)
C10—C11—C12—C13 179.2 (3) C9—C8—S1—C5 179.6 (2)
S2—C11—C12—C13 −0.3 (4) C4—C5—S1—C8 −178.4 (3)
C11—C12—C13—C14 0.8 (4) C6—C5—S1—C8 1.1 (2)
C12—C13—C14—N2 177.7 (3) N2—C14—S2—C11 −178.0 (2)
C12—C13—C14—S2 −1.0 (3) C13—C14—S2—C11 0.7 (2)
N2—C16—C17—O1 61.2 (4) C10—C11—S2—C14 −179.8 (3)
C9—C8—N1—C6 179.6 (3) C12—C11—S2—C14 −0.3 (2)
S1—C8—N1—C6 −0.4 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2A···I1i 0.85 2.95 3.647 (3) 140
O2—H2C···O3ii 0.85 2.35 3.056 (5) 140
C7—H7A···O3i 0.96 2.46 3.364 (5) 157
C19—H19A···O2 0.96 2.60 3.554 (6) 173

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5820).

References

  1. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Hao, F.-Y., Zhang, X.-J., Tian, Y.-P., Zhou, H.-P., Li, L., Wu, J.-Y., Zhang, S.-Y., Yang, J.-X., Jin, B.-K., Tao, X.-T., Zhou, G.-Y. & Jiang, M.-H. (2009). J. Mater. Chem. 19, 9163–9169.
  3. Quist, F., Vande Velde, C. M. L., Didier, D., Teshome, A., Asselberghs, I., Clays, K. & Sergeyev, S. (2009). Dyes Pigm 81, 203–210.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Zhou, S.-S., Zhang, Q., Tian, X.-H., Hu, G.-J., Hao, F.-Y., Wu, J.-Y. & Tian, Y.-P. (2011). Dyes Pigm. 92, 689–695.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S1600536814020121/xu5820sup1.cif

e-70-o1104-sup1.cif (20.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020121/xu5820Isup2.hkl

e-70-o1104-Isup2.hkl (206.3KB, hkl)

. DOI: 10.1107/S1600536814020121/xu5820fig1.tif

The mol­ecular structure of the title compound (I) showing 30% probability displacement ellipsoids.

CCDC reference: 1023218

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES