Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 24;70(Pt 10):242–245. doi: 10.1107/S1600536814020558

Crystal structure of nitrido[5,10,15,20-tetra­kis(4-methylphenyl)­porphyrinato]­manganese(V)

Mason R Shields a, Ilia A Guzei b,*, James G Goll a
PMCID: PMC4257217  PMID: 25484663

In the title compound the Mn Nnitride distance is 1.516 (4) Å. The Mn atom is displaced from the plane defined by the four equatorial nitro­gen atoms toward the nitride ligand by 0.3162 (6) Å.

Keywords: porphyrin, nitride, crystal structure, manganese(V) complex

Abstract

The title compound, [Mn(C48H36N4)(N)], is a manganese(V) complex with the transition metal in a square-pyramidal coordination geometry and a nitride as the axial ligand. The complex resides on a crystallographic inversion center and only one half of it is symmetry independent. The MnV atom and the nitride N atom are equally disordered across the inversion center. The Mn N distance is 1.516 (4) Å. The MnV atom is displaced from the plane defined by the four equatorial nitro­gen atoms toward the nitride ligand by 0.3162 (6) Å.

Chemical context  

Tetra­pyrrole ligands have been used as a supporting ligand to stabilize high-valent, manganese compounds with manganese in 5-coordination and nitride ligands with short Mn N bond lengths. These complexes are characterized by Mn N distances of approximately 1.5 Å and the central metal displaced from the plane of the four equatorial N atoms toward the nitride ligand by up to 0.55 Å. In the course of our studies of Mn complexes we prepared and isolated the title complex, 5,10,15,20-tetra­kis-tetra­tolyl­porphyrinato­nitrido­manganese(V) (I), and con­duc­ted its structural characterization to investigate how its geometry compares to that of its congeners.graphic file with name e-70-00242-scheme1.jpg

We have found five examples of five-coordinate nitride Mn complexes deposited with the Cambridge Structural Database (CSD; Allen, 2002): (tetra­kis-tetra-4-meth­oxy­phen­yl)porphyrinato­nitrido­manganese(V) (II) (Hill & Hollander, 1982), (5,15-dimethyl-2,3,7,8,12,13,17,18-octa­ethyl-5H,15H-porphinato)nitridomanganese(V) (III) (Buchler et al., 1983),(5,10,15-tris­(penta­fluoro­phen­yl)corrole)(mesityl­imido)manganese(V) toluene solvate (IV) (Eikey et al., 2002), (2,3,7,8,12,13,17,18-octa­kis­(4-t-butyl­phen­yl)corrolazinato)-(mesitylimido)-manganese(V) di­chloro­methane solvate (V) (Lansky et al., 2006), and nitrido-(6,11,17-tris­(4-nitro­phen­yl)-16,21,22,23,24-pentaaza­penta­cyclo­[16.2.1.12,5.17,10.112,15]tetra­cosa-1,3,5,7,9,11,13,15,17,19-deca­enato)manganese(V) di­chloro­methane solv­ate, (VI) (Singh et al., 2013). Herein we report the comparison of key structural parameters of (I) to those of (II)–(VI).

Structural commentary  

In the crystal structure of the title complex (I) (Fig. 1), the central MnV atom possesses a square-pyramidal geometry. The equatorial plane is formed by the four nitro­gen atoms of the porphyrin whereas the apical position is occupied by the nitride ligand. The complex resides on a crystallographic inversion center and only one half of it is symmetry independent. The Mn1 atom and nitride ligand atom N1 are equally disordered over two positions. This crystallographic behavior (disorder about an inversion center) was also observed in the case of (II). Whereas both complexes exhibit inversion symmetry, the Mn—N distances in them are not equal pairwise (as one would expect based on the fact that only one half of the complex is unique) because the MnV atom is displaced from the equatorial plane not perpendicularly to it but at a small angle. Thus, the Mn—N distances in (I) range from 1.958 (2) to 2.070 (2) Å and between 1.983 (2) and 2.060 (2) Å in (II). The selected geometrical parameters for (I)–(VI) are presented in Table 1. A somewhat counter-intuitive trend correlates the average Mn—N(eq) distance and the displacement of the Mn from the equatorial plane: the shorter the Mn—N(eq) distance, the larger the displacement. The correlation between the Mn—N(eq) distances and Mn N distance is not consistent, but in general the shorter the Mn—N(eq) distances, the longer the Mn N bond length, as might be expected. We have also conducted a CSD search for MnV complexes with manganese in six-coordination and with a nitride ligand and found seven relevant compounds, but none of them was a porphyrin or a porphyrin derivative. The intention was to determine whether the expected metal–ligand bond lengthening occurs as the metal coordination number increases. It was found that for the five-coordinate (I)–(VI) the average Mn N distance is 1.54 (5) Å, whereas for the seven six-coordinate complexes this distance is 1.527 (10) Å. Thus, the difference in the nature of the ligands (porphyrin vs tetra-aza­cyclo-tetra­deca­ne) accounts for the prediction ‘reversal’.

Figure 1.

Figure 1

A mol­ecular drawing of (I) shown with displacement parameters at the 50% probability level. All H atoms and the disordered mates of atoms Mn1 and N1 are omitted. [Symmetry operator (1): −x + 1, −y + 1, −z.]

Table 1. Selected metric parameters for (I)–(VI) (Å).

Compound Mn N Mn—N(eq, av) Mn—N4 displacement
(I) 1.516 (4) 2.02 (5) 0.3162 (6)
(II) 1.512 (2) 2.02 (3) 0.388
(III) 1.512 2.006 (3) 0.426
(IV) 1.613 1.92 (2) 0.513
(V) 1.595 1.893 (10) 0.550
(VI) 1.512 1.99 (3) 0.460

Supra­molecular features  

Whereas there are possible weak non-classical inter­actions such as C—H⋯π and C—H⋯N(nitride) (Table 2), no π–π stacking inter­actions are detected. The mol­ecules pack forming porphyrin/tolyl layers along the [100] direction with a 14.2619 (10) Å separation between identical layers (Fig. 2). The dihedral angle between the adjacent porphyrin core planes within the same layer is 30.037 (4)°.

Table 2. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the N3/C13–C16 and C6–C11 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯N1i 0.95 2.42 3.203 (5) 140
C11—H11⋯Cg1ii 0.95 2.77 3.332 (3) 119
C19—H19⋯Cg2iii 0.95 2.68 3.619 (3) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A packing diagram of (I) shown along the [001] direction. All H atoms are omitted.

Synthesis and crystallization  

The title compound, 5,10,15,20-tetra­kis-tetra­tolyl­porphyrin­ato­nitridomanganese(V), was prepared according to the procedure developed by Buchler et al. (1982). (TTP)Mn(C2H3O2) where TTP is the dianion of meso-tetratolylporphyrin (2.08 g, 2.65 mmol) was dissolved in methanol and eluted down an alumina column with methanol. The methanol was removed and the product redissolved in 400 ml di­chloro­methane. This solution was treated with 12 ml of an ammonia solution made by diluting 2 ml of concentrated ammonia with 10 ml of water and allowed to stir for fifteen minutes. A 10% sodium hypochlorite solution (6 ml) was added and the reaction was stirred an additional 15 minutes, resulting in a red solution. The solution was then washed with two 100 ml portions of water to remove the excess ammonia and hypochlorite and the sodium chloride formed during the reaction. The filtrate was placed on a neutral alumina column and the product was eluted with di­chloro­methane. Unreacted manganese(III) porphyrin can be recovered by eluting with methanol. The product was dried under reduced pressure. UV–vis (λmax 535, 421 nm) are in excellent agreement with those obtained by Buchler et al. (1982) (536 and 421 nm). The NMR spectrum (Anasazi 60 MHz FT–NMR: 1H NMR (296 K, CDCl3, p.p.m.) 8.94 (s, 8H), 8.03 (d, 8H), 7.53 (d 8H), 2.68 (s, 12H)) matches the literature data as well. A yield of 1.82 g, 93% based on (TTP)Mn(C2H3O2) was obtained. (TTP)Mn N used to grow the crystal for the structural determination was purified by taking a di­chloro­methane solution and eluting through neutral alumina column with di­chloro­methane.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All hydrogen atoms were included in the structure-factor calculation at idealized positions and were allowed to ride on the neighboring atoms with relative isotropic displacement coefficients.

Table 3. Experimental details.

Crystal data
Chemical formula [Mn(C48H36N4)(N)]
M r 737.76
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 14.2619 (10), 8.6200 (11), 15.4685 (18)
β (°) 94.188 (7)
V3) 1896.6 (4)
Z 2
Radiation type Cu Kα
μ (mm−1) 3.14
Crystal size (mm) 0.17 × 0.11 × 0.03
 
Data collection
Diffractometer Bruker SMART APEX2 area detector
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.529, 0.662
No. of measured, independent and observed [I > 2σ(I)] reflections 30677, 3602, 3184
R int 0.050
(sin θ/λ)max−1) 0.610
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.051, 0.131, 1.03
No. of reflections 3602
No. of parameters 255
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.33, −0.38

Computer programs: APEX2 and SAINT-Plus (Bruker, 2014), SHELXT and SHELXL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009), publCIF (Westrip, 2010) and GX (Guzei, 2013).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814020558/zl2598sup1.cif

e-70-00242-sup1.cif (938.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020558/zl2598Isup2.hkl

e-70-00242-Isup2.hkl (197.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814020558/zl2598Isup3.png

Supporting information file. DOI: 10.1107/S1600536814020558/zl2598Isup4.cdx

CCDC reference: 1024311

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to University of Wisconsin-Madison for the support of this structural investigation.

supplementary crystallographic information

Crystal data

[Mn(C48H36N4)(N)] F(000) = 768
Mr = 737.76 Dx = 1.292 Mg m3
Monoclinic, P21/c Cu Kα radiation, λ = 1.54178 Å
a = 14.2619 (10) Å Cell parameters from 6388 reflections
b = 8.6200 (11) Å θ = 3.1–70.1°
c = 15.4685 (18) Å µ = 3.14 mm1
β = 94.188 (7)° T = 100 K
V = 1896.6 (4) Å3 Plate, red
Z = 2 0.17 × 0.11 × 0.03 mm

Data collection

Bruker SMART APEX2 area detector diffractometer 3602 independent reflections
Radiation source: sealed X-ray tube, Siemens, K FFCU 2K 90 3184 reflections with I > 2σ(I)
Equatorially mounted graphite monochromator Rint = 0.050
Detector resolution: 7.9 pixels mm-1 θmax = 70.1°, θmin = 3.1°
0.60° ω and 0.6° φ scans h = −17→17
Absorption correction: multi-scan (SADABS; Bruker, 2012) k = −10→10
Tmin = 0.529, Tmax = 0.662 l = −18→17
30677 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ2(Fo2) + (0.060P)2 + 2.340P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3602 reflections Δρmax = 0.33 e Å3
255 parameters Δρmin = −0.38 e Å3
0 restraints

Special details

Experimental. SADABS-2012/1 (Bruker, 2012) was used for absorption correction. wR2(int) was 0.0782 before and 0.0582 after correction. The Ratio of minimum to maximum transmission is 0.8001. The λ/2 correction factor is 0.0015.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Mn1 0.50071 (8) 0.53650 (7) 0.00428 (7) 0.0127 (2) 0.5
N1 0.5205 (3) 0.7069 (5) 0.0218 (3) 0.0192 (8) 0.5
N2 0.37815 (13) 0.5252 (2) 0.05324 (12) 0.0169 (4)
N3 0.56288 (13) 0.4454 (2) 0.11560 (12) 0.0163 (4)
C1 0.29422 (16) 0.5754 (3) 0.01319 (15) 0.0181 (5)
C2 0.22512 (17) 0.5934 (3) 0.07588 (15) 0.0215 (5)
H2 0.1624 0.6292 0.0649 0.026*
C3 0.26662 (17) 0.5498 (3) 0.15313 (15) 0.0211 (5)
H3 0.2382 0.5478 0.2068 0.025*
C4 0.36146 (17) 0.5071 (3) 0.13943 (15) 0.0180 (5)
C5 0.42756 (16) 0.4624 (3) 0.20622 (15) 0.0171 (5)
C6 0.39372 (16) 0.4411 (3) 0.29439 (15) 0.0174 (5)
C7 0.33021 (16) 0.3227 (3) 0.30958 (15) 0.0204 (5)
H7 0.3109 0.2531 0.2641 0.024*
C8 0.29492 (18) 0.3051 (3) 0.39015 (16) 0.0251 (5)
H8 0.2514 0.2242 0.3989 0.030*
C9 0.32215 (19) 0.4042 (3) 0.45822 (16) 0.0274 (6)
C10 0.38655 (18) 0.5215 (3) 0.44361 (16) 0.0234 (5)
H10 0.4064 0.5900 0.4895 0.028*
C11 0.42188 (17) 0.5396 (3) 0.36346 (15) 0.0196 (5)
H11 0.4659 0.6200 0.3551 0.023*
C12 0.2833 (2) 0.3839 (4) 0.54568 (18) 0.0408 (7)
H12A 0.2360 0.3011 0.5423 0.061*
H12B 0.2542 0.4811 0.5628 0.061*
H12C 0.3344 0.3562 0.5887 0.061*
C13 0.52194 (16) 0.4379 (3) 0.19367 (14) 0.0172 (5)
C14 0.59120 (16) 0.3965 (3) 0.26207 (15) 0.0196 (5)
H14 0.5806 0.3821 0.3215 0.024*
C15 0.67421 (16) 0.3820 (3) 0.22588 (15) 0.0193 (5)
H15 0.7333 0.3580 0.2552 0.023*
C16 0.65615 (16) 0.4097 (2) 0.13484 (15) 0.0168 (5)
C17 0.72421 (16) 0.3948 (2) 0.07477 (15) 0.0167 (5)
C18 0.82071 (16) 0.3429 (3) 0.10650 (14) 0.0185 (5)
C19 0.83537 (17) 0.1947 (3) 0.14103 (15) 0.0222 (5)
H19 0.7837 0.1260 0.1443 0.027*
C20 0.92477 (18) 0.1470 (3) 0.17059 (16) 0.0277 (6)
H20 0.9332 0.0455 0.1938 0.033*
C21 1.00228 (17) 0.2432 (3) 0.16720 (16) 0.0287 (6)
C22 0.98775 (17) 0.3902 (3) 0.13146 (16) 0.0280 (6)
H22 1.0398 0.4579 0.1275 0.034*
C23 0.89872 (17) 0.4393 (3) 0.10163 (16) 0.0240 (5)
H23 0.8907 0.5402 0.0775 0.029*
C24 1.09940 (19) 0.1923 (4) 0.20193 (19) 0.0436 (8)
H24A 1.1074 0.2136 0.2643 0.065*
H24B 1.1469 0.2496 0.1721 0.065*
H24C 1.1067 0.0809 0.1919 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0124 (3) 0.0133 (6) 0.0122 (4) 0.0005 (5) −0.0005 (2) 0.0007 (5)
N1 0.0141 (18) 0.021 (2) 0.022 (2) −0.0007 (15) −0.0009 (14) 0.0023 (16)
N2 0.0201 (10) 0.0159 (9) 0.0144 (9) 0.0013 (7) −0.0009 (7) −0.0007 (7)
N3 0.0191 (10) 0.0153 (9) 0.0143 (9) 0.0012 (7) 0.0009 (7) 0.0003 (7)
C1 0.0191 (11) 0.0153 (10) 0.0195 (12) 0.0010 (9) −0.0003 (9) −0.0008 (9)
C2 0.0199 (11) 0.0221 (12) 0.0224 (12) 0.0052 (9) 0.0013 (9) 0.0000 (10)
C3 0.0243 (12) 0.0212 (12) 0.0178 (12) 0.0044 (9) 0.0020 (9) −0.0018 (9)
C4 0.0220 (12) 0.0160 (11) 0.0162 (11) 0.0022 (9) 0.0014 (9) −0.0013 (9)
C5 0.0225 (12) 0.0121 (10) 0.0167 (11) −0.0001 (8) 0.0006 (9) −0.0021 (9)
C6 0.0191 (11) 0.0162 (11) 0.0167 (11) 0.0047 (9) −0.0014 (8) 0.0009 (9)
C7 0.0249 (12) 0.0166 (11) 0.0192 (12) 0.0010 (9) −0.0012 (9) −0.0009 (9)
C8 0.0278 (13) 0.0222 (12) 0.0255 (13) −0.0043 (10) 0.0037 (10) 0.0040 (10)
C9 0.0350 (14) 0.0304 (14) 0.0173 (12) −0.0004 (11) 0.0056 (10) 0.0040 (10)
C10 0.0286 (13) 0.0240 (12) 0.0169 (12) 0.0027 (10) −0.0022 (9) −0.0020 (10)
C11 0.0221 (12) 0.0177 (11) 0.0183 (11) 0.0007 (9) −0.0026 (9) −0.0013 (9)
C12 0.058 (2) 0.0450 (18) 0.0214 (14) −0.0083 (15) 0.0135 (13) 0.0014 (13)
C13 0.0230 (12) 0.0140 (10) 0.0144 (11) 0.0014 (9) 0.0001 (9) 0.0001 (9)
C14 0.0244 (12) 0.0207 (11) 0.0134 (11) 0.0037 (9) −0.0006 (9) −0.0004 (9)
C15 0.0223 (12) 0.0181 (11) 0.0171 (11) 0.0026 (9) −0.0019 (9) 0.0021 (9)
C16 0.0185 (11) 0.0124 (10) 0.0191 (11) 0.0002 (8) −0.0024 (8) −0.0005 (9)
C17 0.0188 (11) 0.0129 (10) 0.0181 (11) −0.0016 (8) −0.0003 (8) 0.0008 (9)
C18 0.0179 (11) 0.0235 (12) 0.0140 (11) 0.0003 (9) −0.0003 (8) 0.0000 (9)
C19 0.0209 (12) 0.0253 (13) 0.0205 (12) 0.0010 (10) 0.0009 (9) 0.0035 (10)
C20 0.0259 (13) 0.0354 (14) 0.0218 (12) 0.0081 (11) 0.0021 (10) 0.0091 (11)
C21 0.0177 (12) 0.0503 (17) 0.0182 (12) 0.0049 (11) 0.0014 (9) 0.0042 (12)
C22 0.0180 (12) 0.0424 (16) 0.0235 (13) −0.0060 (11) 0.0014 (9) 0.0021 (12)
C23 0.0230 (12) 0.0273 (13) 0.0217 (12) −0.0025 (10) 0.0012 (9) 0.0028 (10)
C24 0.0215 (14) 0.074 (2) 0.0354 (16) 0.0090 (14) 0.0013 (11) 0.0160 (16)

Geometric parameters (Å, º)

Mn1—N1 1.516 (4) C10—H10 0.9500
Mn1—N2i 2.070 (2) C10—C11 1.381 (3)
Mn1—N2 1.958 (2) C11—H11 0.9500
Mn1—N3 2.036 (2) C12—H12A 0.9800
Mn1—N3i 2.010 (2) C12—H12B 0.9800
N1—Mn1i 2.154 (4) C12—H12C 0.9800
N2—Mn1i 2.070 (2) C13—C14 1.439 (3)
N2—C1 1.377 (3) C14—H14 0.9500
N2—C4 1.380 (3) C14—C15 1.352 (3)
N3—Mn1i 2.010 (2) C15—H15 0.9500
N3—C13 1.381 (3) C15—C16 1.433 (3)
N3—C16 1.377 (3) C16—C17 1.398 (3)
C1—C2 1.441 (3) C17—C1i 1.391 (3)
C1—C17i 1.391 (3) C17—C18 1.496 (3)
C2—H2 0.9500 C18—C19 1.394 (3)
C2—C3 1.348 (3) C18—C23 1.395 (3)
C3—H3 0.9500 C19—H19 0.9500
C3—C4 1.432 (3) C19—C20 1.385 (3)
C4—C5 1.401 (3) C20—H20 0.9500
C5—C6 1.491 (3) C20—C21 1.386 (4)
C5—C13 1.390 (3) C21—C22 1.392 (4)
C6—C7 1.396 (3) C21—C24 1.513 (3)
C6—C11 1.401 (3) C22—H22 0.9500
C7—H7 0.9500 C22—C23 1.385 (4)
C7—C8 1.386 (3) C23—H23 0.9500
C8—H8 0.9500 C24—H24A 0.9800
C8—C9 1.389 (4) C24—H24B 0.9800
C9—C10 1.396 (4) C24—H24C 0.9800
C9—C12 1.509 (3)
N1—Mn1—N2 98.00 (16) C11—C10—H10 119.5
N1—Mn1—N2i 100.09 (16) C6—C11—H11 119.6
N1—Mn1—N3 99.09 (16) C10—C11—C6 120.9 (2)
N1—Mn1—N3i 98.97 (16) C10—C11—H11 119.6
N2—Mn1—N2i 161.90 (4) C9—C12—H12A 109.5
N2—Mn1—N3i 90.30 (9) C9—C12—H12B 109.5
N2—Mn1—N3 89.97 (9) C9—C12—H12C 109.5
N3—Mn1—N2i 86.50 (9) H12A—C12—H12B 109.5
N3i—Mn1—N2i 87.59 (9) H12A—C12—H12C 109.5
N3i—Mn1—N3 161.72 (4) H12B—C12—H12C 109.5
C1—N2—Mn1i 127.80 (16) N3—C13—C5 126.2 (2)
C1—N2—Mn1 125.57 (16) N3—C13—C14 110.1 (2)
C1—N2—C4 105.34 (19) C5—C13—C14 123.7 (2)
C4—N2—Mn1i 126.48 (16) C13—C14—H14 126.5
C4—N2—Mn1 126.96 (16) C15—C14—C13 107.1 (2)
C13—N3—Mn1 124.89 (15) C15—C14—H14 126.5
C13—N3—Mn1i 128.27 (16) C14—C15—H15 126.5
C16—N3—Mn1 128.56 (15) C14—C15—C16 107.0 (2)
C16—N3—Mn1i 125.49 (15) C16—C15—H15 126.5
C16—N3—C13 105.32 (18) N3—C16—C15 110.56 (19)
N2—C1—C2 110.2 (2) N3—C16—C17 125.7 (2)
N2—C1—C17i 126.5 (2) C17—C16—C15 123.6 (2)
C17i—C1—C2 123.3 (2) C1i—C17—C16 122.9 (2)
C1—C2—H2 126.6 C1i—C17—C18 118.7 (2)
C3—C2—C1 106.8 (2) C16—C17—C18 118.5 (2)
C3—C2—H2 126.6 C19—C18—C17 120.6 (2)
C2—C3—H3 126.3 C19—C18—C23 117.9 (2)
C2—C3—C4 107.4 (2) C23—C18—C17 121.5 (2)
C4—C3—H3 126.3 C18—C19—H19 119.8
N2—C4—C3 110.2 (2) C20—C19—C18 120.5 (2)
N2—C4—C5 126.1 (2) C20—C19—H19 119.8
C5—C4—C3 123.6 (2) C19—C20—H20 119.1
C4—C5—C6 117.6 (2) C19—C20—C21 121.8 (2)
C13—C5—C4 123.0 (2) C21—C20—H20 119.1
C13—C5—C6 119.4 (2) C20—C21—C22 117.6 (2)
C7—C6—C5 120.1 (2) C20—C21—C24 121.7 (3)
C7—C6—C11 117.9 (2) C22—C21—C24 120.7 (3)
C11—C6—C5 121.9 (2) C21—C22—H22 119.4
C6—C7—H7 119.5 C23—C22—C21 121.1 (2)
C8—C7—C6 120.9 (2) C23—C22—H22 119.4
C8—C7—H7 119.5 C18—C23—H23 119.5
C7—C8—H8 119.5 C22—C23—C18 121.0 (2)
C7—C8—C9 121.0 (2) C22—C23—H23 119.5
C9—C8—H8 119.5 C21—C24—H24A 109.5
C8—C9—C10 118.3 (2) C21—C24—H24B 109.5
C8—C9—C12 120.5 (2) C21—C24—H24C 109.5
C10—C9—C12 121.2 (2) H24A—C24—H24B 109.5
C9—C10—H10 119.5 H24A—C24—H24C 109.5
C11—C10—C9 121.0 (2) H24B—C24—H24C 109.5
Mn1i—N2—C1—C2 175.04 (15) C5—C6—C7—C8 −177.2 (2)
Mn1—N2—C1—C2 −162.51 (16) C5—C6—C11—C10 177.3 (2)
Mn1i—N2—C1—C17i −4.7 (3) C5—C13—C14—C15 179.8 (2)
Mn1—N2—C1—C17i 17.7 (3) C6—C5—C13—N3 176.6 (2)
Mn1i—N2—C4—C3 −174.60 (15) C6—C5—C13—C14 −1.8 (3)
Mn1—N2—C4—C3 162.78 (16) C6—C7—C8—C9 −0.4 (4)
Mn1—N2—C4—C5 −13.7 (3) C7—C6—C11—C10 −1.1 (3)
Mn1i—N2—C4—C5 8.9 (3) C7—C8—C9—C10 −0.4 (4)
Mn1i—N3—C13—C5 −9.4 (3) C7—C8—C9—C12 −180.0 (3)
Mn1—N3—C13—C5 13.1 (3) C8—C9—C10—C11 0.4 (4)
Mn1i—N3—C13—C14 169.23 (15) C9—C10—C11—C6 0.3 (4)
Mn1—N3—C13—C14 −168.34 (15) C11—C6—C7—C8 1.1 (3)
Mn1i—N3—C16—C15 −170.66 (15) C12—C9—C10—C11 −180.0 (3)
Mn1—N3—C16—C15 166.71 (15) C13—N3—C16—C15 −0.9 (2)
Mn1—N3—C16—C17 −16.1 (3) C13—N3—C16—C17 176.3 (2)
Mn1i—N3—C16—C17 6.5 (3) C13—C5—C6—C7 −114.5 (2)
N2—C1—C2—C3 −1.7 (3) C13—C5—C6—C11 67.2 (3)
N2—C4—C5—C6 −176.6 (2) C13—C14—C15—C16 −1.7 (3)
N2—C4—C5—C13 3.4 (4) C14—C15—C16—N3 1.7 (3)
N3—C13—C14—C15 1.2 (3) C14—C15—C16—C17 −175.6 (2)
N3—C16—C17—C1i 4.2 (4) C15—C16—C17—C1i −179.0 (2)
N3—C16—C17—C18 −175.2 (2) C15—C16—C17—C18 1.7 (3)
C1—N2—C4—C3 −1.2 (2) C16—N3—C13—C5 −178.7 (2)
C1—N2—C4—C5 −177.7 (2) C16—N3—C13—C14 −0.1 (2)
C1—C2—C3—C4 0.9 (3) C16—C17—C18—C19 65.0 (3)
C1i—C17—C18—C19 −114.4 (2) C16—C17—C18—C23 −115.9 (3)
C1i—C17—C18—C23 64.8 (3) C17i—C1—C2—C3 178.0 (2)
C2—C3—C4—N2 0.2 (3) C17—C18—C19—C20 −179.8 (2)
C2—C3—C4—C5 176.8 (2) C17—C18—C23—C22 179.8 (2)
C3—C4—C5—C6 7.3 (3) C18—C19—C20—C21 0.1 (4)
C3—C4—C5—C13 −172.6 (2) C19—C18—C23—C22 −1.0 (4)
C4—N2—C1—C2 1.8 (2) C19—C20—C21—C22 −1.1 (4)
C4—N2—C1—C17i −178.0 (2) C19—C20—C21—C24 178.2 (2)
C4—C5—C6—C7 65.5 (3) C20—C21—C22—C23 1.0 (4)
C4—C5—C6—C11 −112.8 (3) C21—C22—C23—C18 0.0 (4)
C4—C5—C13—N3 −3.5 (4) C23—C18—C19—C20 0.9 (3)
C4—C5—C13—C14 178.1 (2) C24—C21—C22—C23 −178.2 (2)

Symmetry code: (i) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the N3/C13–C16 and C6–C11 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C10—H10···N1ii 0.95 2.42 3.203 (5) 140
C11—H11···Cg1iii 0.95 2.77 3.332 (3) 119
C19—H19···Cg2iv 0.95 2.68 3.619 (3) 170

Symmetry codes: (ii) x, −y+3/2, z+1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2.

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2012). SADABS Bruker-AXS, Madison, Wisconsin, USA.
  3. Bruker (2014). APEX2 and SAINT-Plus, Bruker AXS, Madison, Wisconsin, USA.
  4. Buchler, J. W., Dreher, C. & Lay, K. Z. Z. (1982). Z. Naturforsch. Teil B, 39, 1155–1162.
  5. Buchler, J. W., Dreher, C., Lay, K.-L., Lee, Y. J. A. & Scheidt, W. R. (1983). Inorg. Chem. 22, 888–891.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Eikey, R. A., Khan, S. I. & Abu-Omar, M. M. (2002). Angew. Chem. Int. Ed. 41, 3592–3593. [DOI] [PubMed]
  8. Guzei, I. A. (2013). In-house Crystallographic Program GX Molecular Structure Laboratory, University of Wisconsin-Madison, Madison, WI, USA.
  9. Hill, C. L. & Hollander, F. J. (1982). J. Am. Chem. Soc. 104, 7318–7319.
  10. Lansky, D. E., Kosack, J. R., Sarjeant, A. A. & Goldberg, D. P. (2006). Inorg. Chem. 45, 8477–8479. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Singh, P., Dutta, G., Goldberg, I., Mahammed, A. & Gross, Z. (2013). Inorg. Chem. 52, 9349–9355. [DOI] [PubMed]
  13. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814020558/zl2598sup1.cif

e-70-00242-sup1.cif (938.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020558/zl2598Isup2.hkl

e-70-00242-Isup2.hkl (197.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814020558/zl2598Isup3.png

Supporting information file. DOI: 10.1107/S1600536814020558/zl2598Isup4.cdx

CCDC reference: 1024311

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES