Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 24;70(Pt 10):252–255. doi: 10.1107/S1600536814020546

Crystal structure of bis­{2-[(E)-(4-fluoro­benz­yl)imino­meth­yl]phenolato-κ2 N,O}nickel(II)

Amalina Mohd Tajuddin a, Hadariah Bahron a,b, Rohazila Mohammad Hanafiah c, Nazlina Ibrahim c, Hoong-Kun Fun d,e,*,, Suchada Chantrapromma f,§
PMCID: PMC4257226  PMID: 25484666

In the square-planar [Ni(C14H11FNO)2] complex, weak C—H⋯F and C—H⋯π inter­actions play an important role in the mol­ecular self-assembly, resulting in the formation of 2D mol­ecular sheets which are stacked along the b axis.

Keywords: Crystal structure, Ni(II) complex, NO donors, Schiff base, anti­bacterial activity

Abstract

The asymmetric unit of the title complex, [Ni(C14H11FNO)2], contains one-half of the mol­ecule with the NiII cation lying on an inversion centre coordinated by a bidentate Schiff base anion. The cationic NiII center is in a distorted square-planar coordination environment chelated by the imine N and phenolate O donor atoms of the two Schiff base ligands. The N and O donor atoms of the two ligands are mutually trans with Ni—N and Ni—O bond lengths of 1.9242 (10) and 1.8336 (9) Å, respectively. The fluoro­phenyl ring is almost orthogonal to the coordination plane and makes a dihedral angle of 82.98 (7)° with the phenolate ring. In the crystal, mol­ecules are linked into screw chains by weak C—H⋯F hydrogen bonds. Additional C—H⋯π contacts arrange the mol­ecules into sheets parallel to the ac plane.

Chemical context  

Schiff base ligands are well-known and important compounds because of their wide range of biological activities and uses in industrial systems (Feng et al., 2013; Kumar et al., 2010; Liu et al., 2005) as well as being versatile ligands for transition metals. Transition metal complexes with Schiff base ligands, especially those of PdII and NiII, have been shown to display a variety of structural features and, in some cases, exhibit inter­esting reactivity. In particular they can be photoluminescent (Guo et al., 2013a ) and are used as catalysts for many organic reactions such as Heck and Suzuki cross-coupling reactions (Kumari et al., 2012; Teo et al., 2011).graphic file with name e-70-00252-scheme1.jpg

In our previous studies, we reported the syntheses and crystal structures of two related Schiff base complexes, bis­{2-[(E)-(4-fluoro­benz­yl)imino­meth­yl]-6-meth­oxy­phenolato-κ2 N,O 1}nickel(II) (Bahron et al., 2011) and bis­{2-[(E)-(4-meth­oxy­benz­yl)imino­meth­yl]phenolato-κ2 N,O 1}nickel(II) (Bahron et al., 2014). In this article, we report the successful synthesis of another Schiff base–NiII complex, [Ni(C14H11FNO)2] (1), and its characterization by spectros­copy and elemental analysis. Crystal structure determination confirms the binding mode of the [(4-fluoro­benz­yl)imino­meth­yl]phenolate ligand to the NiII cation (Fig. 1). The title complex was also tested for anti­bacterial activity, and found to be only weakly active.

Figure 1.

Figure 1

The mol­ecular structure of (1), showing 50% probability displacement ellipsoids and the atom-numbering scheme. The labelled atoms are related to the unlabelled atoms of the Schiff base ligands by the symmetry code: 1 − x, −y, 1 − z.

Structural commentary  

The asymmetric unit of (1) contains one-half of the mol­ecule with the NiII cation lying on an inversion centre and the Schiff base anion acting as an N,O-bidentate chelate ligand (Fig. 1). The cation binds to the N and the O atoms of two symmetry-related Schiff base ligand such that the N and O atoms are mutually trans. The N2O2 donor sets of the two chelating Schiff base ligands in the equatorial plane around Ni1 adopt a slightly distorted square planar coordination geometry with the angles O1—Ni1—N1 = 92.56 (4)° and O1—Ni1—N1i = 87.44 (4)° [symmetry code: (i) 1 − x, −y, 1 − z]. As expected under inversion symmetry, the trans angles (N11—Ni1—N1i and O1—Ni1—O1i) are found to be linear. The Ni1—N1 and Ni1—O1 distances in the N2O2 coordination plane are 1.9242 (10) Å and 1.8336 (9) Å, respectively. These compare well with those observed in the two other closely related NiII complexes with N2O2 coordinating Schiff base ligands (Bahron et al., 2011; 2014). The Ni1/O1/C1/C6/C7/N1 ring adopts an envelope conformation with the Ni1 atom displaced by 0.3885 (5) Å from the O1/C1/C6/C7/N1 plane, with the puckering parameters Q = 0.2429 (10) Å, θ = 65.3 (3) and ϕ = 4.0 (3)°. Other bond lengths and angles observed in the structure are also normal. The fluoro­phenyl ring (C9–C14) makes a dihedral angle of 82.98 (7)° with the phenolate ring (C1–C6).

Supra­molecular features  

In the crystal packing, the mol­ecules are linked into screw chains by weak C2—H2A⋯F1 inter­actions (Fig. 2, Table 1). C—H⋯π inter­actions involving both the fluoro­phenyl and the phenolate rings, C5—H5ACg1 and C13—H13ACg2, connect the mol­ecules into chains along the c-axis direction (Fig. 3, Table 1). They also contribute to the formation of sheets parallel to the ac plane, which are further stacked along the b axis as shown in Fig. 4.

Figure 2.

Figure 2

Screw chains of mol­ecules of (1) linked by C—H⋯F contacts drawn as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.99 2.19 2.7300 (18) 113
C14—H14A⋯O1i 0.95 2.52 3.212 (2) 130
C2—H2A⋯F1ii 0.95 2.65 3.5312 (19) 155
C5—H5ACg1iii 0.95 2.69 3.4010 (18) 133
C13—H13ACg2iv 0.95 2.69 3.4252 (13) 134

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 3.

Figure 3

C—H⋯π contacts for (1) drawn as dotted lines with ring centroids shown as coloured spheres. Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.

Figure 4.

Figure 4

The packing of (1) viewed along the b axis showing mol­ecular sheets of the NiII complex.

Database survey  

A search of the Cambridge Database (Version 5.35, November 2013 with 3 updates) revealed a total of 1191 NiII complexes with an NiN2O2 coordination sphere. No fewer than 333 of these had the Ni atom chelated by two 3-(imino­meth­yl)phenolate residues. No corresponding structures with a benzyl or substituted benzyl unit bound to the imino N atom were found. However extending the search to allow additional substitution on the phenolate ring resulted in eight discrete structures including the two closely related structures mentioned previously (Bahron et al., 2011, 2014), and several other related complexes (see, for example Guo et al. 2013a ,b ; Senol et al. 2011; Chen et al. 2010).

Synthesis and crystallization  

An ethano­lic solution of 4-fluoro­benzyl­amine (4 mmol, 0.5010 g) was added to salicyl­aldehyde (4 mmol, 0.4970 g), dissolved in absolute ethanol (2 ml), forming a bright-yellow solution. The mixture was heated under reflux for an hour to produce the ligand, (E)-2-[(4-fluoro­benzyl­imino)­meth­yl]phenol. Nickel(II) acetate tetra­hydrate (2 mmol, 0.4983 g) was dissolved separately in absolute ethanol (10 ml) and added to a flask containing the cooled ligand solution. The mixture was stirred and refluxed for 3 h upon which a dark-green solid formed. This was filtered off, washed with ice-cold ethanol and air-dried at room temperature. The solid product was recrystallized from chloro­form, yielding green crystals. Yield 68.6%; m.p. 471–473 K. Analytical data for C28H22F2N2O2Ni: C, 65.28; H, 4.30; N, 5.44. Found: C, 65.87; H, 4.39; N, 5.55. IR (KBr, cm−1): ν(C=N) 1612 (s), ν(C—N) 1390 (w), ν(C—O) 1221 (s), ν(Ni—N) 597 (w), ν(Ni—O) 451 (w). The infrared spectra of the title complex revealed a strong band of 1612 cm−1 in the spectrum assignable to C=N stretching frequency upon complexation (Nair et al., 2012). The appearance of new bands at 451 and 597 cm−1 in the spectrum of the title complex attributable to Ni—O and Ni—N vibrations, respectively, supports the suggestion above of the participation of the N atom of the imine group and O atom of the phenolic group of the ligand in the complexation with NiII cation (Ouf et al., 2010). Accordingly, it can be deduced that the ligand binds to the NiII cation in an N,O-bidentate fashion in 2:1 ratio.

An anti­bacterial activity investigation of the title complex against B. subtilis, S. aureus and E. coli showed very mild or no inhibition with clear inhibition diameters of 7–8 mm at the highest concentration of 50 μM. The negative control of a 9:1 mixture of DMSO:acetone and the positive control of 30 U of chloramphenicol showed inhibition diameters of 6 mm and 20 mm, respectively.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.95 Å for aromatic and 0.99 Å for CH2 hydrogen atoms. The U iso values were constrained to be 1.2U eq of the carrier atoms.

Table 2. Experimental details.

Crystal data
Chemical formula [Ni(C14H11FNO)2]
M r 515.17
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 13.8611 (3), 5.83340 (1), 16.9942 (3)
β (°) 125.998 (1)
V3) 1111.70 (4)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.92
Crystal size (mm) 0.47 × 0.19 × 0.11
 
Data collection
Diffractometer Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.674, 0.906
No. of measured, independent and observed [I > 2σ(I)] reflections 13419, 3235, 2896
R int 0.024
(sin θ/λ)max−1) 0.703
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.028, 0.072, 1.05
No. of reflections 3235
No. of parameters 160
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.49

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814020546/sj5425sup1.cif

e-70-00252-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020546/sj5425Isup2.hkl

e-70-00252-Isup2.hkl (158.7KB, hkl)

CCDC reference: 1024161

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to acknowledge the Ministry of Education of Malaysia for research grants No. 600-RMI/FRGS 5/3 (51/2013) and (52/2013), Universiti Teknologi MARA for research grant No. 600-RMI/DANA 5/3/CG (15/2012) and Universiti Sains Malaysia for the use of the X-ray diffraction facilities. The authors would also like to acknowledge Universiti Kebangsaan Malaysia for the usage of its research facility for biological activity investigation.

supplementary crystallographic information

Crystal data

[Ni(C14H11FNO)2] F(000) = 532
Mr = 515.17 Dx = 1.539 Mg m3
Monoclinic, P21/c Melting point = 471–476 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 13.8611 (3) Å Cell parameters from 3235 reflections
b = 5.83340 (1) Å θ = 1.8–30.0°
c = 16.9942 (3) Å µ = 0.92 mm1
β = 125.998 (1)° T = 100 K
V = 1111.70 (4) Å3 Plate, green
Z = 2 0.47 × 0.19 × 0.11 mm

Data collection

Bruker APEXII CCD area detector diffractometer 3235 independent reflections
Radiation source: sealed tube 2896 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
φ and ω scans θmax = 30.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −19→19
Tmin = 0.674, Tmax = 0.906 k = −8→8
13419 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.7123P] where P = (Fo2 + 2Fc2)/3
3235 reflections (Δ/σ)max = 0.001
160 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.49 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.5000 0.0000 0.5000 0.01062 (7)
F1 1.07321 (8) −0.19874 (17) 0.63754 (7) 0.0297 (2)
N1 0.58764 (8) 0.26207 (18) 0.50481 (7) 0.01200 (19)
O1 0.41017 (8) −0.01507 (15) 0.36693 (7) 0.01520 (18)
C1 0.38843 (10) 0.1456 (2) 0.30461 (9) 0.0133 (2)
C2 0.29659 (11) 0.1091 (2) 0.20455 (9) 0.0160 (2)
H2A 0.2528 −0.0303 0.1840 0.019*
C3 0.27066 (11) 0.2756 (2) 0.13703 (9) 0.0174 (2)
H3A 0.2085 0.2490 0.0704 0.021*
C4 0.33373 (12) 0.4832 (2) 0.16425 (10) 0.0175 (2)
H4A 0.3147 0.5959 0.1168 0.021*
C5 0.42385 (11) 0.5206 (2) 0.26118 (9) 0.0151 (2)
H5A 0.4676 0.6600 0.2804 0.018*
C6 0.45190 (10) 0.3546 (2) 0.33205 (8) 0.0125 (2)
C7 0.55207 (10) 0.3936 (2) 0.43090 (9) 0.0125 (2)
H7A 0.5968 0.5294 0.4434 0.015*
C8 0.70465 (10) 0.3283 (2) 0.59589 (9) 0.0134 (2)
H8A 0.7024 0.3042 0.6524 0.016*
H8B 0.7198 0.4930 0.5933 0.016*
C9 0.80423 (10) 0.1869 (2) 0.60823 (8) 0.0133 (2)
C10 0.86635 (11) 0.2669 (2) 0.57233 (9) 0.0166 (2)
H10A 0.8456 0.4110 0.5402 0.020*
C11 0.95823 (11) 0.1396 (3) 0.58258 (10) 0.0202 (3)
H11A 1.0010 0.1957 0.5588 0.024*
C12 0.98511 (11) −0.0701 (3) 0.62825 (10) 0.0196 (3)
C13 0.92625 (11) −0.1569 (2) 0.66508 (9) 0.0174 (2)
H13A 0.9471 −0.3019 0.6965 0.021*
C14 0.83553 (11) −0.0255 (2) 0.65471 (9) 0.0152 (2)
H14A 0.7942 −0.0816 0.6798 0.018*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.01005 (10) 0.01029 (11) 0.01063 (11) −0.00089 (7) 0.00557 (8) 0.00019 (7)
F1 0.0240 (4) 0.0360 (5) 0.0340 (5) 0.0125 (4) 0.0197 (4) 0.0035 (4)
N1 0.0105 (4) 0.0115 (5) 0.0129 (4) −0.0003 (3) 0.0063 (4) −0.0010 (4)
O1 0.0168 (4) 0.0142 (4) 0.0122 (4) −0.0036 (3) 0.0072 (3) 0.0005 (3)
C1 0.0123 (5) 0.0149 (5) 0.0138 (5) 0.0010 (4) 0.0084 (4) 0.0009 (4)
C2 0.0141 (5) 0.0177 (6) 0.0148 (5) −0.0015 (4) 0.0077 (5) −0.0003 (4)
C3 0.0141 (5) 0.0218 (6) 0.0136 (5) 0.0016 (4) 0.0066 (4) 0.0010 (5)
C4 0.0176 (6) 0.0188 (6) 0.0157 (6) 0.0029 (4) 0.0096 (5) 0.0049 (5)
C5 0.0153 (5) 0.0144 (6) 0.0167 (6) 0.0012 (4) 0.0100 (5) 0.0022 (4)
C6 0.0115 (5) 0.0133 (5) 0.0135 (5) 0.0014 (4) 0.0077 (4) 0.0010 (4)
C7 0.0122 (5) 0.0115 (5) 0.0158 (5) −0.0002 (4) 0.0093 (4) −0.0005 (4)
C8 0.0119 (5) 0.0116 (5) 0.0140 (5) −0.0017 (4) 0.0062 (4) −0.0020 (4)
C9 0.0103 (5) 0.0149 (5) 0.0114 (5) −0.0012 (4) 0.0045 (4) −0.0015 (4)
C10 0.0154 (5) 0.0179 (6) 0.0156 (5) −0.0010 (4) 0.0086 (5) 0.0007 (4)
C11 0.0174 (6) 0.0271 (7) 0.0192 (6) −0.0004 (5) 0.0126 (5) −0.0003 (5)
C12 0.0139 (5) 0.0249 (7) 0.0182 (6) 0.0039 (5) 0.0085 (5) −0.0020 (5)
C13 0.0139 (5) 0.0162 (6) 0.0161 (6) 0.0013 (4) 0.0054 (5) −0.0002 (4)
C14 0.0123 (5) 0.0152 (6) 0.0155 (5) −0.0018 (4) 0.0068 (4) −0.0008 (4)

Geometric parameters (Å, º)

Ni1—O1i 1.8336 (9) C5—H5A 0.9500
Ni1—O1 1.8336 (9) C6—C7 1.4351 (16)
Ni1—N1i 1.9242 (10) C7—H7A 0.9500
Ni1—N1 1.9242 (10) C8—C9 1.5133 (16)
F1—C12 1.3613 (15) C8—H8A 0.9900
N1—C7 1.2967 (16) C8—H8B 0.9900
N1—C8 1.4915 (15) C9—C14 1.3943 (17)
O1—C1 1.3097 (15) C9—C10 1.3960 (17)
C1—C6 1.4130 (17) C10—C11 1.3937 (18)
C1—C2 1.4187 (17) C10—H10A 0.9500
C2—C3 1.3801 (18) C11—C12 1.378 (2)
C2—H2A 0.9500 C11—H11A 0.9500
C3—C4 1.4031 (19) C12—C13 1.3834 (19)
C3—H3A 0.9500 C13—C14 1.3926 (17)
C4—C5 1.3794 (18) C13—H13A 0.9500
C4—H4A 0.9500 C14—H14A 0.9500
C5—C6 1.4100 (17)
O1i—Ni1—O1 180.0 N1—C7—C6 126.56 (11)
O1i—Ni1—N1i 92.56 (4) N1—C7—H7A 116.7
O1—Ni1—N1i 87.44 (4) C6—C7—H7A 116.7
O1i—Ni1—N1 87.44 (4) N1—C8—C9 110.45 (9)
O1—Ni1—N1 92.56 (4) N1—C8—H8A 109.6
N1i—Ni1—N1 180.00 (6) C9—C8—H8A 109.6
C7—N1—C8 114.48 (10) N1—C8—H8B 109.6
C7—N1—Ni1 123.90 (8) C9—C8—H8B 109.6
C8—N1—Ni1 121.62 (8) H8A—C8—H8B 108.1
C1—O1—Ni1 129.03 (8) C14—C9—C10 118.57 (11)
O1—C1—C6 123.23 (11) C14—C9—C8 121.18 (11)
O1—C1—C2 118.67 (11) C10—C9—C8 120.25 (11)
C6—C1—C2 118.10 (11) C11—C10—C9 121.36 (12)
C3—C2—C1 120.18 (12) C11—C10—H10A 119.3
C3—C2—H2A 119.9 C9—C10—H10A 119.3
C1—C2—H2A 119.9 C12—C11—C10 117.89 (12)
C2—C3—C4 121.73 (12) C12—C11—H11A 121.1
C2—C3—H3A 119.1 C10—C11—H11A 121.1
C4—C3—H3A 119.1 F1—C12—C11 118.81 (12)
C5—C4—C3 118.79 (12) F1—C12—C13 118.24 (13)
C5—C4—H4A 120.6 C11—C12—C13 122.95 (12)
C3—C4—H4A 120.6 C12—C13—C14 118.04 (12)
C4—C5—C6 120.87 (12) C12—C13—H13A 121.0
C4—C5—H5A 119.6 C14—C13—H13A 121.0
C6—C5—H5A 119.6 C13—C14—C9 121.18 (12)
C5—C6—C1 120.33 (11) C13—C14—H14A 119.4
C5—C6—C7 118.85 (11) C9—C14—H14A 119.4
C1—C6—C7 120.62 (11)
O1i—Ni1—N1—C7 −161.69 (10) C8—N1—C7—C6 171.36 (11)
O1—Ni1—N1—C7 18.31 (10) Ni1—N1—C7—C6 −8.09 (17)
O1i—Ni1—N1—C8 18.90 (9) C5—C6—C7—N1 177.97 (11)
O1—Ni1—N1—C8 −161.10 (9) C1—C6—C7—N1 −7.20 (18)
N1i—Ni1—O1—C1 158.63 (10) C7—N1—C8—C9 −97.31 (12)
N1—Ni1—O1—C1 −21.37 (10) Ni1—N1—C8—C9 82.15 (11)
Ni1—O1—C1—C6 12.98 (17) N1—C8—C9—C14 −87.37 (13)
Ni1—O1—C1—C2 −166.89 (9) N1—C8—C9—C10 92.19 (13)
O1—C1—C2—C3 179.45 (11) C14—C9—C10—C11 −0.29 (18)
C6—C1—C2—C3 −0.42 (17) C8—C9—C10—C11 −179.86 (12)
C1—C2—C3—C4 0.48 (19) C9—C10—C11—C12 0.9 (2)
C2—C3—C4—C5 −0.03 (19) C10—C11—C12—F1 178.90 (12)
C3—C4—C5—C6 −0.47 (19) C10—C11—C12—C13 −0.9 (2)
C4—C5—C6—C1 0.52 (18) F1—C12—C13—C14 −179.49 (11)
C4—C5—C6—C7 175.37 (11) C11—C12—C13—C14 0.3 (2)
O1—C1—C6—C5 −179.94 (11) C12—C13—C14—C9 0.31 (19)
C2—C1—C6—C5 −0.07 (17) C10—C9—C14—C13 −0.32 (18)
O1—C1—C6—C7 5.30 (18) C8—C9—C14—C13 179.25 (11)
C2—C1—C6—C7 −174.83 (11)

Symmetry code: (i) −x+1, −y, −z+1.

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C9–C14 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C8—H8A···O1i 0.99 2.19 2.7300 (18) 113
C14—H14A···O1i 0.95 2.52 3.212 (2) 130
C2—H2A···F1ii 0.95 2.65 3.5312 (19) 155
C5—H5A···Cg1iii 0.95 2.69 3.4010 (18) 133
C13—H13A···Cg2iv 0.95 2.69 3.4252 (13) 134

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, −y−1/2, z−1/2; (iii) −x+1, y+1/2, −z+1/2; (iv) −x+2, y−1/2, −z+3/2.

References

  1. Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Fun, H.-K. & Chantrapromma, S. (2014). Acta Cryst. E70, 104–106. [DOI] [PMC free article] [PubMed]
  2. Bahron, H., Tajuddin, A. M., Ibrahim, W. N. W., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, m1010–m1011. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, W., Li, Y., Cui, Y., Zhang, X., Zhu, H.-L. & Zeng, Q. (2010). Eur. J. Med. Chem. 45, 4473—4478. [DOI] [PubMed]
  5. Feng, Z.-Q., Yang, X.-L. & Ye, Y. F. (2013). Scientific World Journal, Article ID 956840, 9 pages.
  6. Guo, Y., Liu, Y., Zhao, X. H., Li, Y. G. & Chen, W. (2013b). Russ. J. Coord. Chem. 39, 134—140.
  7. Guo, H. F., Zhao, X., Ma, D. Y., Xie, A. P. & Shen, W. B. (2013a). Transition Met. Chem 38, 299–305.
  8. Kumar, S., Niranjan, M. S., Chaluvaraju, K. C., Jamakhandi, C. M. & Kadadevar, D. J. (2010). J. Current Pharm. Res. 1, 39–42.
  9. Kumari, N., Yadav, V. K., Zalis, S. & Mishra, L. (2012). Indian J. Chem. Section A, 51, 554–563.
  10. Liu, W.-L., Zou, Y., Ni, C.-L., Li, Y.-Z. & Meng, Q.-J. (2005). J. Mol. Struct. 751, 1–6.
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Nair, M. S., Arish, D. & Joseyphus, R. S. (2012). J. Saudi Chem. Soc. 16, 83–88.
  13. Ouf, A. E., Ali, M. S., Saad, E. M. & Mostafa, S. I. (2010). J. Mol. Struct. 973, 69–75.
  14. Senol, C., Hayvali, Z., Dal, H. & Hökelek, T. (2011). J. Mol. Struct. 997, 53—59.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Teo, S., Weng, Z. & Andy Hor, T. S. (2011). J. Organomet. Chem. 696, 2928–2934.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814020546/sj5425sup1.cif

e-70-00252-sup1.cif (24.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814020546/sj5425Isup2.hkl

e-70-00252-Isup2.hkl (158.7KB, hkl)

CCDC reference: 1024161

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES