Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 6;70(Pt 10):o1085–o1086. doi: 10.1107/S1600536814019680

Crystal structure of 5,10,15-triphenyl-20-(4,4,5,5-tetra­methyl-1,3,2-dioxaborolan-2-yl)porphyrin

Mathias O Senge a,*, Hans-Georg Eckhardt a
PMCID: PMC4257212  PMID: 25484685

Abstract

In the title compound, C44H37BN4O2, the dihedral angle between the plane of the porphyrin macrocycle ring system [r.m.s. deviation = 0.159 (1) Å] and those of three phenyl rings are 66.11 (4), 74.75 (4) and 57.00 (4)°. The conformational distortion is characterized by a mixture of ruffled, saddle and in-plane distortion modes. In the crystal, the porphyrin mol­ecules are linked by C—H⋯π inter­actions into supra­molecular chains running along the a-axis direction. A pair of bifurcated N—H⋯(N,N) hydrogen bonds occur across the central region of the macrocycle.

Keywords: crystal structure, porphyrinoid, tetra­pyrroles, porphyrins

Related literature  

For the structure and conformation of porphyrins, see: Scheidt & Lee (1987); Jentzen et al. (1997); Senge (2000, 2006). For the synthesis, see: Finnigan et al. (2011). For the handling of crystals, see Hope (1994). For related boronyl porphyrin structures, see: Hyslop et al. (1998); Schwalbe et al. (2012). For other recent free base porphyrin structures, see: Miranda et al. (2012); Leonarska et al. (2012); Senge (2013).graphic file with name e-70-o1085-scheme1.jpg

Experimental  

Crystal data  

  • C44H37BN4O2

  • M r = 664.59

  • Monoclinic, Inline graphic

  • a = 13.0758 (5) Å

  • b = 10.5245 (4) Å

  • c = 27.1358 (10) Å

  • β = 110.353 (2)°

  • V = 3501.2 (2) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.61 mm−1

  • T = 100 K

  • 0.50 × 0.50 × 0.35 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.751, T max = 0.815

  • 25108 measured reflections

  • 5993 independent reflections

  • 5788 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.103

  • S = 1.03

  • 5993 reflections

  • 464 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL-Plus (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814019680/lx2293sup1.cif

e-70-o1085-sup1.cif (779.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019680/lx2293Isup2.hkl

e-70-o1085-Isup2.hkl (293.4KB, hkl)

. DOI: 10.1107/S1600536814019680/lx2293fig1.tif

Mol­ecular structure of the title compound. Thermal ellipsoids are drawn at 50% probability level.

x y z x y z . DOI: 10.1107/S1600536814019680/lx2293fig2.tif

A view of the N—H⋯N and C—H⋯π inter­actions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry code: (i) x − 1, y, z; (ii) x + 1, y, z.]

CCDC reference: 1022040

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C100–C105 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N21—H21⋯N24 0.88 2.35 2.9084 (16) 122
N21—H21⋯N22 0.88 2.38 2.9266 (16) 121
N23—H23⋯N24 0.88 2.34 2.8978 (16) 121
N23—H23⋯N22 0.88 2.35 2.8986 (16) 120
C153—H153⋯Cg1i 0.95 2.58 3.488 (2) 160

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by a grant from Science Foundation Ireland (SFI P·I. 09/IN.1/B2650).

supplementary crystallographic information

S1. Comment

The compound was prepared via borylation of 5-bromo-10,15,20-triphenylporphyrin with 4,4,5,5-tetramethyl-1,3,2-dioxaborolane under dichlorobis(triphenylphosphine)palladium(II) catalysis (Finnigan et al., 2011). Crystallization from CH2Cl2/CH3OH yielded monoclinic crystals without solvent inclusion.

The compound was investigated with regard to its macrocycle conformation. The porphyrin macrocycle ring system, with a mean deviation of 0.159 (1) Å from the least-squares plane defined by the 24 constituent atoms. Three phenyl rings are essentially planar, with a mean deviation of 0.001 (1) (C100–C105), 0.003 (1) (C150–C155) and 0.007 (1) (C200–C205) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the porphyrin macrocycle ring system and three phenyl rings are 66.11 (4)(C100–C105), 74.75 (4) (C150–C155) and 57.00 (4) (C200–C205) °, respectively. A conformational analysis was performed using the NSD (normal structural decomposition) method developed by Shelnutt and coworkers (Jentzen et al., 1997). The compound exhibits a moderate degree of conformational distortion. The main contributing out-of-plane distortion modes are ruf, sad and wav. Likewise moderate contributions from macrocycle breathing and N-str are observed for the in-plane distortions. Related Zn(II) complexes, e.g. {5,15-diphenyl-10-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)porphyrinato}zinc(II) (Hyslop et al., 1998; Schwalbe et al., 2012) exhibit more planar conformations. Other recent porphyrin free base structures have been reported by Miranda et al. (2012), Leonarska et al. (2012), and Senge (2013).

In the crystal packing (Fig. 2), the porphyrin molecules are linked by C—H···π interactions (Table 1, Cg1 is the centroid of the C100–C105 phenyl ring) into supramolecular chains running along the a axis. Also intramolecular N—H···N hydrogen bonds occur (Table 1).

S2. Experimental

The title compound was prepared as described by Finnigan et al. (2011).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Thermal ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

A view of the N—H···N and C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry code: (i) x -1, y, z; (ii) x + 1, y, z.]

Crystal data

C44H37BN4O2 F(000) = 1400
Mr = 664.59 Dx = 1.261 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybc Cell parameters from 9566 reflections
a = 13.0758 (5) Å θ = 4.1–66.8°
b = 10.5245 (4) Å µ = 0.61 mm1
c = 27.1358 (10) Å T = 100 K
β = 110.353 (2)° Triangle, purple
V = 3501.2 (2) Å3 0.50 × 0.50 × 0.35 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 5993 independent reflections
Radiation source: sealed tube 5788 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.029
Detector resolution: 8.33 pixels mm-1 θmax = 66.8°, θmin = 4.0°
φ and ω scans h = −15→15
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −8→12
Tmin = 0.751, Tmax = 0.815 l = −31→32
25108 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.103 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0402P)2 + 2.0737P] where P = (Fo2 + 2Fc2)/3
5993 reflections (Δ/σ)max < 0.001
464 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The carbon atoms of one phenyl unit show some degree of thermal librational movement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.55291 (11) 0.54316 (12) 0.72969 (5) 0.0213 (3)
C2 0.63876 (11) 0.60493 (13) 0.77064 (5) 0.0229 (3)
H2 0.6384 0.6249 0.8047 0.027*
C3 0.72077 (11) 0.62999 (13) 0.75218 (5) 0.0233 (3)
H3 0.7872 0.6721 0.7709 0.028*
C4 0.68981 (11) 0.58188 (12) 0.69939 (5) 0.0209 (3)
C5 0.75153 (11) 0.58579 (13) 0.66621 (5) 0.0221 (3)
C6 0.72497 (11) 0.51900 (13) 0.61822 (5) 0.0225 (3)
C7 0.80206 (12) 0.50156 (14) 0.59095 (6) 0.0281 (3)
H7 0.8718 0.5401 0.5997 0.034*
C8 0.75622 (12) 0.42099 (14) 0.55110 (6) 0.0280 (3)
H8 0.7883 0.3894 0.5270 0.034*
C9 0.64820 (11) 0.39125 (13) 0.55173 (5) 0.0223 (3)
C10 0.57290 (11) 0.31342 (13) 0.51484 (5) 0.0219 (3)
C11 0.46626 (11) 0.28910 (13) 0.51343 (5) 0.0221 (3)
C12 0.38183 (12) 0.22656 (15) 0.47235 (6) 0.0278 (3)
H12 0.3891 0.1897 0.4418 0.033*
C13 0.28955 (12) 0.22871 (14) 0.48442 (6) 0.0280 (3)
H13 0.2207 0.1947 0.4637 0.034*
C14 0.31440 (11) 0.29137 (13) 0.53390 (5) 0.0222 (3)
C15 0.24417 (11) 0.31216 (13) 0.56185 (5) 0.0226 (3)
C16 0.27360 (11) 0.36879 (13) 0.61174 (5) 0.0222 (3)
C17 0.19703 (11) 0.39354 (15) 0.63825 (6) 0.0269 (3)
H17 0.1209 0.3767 0.6252 0.032*
C18 0.25478 (11) 0.44510 (15) 0.68516 (6) 0.0265 (3)
H18 0.2272 0.4709 0.7117 0.032*
C19 0.36661 (11) 0.45374 (13) 0.68739 (5) 0.0213 (3)
C20 0.45034 (11) 0.50854 (13) 0.73035 (5) 0.0212 (3)
N21 0.58829 (9) 0.52924 (11) 0.68782 (4) 0.0211 (2)
H21 0.5511 0.4919 0.6579 0.025*
N22 0.63209 (9) 0.45164 (11) 0.59351 (4) 0.0214 (2)
N23 0.42208 (9) 0.32698 (11) 0.54992 (4) 0.0213 (2)
H23 0.4573 0.3679 0.5792 0.026*
N24 0.37618 (9) 0.40825 (11) 0.64213 (4) 0.0209 (2)
B1 0.85661 (13) 0.67155 (15) 0.68378 (6) 0.0242 (3)
C50 0.99982 (12) 0.78798 (15) 0.73694 (6) 0.0314 (3)
C51 0.99019 (14) 0.80462 (17) 0.67871 (7) 0.0377 (4)
C52 0.94995 (14) 0.89499 (17) 0.75792 (7) 0.0405 (4)
H52A 0.8746 0.9086 0.7345 0.061*
H52B 0.9922 0.9729 0.7598 0.061*
H52C 0.9507 0.8731 0.7931 0.061*
C53 1.11315 (13) 0.75979 (18) 0.77465 (8) 0.0426 (4)
H53A 1.1116 0.7523 0.8104 0.064*
H53B 1.1624 0.8289 0.7734 0.064*
H53C 1.1390 0.6799 0.7646 0.064*
C54 0.9911 (2) 0.9413 (2) 0.66153 (9) 0.0655 (7)
H54A 0.9874 0.9436 0.6248 0.098*
H54B 1.0585 0.9826 0.6838 0.098*
H54C 0.9281 0.9862 0.6648 0.098*
C55 1.07129 (17) 0.7236 (3) 0.66391 (9) 0.0624 (6)
H55A 1.0661 0.6352 0.6742 0.094*
H55B 1.1453 0.7553 0.6821 0.094*
H55C 1.0547 0.7280 0.6258 0.094*
C100 0.60355 (11) 0.25149 (13) 0.47213 (5) 0.0227 (3)
C101 0.60723 (11) 0.11908 (14) 0.46904 (6) 0.0260 (3)
H101 0.5935 0.0686 0.4951 0.031*
C102 0.63066 (12) 0.06045 (14) 0.42833 (6) 0.0291 (3)
H102 0.6330 −0.0296 0.4267 0.035*
C103 0.65068 (12) 0.13354 (15) 0.39013 (6) 0.0300 (3)
H103 0.6664 0.0936 0.3622 0.036*
C104 0.64771 (12) 0.26504 (15) 0.39283 (6) 0.0293 (3)
H104 0.6617 0.3152 0.3668 0.035*
C105 0.62430 (12) 0.32356 (14) 0.43358 (6) 0.0269 (3)
H105 0.6224 0.4137 0.4352 0.032*
C150 0.12827 (11) 0.27037 (14) 0.53697 (5) 0.0254 (3)
C151 0.09046 (14) 0.16336 (18) 0.55491 (8) 0.0473 (5)
H151 0.1392 0.1135 0.5822 0.057*
C152 −0.01833 (16) 0.1288 (2) 0.53314 (9) 0.0565 (6)
H152 −0.0434 0.0548 0.5455 0.068*
C153 −0.09030 (13) 0.20004 (18) 0.49394 (7) 0.0399 (4)
H153 −0.1648 0.1759 0.4794 0.048*
C154 −0.05394 (12) 0.30615 (18) 0.47587 (6) 0.0374 (4)
H154 −0.1034 0.3560 0.4488 0.045*
C155 0.05526 (12) 0.34111 (17) 0.49711 (6) 0.0326 (4)
H155 0.0800 0.4143 0.4841 0.039*
C200 0.42271 (11) 0.53497 (14) 0.77821 (5) 0.0227 (3)
C201 0.42174 (12) 0.65766 (15) 0.79739 (6) 0.0284 (3)
H201 0.4450 0.7270 0.7815 0.034*
C202 0.38703 (12) 0.67918 (17) 0.83956 (6) 0.0350 (4)
H202 0.3871 0.7631 0.8525 0.042*
C203 0.35234 (12) 0.57919 (18) 0.86278 (6) 0.0371 (4)
H203 0.3275 0.5945 0.8912 0.044*
C204 0.35386 (13) 0.45689 (17) 0.84452 (6) 0.0350 (4)
H204 0.3302 0.3880 0.8605 0.042*
C205 0.38975 (12) 0.43456 (15) 0.80300 (5) 0.0278 (3)
H205 0.3920 0.3500 0.7912 0.033*
O1 0.92954 (8) 0.67730 (10) 0.73411 (4) 0.0297 (2)
O2 0.88183 (9) 0.75138 (11) 0.65026 (4) 0.0355 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0237 (7) 0.0168 (6) 0.0236 (7) 0.0005 (5) 0.0084 (5) 0.0006 (5)
C2 0.0250 (7) 0.0209 (7) 0.0227 (7) −0.0002 (6) 0.0082 (5) −0.0009 (5)
C3 0.0218 (7) 0.0200 (7) 0.0265 (7) −0.0019 (5) 0.0064 (5) −0.0013 (6)
C4 0.0203 (6) 0.0155 (6) 0.0255 (7) 0.0011 (5) 0.0063 (5) 0.0010 (5)
C5 0.0220 (7) 0.0174 (7) 0.0267 (7) 0.0012 (5) 0.0083 (5) 0.0015 (5)
C6 0.0249 (7) 0.0176 (7) 0.0263 (7) −0.0008 (5) 0.0106 (6) 0.0014 (5)
C7 0.0260 (7) 0.0281 (8) 0.0341 (8) −0.0076 (6) 0.0155 (6) −0.0038 (6)
C8 0.0297 (8) 0.0282 (8) 0.0322 (8) −0.0045 (6) 0.0186 (6) −0.0043 (6)
C9 0.0262 (7) 0.0178 (7) 0.0256 (7) −0.0004 (5) 0.0122 (6) 0.0021 (5)
C10 0.0263 (7) 0.0177 (7) 0.0230 (7) 0.0018 (5) 0.0101 (6) 0.0020 (5)
C11 0.0252 (7) 0.0186 (7) 0.0229 (7) 0.0027 (5) 0.0087 (5) 0.0002 (5)
C12 0.0268 (7) 0.0308 (8) 0.0252 (7) 0.0019 (6) 0.0080 (6) −0.0069 (6)
C13 0.0232 (7) 0.0301 (8) 0.0273 (7) −0.0004 (6) 0.0047 (6) −0.0075 (6)
C14 0.0208 (7) 0.0205 (7) 0.0233 (7) 0.0013 (5) 0.0050 (5) −0.0006 (5)
C15 0.0213 (7) 0.0206 (7) 0.0243 (7) 0.0006 (5) 0.0058 (5) 0.0011 (5)
C16 0.0207 (6) 0.0225 (7) 0.0235 (7) 0.0000 (5) 0.0077 (5) 0.0015 (5)
C17 0.0198 (7) 0.0363 (8) 0.0252 (7) −0.0029 (6) 0.0084 (6) 0.0001 (6)
C18 0.0238 (7) 0.0339 (8) 0.0240 (7) −0.0008 (6) 0.0111 (6) −0.0008 (6)
C19 0.0231 (7) 0.0194 (7) 0.0224 (7) −0.0007 (5) 0.0091 (5) 0.0013 (5)
C20 0.0235 (7) 0.0168 (6) 0.0233 (7) −0.0002 (5) 0.0083 (5) 0.0007 (5)
N21 0.0205 (6) 0.0200 (6) 0.0228 (6) −0.0023 (5) 0.0074 (4) −0.0024 (5)
N22 0.0237 (6) 0.0178 (6) 0.0234 (6) −0.0011 (5) 0.0091 (5) −0.0005 (5)
N23 0.0216 (6) 0.0212 (6) 0.0208 (5) −0.0002 (5) 0.0070 (4) −0.0022 (4)
N24 0.0216 (6) 0.0201 (6) 0.0208 (5) −0.0004 (5) 0.0072 (4) −0.0007 (4)
B1 0.0240 (8) 0.0198 (8) 0.0309 (8) 0.0013 (6) 0.0121 (7) −0.0018 (6)
C50 0.0267 (7) 0.0292 (8) 0.0394 (9) −0.0090 (6) 0.0130 (7) −0.0062 (7)
C51 0.0372 (9) 0.0385 (9) 0.0403 (9) −0.0189 (7) 0.0172 (7) −0.0085 (7)
C52 0.0371 (9) 0.0374 (9) 0.0480 (10) −0.0056 (7) 0.0161 (8) −0.0108 (8)
C53 0.0287 (8) 0.0416 (10) 0.0528 (10) −0.0074 (7) 0.0082 (8) −0.0063 (8)
C54 0.0834 (16) 0.0572 (13) 0.0492 (11) −0.0405 (12) 0.0147 (11) 0.0048 (10)
C55 0.0476 (11) 0.0894 (17) 0.0638 (13) −0.0248 (11) 0.0364 (10) −0.0324 (12)
C100 0.0206 (6) 0.0224 (7) 0.0245 (7) 0.0006 (5) 0.0071 (5) −0.0021 (6)
C101 0.0238 (7) 0.0224 (7) 0.0331 (8) −0.0011 (6) 0.0115 (6) −0.0013 (6)
C102 0.0248 (7) 0.0221 (7) 0.0407 (8) −0.0009 (6) 0.0116 (6) −0.0074 (6)
C103 0.0252 (7) 0.0353 (9) 0.0295 (7) 0.0034 (6) 0.0096 (6) −0.0091 (6)
C104 0.0313 (8) 0.0327 (8) 0.0253 (7) 0.0048 (6) 0.0116 (6) 0.0020 (6)
C105 0.0320 (8) 0.0226 (7) 0.0274 (7) 0.0047 (6) 0.0118 (6) 0.0003 (6)
C150 0.0218 (7) 0.0286 (8) 0.0251 (7) −0.0006 (6) 0.0073 (6) −0.0054 (6)
C151 0.0320 (9) 0.0420 (10) 0.0543 (11) −0.0088 (8) −0.0021 (8) 0.0141 (9)
C152 0.0385 (10) 0.0521 (12) 0.0673 (13) −0.0192 (9) 0.0037 (9) 0.0144 (10)
C153 0.0233 (8) 0.0526 (11) 0.0400 (9) −0.0075 (7) 0.0063 (7) −0.0086 (8)
C154 0.0235 (8) 0.0570 (11) 0.0298 (8) 0.0043 (7) 0.0068 (6) 0.0027 (7)
C155 0.0244 (7) 0.0438 (9) 0.0302 (8) 0.0010 (7) 0.0102 (6) 0.0054 (7)
C200 0.0191 (6) 0.0251 (7) 0.0229 (7) −0.0027 (5) 0.0059 (5) −0.0027 (6)
C201 0.0253 (7) 0.0268 (8) 0.0345 (8) −0.0044 (6) 0.0120 (6) −0.0058 (6)
C202 0.0266 (8) 0.0413 (9) 0.0362 (8) −0.0023 (7) 0.0099 (6) −0.0164 (7)
C203 0.0267 (8) 0.0623 (11) 0.0223 (7) −0.0055 (7) 0.0087 (6) −0.0093 (7)
C204 0.0322 (8) 0.0495 (10) 0.0218 (7) −0.0082 (7) 0.0075 (6) 0.0026 (7)
C205 0.0291 (7) 0.0294 (8) 0.0221 (7) −0.0046 (6) 0.0055 (6) 0.0006 (6)
O1 0.0250 (5) 0.0272 (5) 0.0351 (6) −0.0047 (4) 0.0080 (4) 0.0000 (4)
O2 0.0385 (6) 0.0351 (6) 0.0325 (6) −0.0149 (5) 0.0119 (5) −0.0018 (5)

Geometric parameters (Å, º)

C1—N21 1.3755 (18) C51—O2 1.4685 (19)
C1—C20 1.3958 (19) C51—C54 1.514 (3)
C1—C2 1.4317 (19) C51—C55 1.520 (3)
C2—C3 1.358 (2) C52—H52A 0.9800
C2—H2 0.9500 C52—H52B 0.9800
C3—C4 1.4382 (19) C52—H52C 0.9800
C3—H3 0.9500 C53—H53A 0.9800
C4—N21 1.3704 (17) C53—H53B 0.9800
C4—C5 1.4033 (19) C53—H53C 0.9800
C5—C6 1.413 (2) C54—H54A 0.9800
C5—B1 1.573 (2) C54—H54B 0.9800
C6—N22 1.3641 (18) C54—H54C 0.9800
C6—C7 1.4549 (19) C55—H55A 0.9800
C7—C8 1.340 (2) C55—H55B 0.9800
C7—H7 0.9500 C55—H55C 0.9800
C8—C9 1.4527 (19) C100—C105 1.393 (2)
C8—H8 0.9500 C100—C101 1.398 (2)
C9—N22 1.3781 (18) C101—C102 1.389 (2)
C9—C10 1.399 (2) C101—H101 0.9500
C10—C11 1.4050 (19) C102—C103 1.387 (2)
C10—C100 1.5007 (19) C102—H102 0.9500
C11—N23 1.3678 (17) C103—C104 1.387 (2)
C11—C12 1.428 (2) C103—H103 0.9500
C12—C13 1.356 (2) C104—C105 1.390 (2)
C12—H12 0.9500 C104—H104 0.9500
C13—C14 1.428 (2) C105—H105 0.9500
C13—H13 0.9500 C150—C151 1.385 (2)
C14—N23 1.3734 (18) C150—C155 1.385 (2)
C14—C15 1.3967 (19) C151—C152 1.386 (2)
C15—C16 1.405 (2) C151—H151 0.9500
C15—C150 1.4947 (19) C152—C153 1.372 (3)
C16—N24 1.3719 (18) C152—H152 0.9500
C16—C17 1.4454 (19) C153—C154 1.370 (3)
C17—C18 1.348 (2) C153—H153 0.9500
C17—H17 0.9500 C154—C155 1.391 (2)
C18—C19 1.4453 (19) C154—H154 0.9500
C18—H18 0.9500 C155—H155 0.9500
C19—N24 1.3639 (18) C200—C201 1.394 (2)
C19—C20 1.4151 (19) C200—C205 1.399 (2)
C20—C200 1.4903 (19) C201—C202 1.389 (2)
N21—H21 0.8800 C201—H201 0.9500
N23—H23 0.8800 C202—C203 1.382 (3)
B1—O2 1.361 (2) C202—H202 0.9500
B1—O1 1.368 (2) C203—C204 1.382 (3)
C50—O1 1.4690 (18) C203—H203 0.9500
C50—C52 1.509 (2) C204—C205 1.383 (2)
C50—C53 1.509 (2) C204—H204 0.9500
C50—C51 1.551 (2) C205—H205 0.9500
N21—C1—C20 125.69 (12) C55—C51—C50 112.90 (17)
N21—C1—C2 106.93 (11) C50—C52—H52A 109.5
C20—C1—C2 127.31 (13) C50—C52—H52B 109.5
C3—C2—C1 107.97 (12) H52A—C52—H52B 109.5
C3—C2—H2 126.0 C50—C52—H52C 109.5
C1—C2—H2 126.0 H52A—C52—H52C 109.5
C2—C3—C4 108.31 (12) H52B—C52—H52C 109.5
C2—C3—H3 125.8 C50—C53—H53A 109.5
C4—C3—H3 125.8 C50—C53—H53B 109.5
N21—C4—C5 126.32 (12) H53A—C53—H53B 109.5
N21—C4—C3 106.57 (11) C50—C53—H53C 109.5
C5—C4—C3 127.10 (12) H53A—C53—H53C 109.5
C4—C5—C6 124.40 (13) H53B—C53—H53C 109.5
C4—C5—B1 117.32 (12) C51—C54—H54A 109.5
C6—C5—B1 118.28 (12) C51—C54—H54B 109.5
N22—C6—C5 127.11 (12) H54A—C54—H54B 109.5
N22—C6—C7 109.88 (12) C51—C54—H54C 109.5
C5—C6—C7 122.68 (13) H54A—C54—H54C 109.5
C8—C7—C6 107.20 (12) H54B—C54—H54C 109.5
C8—C7—H7 126.4 C51—C55—H55A 109.5
C6—C7—H7 126.4 C51—C55—H55B 109.5
C7—C8—C9 106.89 (12) H55A—C55—H55B 109.5
C7—C8—H8 126.6 C51—C55—H55C 109.5
C9—C8—H8 126.6 H55A—C55—H55C 109.5
N22—C9—C10 126.00 (12) H55B—C55—H55C 109.5
N22—C9—C8 109.74 (12) C105—C100—C101 118.56 (13)
C10—C9—C8 124.26 (12) C105—C100—C10 121.17 (13)
C9—C10—C11 124.82 (12) C101—C100—C10 120.22 (13)
C9—C10—C100 119.77 (12) C102—C101—C100 120.81 (14)
C11—C10—C100 115.40 (12) C102—C101—H101 119.6
N23—C11—C10 126.31 (13) C100—C101—H101 119.6
N23—C11—C12 107.04 (12) C103—C102—C101 119.94 (14)
C10—C11—C12 126.57 (13) C103—C102—H102 120.0
C13—C12—C11 108.37 (13) C101—C102—H102 120.0
C13—C12—H12 125.8 C102—C103—C104 119.86 (14)
C11—C12—H12 125.8 C102—C103—H103 120.1
C12—C13—C14 107.71 (13) C104—C103—H103 120.1
C12—C13—H13 126.1 C103—C104—C105 120.14 (14)
C14—C13—H13 126.1 C103—C104—H104 119.9
N23—C14—C15 125.50 (12) C105—C104—H104 119.9
N23—C14—C13 107.25 (12) C104—C105—C100 120.69 (14)
C15—C14—C13 127.24 (13) C104—C105—H105 119.7
C14—C15—C16 125.32 (13) C100—C105—H105 119.7
C14—C15—C150 117.61 (12) C151—C150—C155 118.59 (14)
C16—C15—C150 117.06 (12) C151—C150—C15 120.70 (13)
N24—C16—C15 126.20 (12) C155—C150—C15 120.65 (13)
N24—C16—C17 110.36 (12) C150—C151—C152 120.19 (17)
C15—C16—C17 123.44 (12) C150—C151—H151 119.9
C18—C17—C16 106.57 (12) C152—C151—H151 119.9
C18—C17—H17 126.7 C153—C152—C151 120.83 (18)
C16—C17—H17 126.7 C153—C152—H152 119.6
C17—C18—C19 106.92 (12) C151—C152—H152 119.6
C17—C18—H18 126.5 C154—C153—C152 119.55 (15)
C19—C18—H18 126.5 C154—C153—H153 120.2
N24—C19—C20 126.72 (12) C152—C153—H153 120.2
N24—C19—C18 110.41 (12) C153—C154—C155 120.11 (15)
C20—C19—C18 122.80 (12) C153—C154—H154 119.9
C1—C20—C19 124.57 (12) C155—C154—H154 119.9
C1—C20—C200 119.18 (12) C150—C155—C154 120.73 (15)
C19—C20—C200 116.19 (12) C150—C155—H155 119.6
C4—N21—C1 110.18 (11) C154—C155—H155 119.6
C4—N21—H21 124.9 C201—C200—C205 118.42 (13)
C1—N21—H21 124.9 C201—C200—C20 122.32 (13)
C6—N22—C9 106.23 (11) C205—C200—C20 119.13 (13)
C11—N23—C14 109.64 (11) C202—C201—C200 120.45 (14)
C11—N23—H23 125.2 C202—C201—H201 119.8
C14—N23—H23 125.2 C200—C201—H201 119.8
C19—N24—C16 105.71 (11) C203—C202—C201 120.33 (15)
O2—B1—O1 113.15 (13) C203—C202—H202 119.8
O2—B1—C5 122.75 (13) C201—C202—H202 119.8
O1—B1—C5 124.06 (13) C202—C203—C204 119.86 (14)
O1—C50—C52 105.50 (12) C202—C203—H203 120.1
O1—C50—C53 109.19 (13) C204—C203—H203 120.1
C52—C50—C53 110.02 (14) C203—C204—C205 120.11 (15)
O1—C50—C51 102.03 (11) C203—C204—H204 119.9
C52—C50—C51 114.05 (15) C205—C204—H204 119.9
C53—C50—C51 115.20 (14) C204—C205—C200 120.80 (15)
O2—C51—C54 108.07 (16) C204—C205—H205 119.6
O2—C51—C55 106.34 (14) C200—C205—H205 119.6
C54—C51—C55 111.76 (18) B1—O1—C50 107.07 (12)
O2—C51—C50 102.37 (11) B1—O2—C51 107.33 (12)
C54—C51—C50 114.50 (15)
N21—C1—C2—C3 1.93 (15) C20—C19—N24—C16 −178.05 (13)
C20—C1—C2—C3 −175.19 (13) C18—C19—N24—C16 −1.13 (15)
C1—C2—C3—C4 −1.34 (16) C15—C16—N24—C19 −178.43 (13)
C2—C3—C4—N21 0.26 (15) C17—C16—N24—C19 1.58 (15)
C2—C3—C4—C5 −178.83 (13) C4—C5—B1—O2 −134.75 (15)
N21—C4—C5—C6 −9.8 (2) C6—C5—B1—O2 44.7 (2)
C3—C4—C5—C6 169.07 (13) C4—C5—B1—O1 42.9 (2)
N21—C4—C5—B1 169.59 (13) C6—C5—B1—O1 −137.66 (14)
C3—C4—C5—B1 −11.5 (2) O1—C50—C51—O2 27.64 (15)
C4—C5—C6—N22 7.2 (2) C52—C50—C51—O2 −85.58 (15)
B1—C5—C6—N22 −172.24 (13) C53—C50—C51—O2 145.78 (14)
C4—C5—C6—C7 −165.55 (13) O1—C50—C51—C54 144.32 (16)
B1—C5—C6—C7 15.0 (2) C52—C50—C51—C54 31.1 (2)
N22—C6—C7—C8 −1.82 (17) C53—C50—C51—C54 −97.5 (2)
C5—C6—C7—C8 172.03 (13) O1—C50—C51—C55 −86.27 (16)
C6—C7—C8—C9 2.27 (17) C52—C50—C51—C55 160.50 (15)
C7—C8—C9—N22 −2.08 (17) C53—C50—C51—C55 31.9 (2)
C7—C8—C9—C10 177.52 (14) C9—C10—C100—C105 −65.26 (18)
N22—C9—C10—C11 2.9 (2) C11—C10—C100—C105 113.43 (15)
C8—C9—C10—C11 −176.60 (13) C9—C10—C100—C101 117.51 (15)
N22—C9—C10—C100 −178.50 (12) C11—C10—C100—C101 −63.80 (17)
C8—C9—C10—C100 2.0 (2) C105—C100—C101—C102 −0.2 (2)
C9—C10—C11—N23 −6.4 (2) C10—C100—C101—C102 177.08 (13)
C100—C10—C11—N23 175.03 (12) C100—C101—C102—C103 0.0 (2)
C9—C10—C11—C12 169.88 (14) C101—C102—C103—C104 0.3 (2)
C100—C10—C11—C12 −8.7 (2) C102—C103—C104—C105 −0.3 (2)
N23—C11—C12—C13 0.46 (17) C103—C104—C105—C100 0.0 (2)
C10—C11—C12—C13 −176.36 (14) C101—C100—C105—C104 0.3 (2)
C11—C12—C13—C14 −0.79 (17) C10—C100—C105—C104 −177.03 (13)
C12—C13—C14—N23 0.82 (16) C14—C15—C150—C151 105.95 (18)
C12—C13—C14—C15 −178.41 (14) C16—C15—C150—C151 −73.76 (19)
N23—C14—C15—C16 −2.4 (2) C14—C15—C150—C155 −77.00 (18)
C13—C14—C15—C16 176.65 (14) C16—C15—C150—C155 103.29 (16)
N23—C14—C15—C150 177.87 (13) C155—C150—C151—C152 0.0 (3)
C13—C14—C15—C150 −3.0 (2) C15—C150—C151—C152 177.07 (18)
C14—C15—C16—N24 −2.8 (2) C150—C151—C152—C153 −0.5 (3)
C150—C15—C16—N24 176.88 (13) C151—C152—C153—C154 0.5 (3)
C14—C15—C16—C17 177.18 (14) C152—C153—C154—C155 0.1 (3)
C150—C15—C16—C17 −3.1 (2) C151—C150—C155—C154 0.6 (2)
N24—C16—C17—C18 −1.47 (17) C15—C150—C155—C154 −176.50 (14)
C15—C16—C17—C18 178.55 (14) C153—C154—C155—C150 −0.7 (3)
C16—C17—C18—C19 0.71 (17) C1—C20—C200—C201 60.41 (19)
C17—C18—C19—N24 0.24 (17) C19—C20—C200—C201 −117.00 (15)
C17—C18—C19—C20 177.30 (13) C1—C20—C200—C205 −123.79 (14)
N21—C1—C20—C19 −0.2 (2) C19—C20—C200—C205 58.80 (17)
C2—C1—C20—C19 176.38 (13) C205—C200—C201—C202 −1.1 (2)
N21—C1—C20—C200 −177.40 (12) C20—C200—C201—C202 174.77 (13)
C2—C1—C20—C200 −0.8 (2) C200—C201—C202—C203 −0.4 (2)
N24—C19—C20—C1 10.7 (2) C201—C202—C203—C204 1.1 (2)
C18—C19—C20—C1 −165.86 (13) C202—C203—C204—C205 −0.2 (2)
N24—C19—C20—C200 −172.05 (13) C203—C204—C205—C200 −1.4 (2)
C18—C19—C20—C200 11.4 (2) C201—C200—C205—C204 2.0 (2)
C5—C4—N21—C1 −179.92 (13) C20—C200—C205—C204 −174.01 (13)
C3—C4—N21—C1 0.98 (15) O2—B1—O1—C50 11.02 (16)
C20—C1—N21—C4 175.39 (13) C5—B1—O1—C50 −166.80 (13)
C2—C1—N21—C4 −1.79 (15) C52—C50—O1—B1 95.52 (14)
C5—C6—N22—C9 −173.02 (13) C53—C50—O1—B1 −146.28 (13)
C7—C6—N22—C9 0.49 (15) C51—C50—O1—B1 −23.93 (15)
C10—C9—N22—C6 −178.67 (13) O1—B1—O2—C51 8.13 (17)
C8—C9—N22—C6 0.92 (15) C5—B1—O2—C51 −174.01 (13)
C10—C11—N23—C14 176.90 (13) C54—C51—O2—B1 −143.58 (15)
C12—C11—N23—C14 0.06 (15) C55—C51—O2—B1 96.28 (17)
C15—C14—N23—C11 178.71 (13) C50—C51—O2—B1 −22.37 (16)
C13—C14—N23—C11 −0.54 (15)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C100–C105 phenyl ring.

D—H···A D—H H···A D···A D—H···A
N21—H21···N24 0.88 2.35 2.9084 (16) 122
N21—H21···N22 0.88 2.38 2.9266 (16) 121
N23—H23···N24 0.88 2.34 2.8978 (16) 121
N23—H23···N22 0.88 2.35 2.8986 (16) 120
C153—H153···Cg1i 0.95 2.58 3.488 (2) 160

Symmetry code: (i) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LX2293).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Finnigan, E. M., Rein, R., Solladie, N., Dahms, K., Götz, D. H. G., Bringmann, G. & Senge, M. O. (2011). Tetrahedron, 67, 1126–1134.
  4. Hope, H. (1994). Prog. Inorg. Chem. 41, 1–19.
  5. Hyslop, A. G., Kellett, M. A., Iovine, P. M. & Therien, M. J. (1998). J. Am. Chem. Soc. 120, 12676–12677.
  6. Jentzen, W., Song, X.-Z. & Shelnutt, J. A. (1997). J. Phys. Chem. B, 101, 1684–1699.
  7. Leonarska, A., Zubko, M., Kuś, P., Kusz, J. & Ratuszna, A. (2012). Acta Cryst. E68, o2797–o2798. [DOI] [PMC free article] [PubMed]
  8. Miranda, M. D., Ramos Silva, M., Maria, T. M. R., Balakrishna, A. & Sobral, A. J. F. N. (2012). Acta Cryst. E68, o3462–o3463. [DOI] [PMC free article] [PubMed]
  9. Scheidt, W. R. & Lee, Y. J. (1987). Struct. Bonding (Berlin), 64, 1–70.
  10. Schwalbe, M., Metzinger, R., Teets, T. S. & Novera, D. G. (2012). Chem. Eur. J. 18, 15449–15458. [DOI] [PubMed]
  11. Senge, M. O. (2000). The Porphyrin Handbook, edited by K. M. Kadish, K. M. Smith, R. Guilard, Vol. 10, pp. 1–218. San Diego: Academic Press.
  12. Senge, M. O. (2006). Chem. Commun. pp. 243–256. [DOI] [PubMed]
  13. Senge, M. O. (2013). Acta Cryst. E69, o1048. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814019680/lx2293sup1.cif

e-70-o1085-sup1.cif (779.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019680/lx2293Isup2.hkl

e-70-o1085-Isup2.hkl (293.4KB, hkl)

. DOI: 10.1107/S1600536814019680/lx2293fig1.tif

Mol­ecular structure of the title compound. Thermal ellipsoids are drawn at 50% probability level.

x y z x y z . DOI: 10.1107/S1600536814019680/lx2293fig2.tif

A view of the N—H⋯N and C—H⋯π inter­actions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry code: (i) x − 1, y, z; (ii) x + 1, y, z.]

CCDC reference: 1022040

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES