Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 6;70(Pt 10):164–166. doi: 10.1107/S1600536814019485

Crystal structure of bis­(2-{[(pyridin-2-yl)methyl­idene]amino}­benzoato-κ3 N,N′,O)cobalt(II) N,N-di­methyl­formamide sesquisolvate

Elena A Buvaylo a, Vladimir N Kokozay a, Olga Yu Vassilyeva a,*, Brian W Skelton b
PMCID: PMC4257231  PMID: 25484642

The coordination geometry around the central CoII ion is unexpectedly different from that for the co-crystal of the title mol­ecule with anthranilic acid.

Keywords: crystal structure, CoII complex, Schiff base ligand, pyridine-2-carbaldehyde, anthranilic acid, hydrogen bonding

Abstract

The title compound, [Co(C13H9N2O2)2]·1.5C3H7NO, is formed as a neutral CoII complex with di­methyl­formamide (DMF) solvent mol­ecules. The CoII atom has a distorted O2N4 octa­hedral coordination sphere defined by two tridentate anionic Schiff base ligands with the O atoms being cis. The coordination sphere around the CoII atom is geometrically different from that reported for the co-crystal [Co(C13H9N2O2)2]·AA·H2O (AA is anthranilic acid). One of the DMF solvent mol­ecules was modelled as being disordered about a crystallographic inversion centre with half-occupancy. The crystal structure is made up from alternating layers of complex mol­ecules and DMF mol­ecules parallel to (010). C—H⋯O hydrogen-bonding inter­actions between the complex mol­ecules and the solvent mol­ecules consolidate the crystal packing.

Chemical context  

Metal complexes containing Schiff bases are the most fundamental chelating systems in coordination chemistry. Their inter­esting chemical and physical properties and their wide-ranging applications in numerous scientific areas have been explored widely (Vigato et al., 2012). During the last few years, we have investigated the chemistry of 3d metal complexes of Schiff base ligands with the aim of preparing mono- and heterometallic polynuclear compounds.graphic file with name e-70-00164-scheme1.jpg

Recently, we have investigated the coordination behaviour of the tridentate carboxyl­ate Schiff base ligand 2-N-(2′-pyridyl­imine)­benzoic acid (HL), which results from the condensation between pyridine-2-carbaldehyde and anthran­ilic acid (AA) and reported the cation–anion complex CrL 2NO3·H2O (Buvaylo et al., 2014a ) and co-crystals of ML 2 (M = Co, Ni, Zn) and anthranilic acid (Buvaylo et al., 2014b ). The respective compounds were prepared by in situ Schiff base synthesis. ML 2 mol­ecules of the isotypic CoL 2·AA·H2O and NiL 2·AA·H2O co-crystals retained the intra­molecular distances M—(N,O) as found in the structure of the ‘native’ Schiff base metal complex NiL 2·H2O (Mukhopadhyay & Pal, 2005). The crystal packing of the co-crystals was described as an insertion of the organic mol­ecules between the layers of ML 2 complexes as they occur in the reported NiL 2·H2O structure.

The title compound, [Co(C13H9N2O2)2]·1.5C3H7NO, was prepared similarly to the co-crystals (Buvaylo et al., 2014b ) but using additional [Cd(CH3COO)2]·2H2O in an attempt to prepare a heterometallic compound with HL. The obtained crystals, however, did not appear to contain anthranilic acid mol­ecules or cadmium.

Structural commentary  

The asymmetric unit of the title compound consists of one neutral CoL 2 mol­ecule and 1.5 di­methyl­formamide (DMF) solvent mol­ecules, of which one is fully ordered, the other being disordered about a crystallographic inversion centre. The CoL 2 mol­ecule has no crystallographically imposed symmetry. The ligand mol­ecules are deprotonated at the carboxyl­ato oxygen atom and coordinate to the CoII atom through the azomethine, pyridine-N and carboxyl­ato-O atoms in such a way that the metal atom is octa­hedrally surrounded by two anionic ligands with cis O atoms (Fig. 1, Table 1). The octa­hedral geometry is severely distorted: the Co—(N,O) distances fall in the range 2.0072 (12)–2.1498 (14) Å, the trans angles at the CoII ion lie in the range 161.53 (6)–177.35 (5), the cis angles vary from 77.91 (5) to 103.70 (5)°. Surprisingly, the coordination geometry around the CoII ion is markedly different from that of CoL 2·AA·H2O (Buvaylo et al., 2014b ) where the Co—(N,O) distances range from 1.990 (2) to 2.088 (18) Å, and the trans and cis angles at the CoII ion vary from 167.96 (6) to 176.95 (7) and from 80.93 (7) to 98.81 (7)°, respectively. The reason for such a discrepancy could be the absence of classical hydrogen bonds in the title compound in contrast to the co-crystal CoL 2·AA·H2O. A metal site with mixed (Co/Cd) occupancy for the title compound was ruled out by the refinement.

Figure 1.

Figure 1

The mol­ecular structure of the title complex, showing the atom-numbering scheme. Non-H atoms are shown as displacement ellipsoids at the 50% probability level.

Table 1. Selected bond lengths (Å).

Co1—O41 2.0072 (12) Co1—N10 2.1189 (13)
Co1—O21 2.0181 (13) Co1—N31 2.1358 (14)
Co1—N30 2.1057 (13) Co1—N11 2.1498 (14)

Supra­molecular features  

The crystal lattice is built of alternating layers of complex CoL 2 mol­ecules and DMF mol­ecules parallel to (010) (Fig. 2). Neighbouring CoL 2 mol­ecules within a layer are related by an inversion centre with Co⋯Co separations of 6.8713 (6) and 6.9985 (6) Å. Weak C—H⋯O hydrogen-bonding inter­actions between the complex mol­ecules and the solvent mol­ecules lead to a consolidation of the crystal packing.

Figure 2.

Figure 2

Packing diagram showing alternating layers of [CoL 2] and DMF mol­ecules. CH hydrogens have been omitted for clarity.

Synthesis and crystallization  

The Schiff base ligand HL was prepared by refluxing pyridine-2-carbaldehyde (0.38 ml, 4 mmol) with anthranilic acid (0.55 g, 4 mmol) in 20 ml methanol for half an hour. The resultant yellow solution was left in open air overnight and used without further purification.

To a stirred DMF solution (5 ml) of Cd(CH3COO)2·2H2O (0.53 g, 2 mmol) in a 50 ml conic flask, HL (0.21 g, 4 mmol) in methanol from the previous preparation was added. The solution was magnetically stirred at 323 K for 20 minutes and a yellow precipitate of a Cd complex formed. Co(CH3COO)2·4H2O (0.25 g, 1 mmol) in DMF (10 ml) was added to the reaction mixture after a week. The mixture was stirred magnetically at 323 K for an hour, however, the yellow precipitate did not dissolve and was filtered off. The resulting red–brown solution was left to evaporate at room temperature. Red–brown block-like crystals of the title compound formed the next day. They were collected by filter-suction, washed with dry iso­propanol and finally dried in vacuo (yield: 23% based on cobalt salt). Analysis for C26H18CoN4O4·1.5C3H7NO calculated (%) C: 59.18 H: 4.64 N: 12.45 Co: 9.52. Found (%) C: 59.33 H: 4.49 N: 12.41 Co: 9.76. Spectroscopic data (IR, KBr) are available as an additional Figure in the supporting information.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The refinement of the metal occupancy as part Co and part Cd gave 100% Co. One solvent DMF mol­ecule was modelled as being disordered about a crystallographic inversion centre with resulting half-occupancy and with geometries restrained to ideal values. All hydrogen atoms were placed at calculated positions and refined by use of the riding-model approximation, with U iso(H) = 1.2U eq of the parent C atom.

Table 3. Experimental details.

Crystal data
Chemical formula [Co(C13H9N2O2)2]·1.5C3H7NO
M r 619.02
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.4361 (6), 13.2603 (10), 13.8664 (10)
α, β, γ (°) 110.061 (7), 103.559 (6), 101.430 (6)
V3) 1348.9 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.69
Crystal size (mm) 0.40 × 0.30 × 0.18
 
Data collection
Diffractometer Oxford Diffraction Xcalibur
Absorption correction Analytical [CrysAlis PRO (Agilent, 2011) using an expression derived by Clark & Reid (1995)]
T min, T max 0.821, 0.898
No. of measured, independent and observed [I > 2σ(I)] reflections 33209, 10748, 8599
R int 0.036
(sin θ/λ)max−1) 0.787
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.048, 0.127, 1.05
No. of reflections 10748
No. of parameters 410
No. of restraints 35
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.74, −0.54

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPII (Johnson, 1976), DIAMOND (Brandenburg, 1999) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814019485/wm5044sup1.cif

e-70-00164-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019485/wm5044Isup2.hkl

e-70-00164-Isup2.hkl (514.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019485/wm5044Isup3.jpg

CCDC reference: 1021534

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10⋯O42i 0.95 2.46 3.393 (2) 169
C102—H10E⋯O42ii 0.98 2.46 3.369 (3) 154
C16—H16⋯O101 0.95 2.41 3.326 (3) 163
C201—H20C⋯O22iii 0.98 1.97 2.819 (10) 143
C23—H23⋯O42i 0.95 2.60 3.454 (2) 150
C30—H30⋯O22iv 0.95 2.42 3.344 (3) 163
C36—H36⋯O201v 0.95 2.54 3.235 (13) 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was partly supported by the State Fund for Fundamental Researches of Ukraine (project 54.3/005). The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterization & Analysis, the University of Western Australia, a facility funded by the University, State and Commonwealth Governments.

supplementary crystallographic information

Crystal data

[Co(C13H9N2O2)2]·1.5C3H7NO Z = 2
Mr = 619.02 F(000) = 642
Triclinic, P1 Dx = 1.524 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.4361 (6) Å Cell parameters from 10672 reflections
b = 13.2603 (10) Å θ = 2.8–34.5°
c = 13.8664 (10) Å µ = 0.69 mm1
α = 110.061 (7)° T = 100 K
β = 103.559 (6)° Block, red-brown
γ = 101.430 (6)° 0.40 × 0.30 × 0.18 mm
V = 1348.9 (2) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer 10748 independent reflections
Graphite monochromator 8599 reflections with I > 2σ(I)
Detector resolution: 16.0009 pixels mm-1 Rint = 0.036
ω scans θmax = 34°, θmin = 2.8°
Absorption correction: analytical [CrysAlis PRO (Agilent, 2011) using an expression derived by Clark & Reid (1995)] h = −12→13
Tmin = 0.821, Tmax = 0.898 k = −20→19
33209 measured reflections l = −21→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.4745P] where P = (Fo2 + 2Fc2)/3
10748 reflections (Δ/σ)max = 0.006
410 parameters Δρmax = 0.74 e Å3
35 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.One solvent dmf molecule was modelled as being disordered about a crystallographic inversion centre. The geometries were restrained to ideal values.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Co1 0.50566 (3) 0.996180 (17) 0.747260 (16) 0.01696 (6)
N11 0.28320 (17) 0.91486 (12) 0.60369 (11) 0.0197 (2)
C12 0.2706 (2) 0.97508 (14) 0.54251 (12) 0.0194 (3)
C13 0.1383 (2) 0.93697 (15) 0.44446 (14) 0.0255 (3)
H13 0.1345 0.9792 0.4012 0.031*
C14 0.0121 (2) 0.83562 (17) 0.41152 (15) 0.0307 (4)
H14 −0.0801 0.8077 0.3453 0.037*
C15 0.0221 (2) 0.77579 (16) 0.47596 (15) 0.0289 (4)
H15 −0.0645 0.7073 0.4556 0.035*
C16 0.1607 (2) 0.81754 (15) 0.57109 (14) 0.0245 (3)
H16 0.1687 0.7755 0.6144 0.029*
C10 0.4017 (2) 1.08481 (13) 0.58651 (12) 0.0192 (3)
H10 0.4017 1.131 0.5472 0.023*
N10 0.51714 (16) 1.11742 (11) 0.67961 (10) 0.0170 (2)
C21 0.7536 (2) 1.26504 (14) 0.83458 (12) 0.0205 (3)
C22 0.65025 (19) 1.22222 (13) 0.72478 (12) 0.0174 (3)
C23 0.6816 (2) 1.28292 (14) 0.66229 (13) 0.0240 (3)
H23 0.6106 1.2552 0.5888 0.029*
C24 0.8144 (2) 1.38261 (15) 0.70634 (14) 0.0277 (3)
H24 0.833 1.4234 0.6634 0.033*
C25 0.9208 (2) 1.42328 (16) 0.81350 (15) 0.0285 (4)
H25 1.0149 1.4901 0.8431 0.034*
C26 0.8883 (2) 1.36573 (15) 0.87639 (14) 0.0269 (3)
H26 0.9591 1.3952 0.9501 0.032*
C20 0.7319 (2) 1.21453 (15) 0.91605 (13) 0.0240 (3)
O21 0.69029 (16) 1.10880 (10) 0.88645 (9) 0.0232 (2)
O22 0.7636 (3) 1.28251 (13) 1.01092 (11) 0.0475 (4)
N31 0.31332 (17) 1.02612 (12) 0.82016 (11) 0.0203 (2)
C32 0.2642 (2) 0.94913 (14) 0.85884 (12) 0.0197 (3)
C33 0.1204 (2) 0.93994 (16) 0.89184 (13) 0.0257 (3)
H33 0.0913 0.8875 0.9222 0.031*
C34 0.0202 (2) 1.00887 (17) 0.87943 (13) 0.0284 (4)
H34 −0.0811 1.0023 0.8986 0.034*
C35 0.0694 (2) 1.08726 (17) 0.83884 (13) 0.0270 (3)
H35 0.0025 1.1352 0.8296 0.032*
C36 0.2188 (2) 1.09467 (16) 0.81177 (13) 0.0245 (3)
H36 0.255 1.1504 0.7864 0.029*
C30 0.3667 (2) 0.87175 (14) 0.85948 (12) 0.0205 (3)
H30 0.3484 0.821 0.8931 0.025*
N30 0.48205 (17) 0.87471 (11) 0.81309 (10) 0.0181 (2)
C41 0.6719 (2) 0.78101 (13) 0.73476 (12) 0.0207 (3)
C42 0.5915 (2) 0.80600 (13) 0.81452 (12) 0.0199 (3)
C43 0.6270 (2) 0.76728 (15) 0.89722 (14) 0.0271 (3)
H43 0.5707 0.7825 0.9501 0.033*
C44 0.7429 (3) 0.70727 (16) 0.90256 (15) 0.0329 (4)
H44 0.7668 0.6823 0.9594 0.039*
C45 0.8246 (3) 0.68328 (15) 0.82488 (15) 0.0313 (4)
H45 0.9061 0.6434 0.8293 0.038*
C46 0.7858 (2) 0.71809 (14) 0.74084 (14) 0.0261 (3)
H46 0.838 0.6987 0.6861 0.031*
C40 0.6515 (2) 0.81957 (14) 0.64211 (13) 0.0214 (3)
O41 0.63573 (16) 0.91724 (11) 0.65820 (10) 0.0244 (2)
O42 0.6581 (2) 0.75447 (12) 0.55549 (10) 0.0344 (3)
C101 0.2797 (3) 0.5260 (2) 0.53693 (17) 0.0462 (6)
H10A 0.1781 0.5472 0.5112 0.069*
H10B 0.2719 0.4523 0.4839 0.069*
H10C 0.3825 0.5826 0.5457 0.069*
C102 0.4048 (3) 0.4635 (2) 0.6791 (2) 0.0492 (6)
H10D 0.5229 0.5046 0.6912 0.074*
H10E 0.3748 0.3864 0.6245 0.074*
H10F 0.3947 0.4615 0.7475 0.074*
N101 0.2892 (2) 0.52022 (14) 0.64083 (13) 0.0314 (3)
C103 0.2097 (2) 0.57619 (16) 0.70349 (15) 0.0292 (4)
H103 0.2267 0.5737 0.7728 0.035*
O101 0.1172 (2) 0.63017 (13) 0.68000 (13) 0.0384 (3)
C201 0.6583 (8) 0.4774 (8) 1.0471 (4) 0.074 (2) 0.5
H20A 0.6872 0.5372 1.1196 0.11* 0.5
H20B 0.7402 0.4981 1.0122 0.11* 0.5
H20C 0.6635 0.4067 1.0537 0.11* 0.5
C202 0.4086 (11) 0.5472 (7) 1.0070 (9) 0.094 (3) 0.5
H20D 0.4843 0.62 1.0193 0.141* 0.5
H20E 0.3758 0.5541 1.0718 0.141* 0.5
H20F 0.3056 0.5245 0.9445 0.141* 0.5
N201 0.4968 (10) 0.4635 (6) 0.9856 (6) 0.0754 (17) 0.5
C203 0.4235 (7) 0.3681 (6) 0.9046 (5) 0.0535 (12) 0.5
H203 0.4778 0.312 0.8829 0.064* 0.5
O201 0.2772 (15) 0.3581 (9) 0.8592 (9) 0.211 (4) 0.5

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.01868 (10) 0.01863 (11) 0.01563 (10) 0.00464 (7) 0.00591 (7) 0.00978 (8)
N11 0.0208 (6) 0.0218 (6) 0.0165 (5) 0.0045 (5) 0.0054 (5) 0.0092 (5)
C12 0.0192 (6) 0.0232 (7) 0.0163 (6) 0.0063 (5) 0.0056 (5) 0.0091 (5)
C13 0.0258 (8) 0.0286 (8) 0.0208 (7) 0.0062 (6) 0.0038 (6) 0.0123 (6)
C14 0.0247 (8) 0.0347 (10) 0.0249 (8) 0.0029 (7) −0.0012 (6) 0.0127 (7)
C15 0.0231 (8) 0.0294 (9) 0.0267 (8) −0.0005 (6) 0.0024 (6) 0.0112 (7)
C16 0.0243 (7) 0.0252 (8) 0.0224 (7) 0.0019 (6) 0.0055 (6) 0.0124 (6)
C10 0.0223 (7) 0.0213 (7) 0.0171 (6) 0.0071 (5) 0.0075 (5) 0.0107 (5)
N10 0.0191 (6) 0.0183 (6) 0.0157 (5) 0.0061 (5) 0.0067 (4) 0.0084 (5)
C21 0.0247 (7) 0.0207 (7) 0.0176 (6) 0.0041 (6) 0.0087 (5) 0.0102 (5)
C22 0.0207 (6) 0.0172 (6) 0.0170 (6) 0.0059 (5) 0.0082 (5) 0.0087 (5)
C23 0.0317 (8) 0.0237 (8) 0.0182 (7) 0.0058 (6) 0.0082 (6) 0.0120 (6)
C24 0.0372 (9) 0.0241 (8) 0.0243 (8) 0.0040 (7) 0.0110 (7) 0.0149 (7)
C25 0.0335 (9) 0.0239 (8) 0.0271 (8) 0.0017 (7) 0.0096 (7) 0.0133 (7)
C26 0.0305 (8) 0.0235 (8) 0.0213 (7) −0.0004 (6) 0.0046 (6) 0.0102 (6)
C20 0.0273 (8) 0.0249 (8) 0.0182 (7) 0.0017 (6) 0.0070 (6) 0.0108 (6)
O21 0.0260 (6) 0.0228 (6) 0.0201 (5) 0.0040 (4) 0.0039 (4) 0.0123 (4)
O22 0.0860 (13) 0.0276 (7) 0.0186 (6) −0.0018 (8) 0.0160 (7) 0.0088 (5)
N31 0.0203 (6) 0.0258 (7) 0.0176 (6) 0.0068 (5) 0.0067 (5) 0.0118 (5)
C32 0.0200 (7) 0.0224 (7) 0.0140 (6) 0.0021 (5) 0.0055 (5) 0.0068 (5)
C33 0.0246 (8) 0.0298 (8) 0.0192 (7) 0.0005 (6) 0.0102 (6) 0.0082 (6)
C34 0.0200 (7) 0.0399 (10) 0.0181 (7) 0.0039 (7) 0.0076 (6) 0.0056 (7)
C35 0.0238 (8) 0.0385 (10) 0.0179 (7) 0.0132 (7) 0.0063 (6) 0.0089 (7)
C36 0.0252 (8) 0.0333 (9) 0.0208 (7) 0.0130 (7) 0.0092 (6) 0.0143 (7)
C30 0.0245 (7) 0.0208 (7) 0.0145 (6) 0.0023 (6) 0.0056 (5) 0.0086 (5)
N30 0.0202 (6) 0.0179 (6) 0.0139 (5) 0.0025 (5) 0.0033 (4) 0.0071 (4)
C41 0.0233 (7) 0.0172 (7) 0.0171 (6) 0.0034 (5) 0.0027 (5) 0.0060 (5)
C42 0.0233 (7) 0.0165 (6) 0.0158 (6) 0.0035 (5) 0.0019 (5) 0.0063 (5)
C43 0.0380 (9) 0.0236 (8) 0.0184 (7) 0.0082 (7) 0.0044 (6) 0.0108 (6)
C44 0.0454 (11) 0.0269 (9) 0.0228 (8) 0.0134 (8) 0.0002 (7) 0.0121 (7)
C45 0.0380 (10) 0.0210 (8) 0.0285 (8) 0.0120 (7) 0.0002 (7) 0.0082 (7)
C46 0.0278 (8) 0.0207 (7) 0.0236 (7) 0.0071 (6) 0.0033 (6) 0.0056 (6)
C40 0.0207 (7) 0.0247 (8) 0.0191 (7) 0.0066 (6) 0.0062 (5) 0.0098 (6)
O41 0.0304 (6) 0.0269 (6) 0.0244 (6) 0.0114 (5) 0.0145 (5) 0.0153 (5)
O42 0.0531 (9) 0.0341 (7) 0.0206 (6) 0.0208 (7) 0.0145 (6) 0.0107 (5)
C101 0.0517 (13) 0.0484 (13) 0.0279 (9) 0.0014 (11) 0.0207 (10) 0.0063 (9)
C102 0.0334 (11) 0.0434 (13) 0.0490 (13) 0.0134 (10) 0.0020 (10) 0.0004 (11)
N101 0.0294 (8) 0.0303 (8) 0.0251 (7) 0.0033 (6) 0.0089 (6) 0.0035 (6)
C103 0.0306 (9) 0.0291 (9) 0.0251 (8) 0.0031 (7) 0.0119 (7) 0.0094 (7)
O101 0.0432 (8) 0.0358 (8) 0.0400 (8) 0.0142 (7) 0.0170 (7) 0.0165 (7)
C201 0.036 (3) 0.148 (6) 0.030 (2) 0.033 (3) 0.004 (2) 0.031 (3)
C202 0.055 (4) 0.078 (5) 0.136 (6) 0.025 (4) 0.035 (5) 0.024 (5)
N201 0.049 (2) 0.115 (4) 0.071 (3) 0.016 (4) 0.020 (3) 0.053 (4)
C203 0.043 (3) 0.079 (4) 0.056 (3) 0.033 (3) 0.019 (2) 0.039 (3)
O201 0.227 (7) 0.144 (6) 0.183 (7) 0.017 (6) 0.015 (6) 0.032 (6)

Geometric parameters (Å, º)

Co1—O41 2.0072 (12) C35—C36 1.392 (2)
Co1—O21 2.0181 (13) C35—H35 0.9500
Co1—N30 2.1057 (13) C36—H36 0.9500
Co1—N10 2.1189 (13) C30—N30 1.288 (2)
Co1—N31 2.1358 (14) C30—H30 0.9500
Co1—N11 2.1498 (14) N30—C42 1.421 (2)
N11—C16 1.338 (2) C41—C46 1.398 (2)
N11—C16 1.338 (2) C41—C42 1.409 (2)
N11—C12 1.351 (2) C41—C40 1.524 (2)
C12—C13 1.394 (2) C42—C43 1.404 (2)
C12—C10 1.466 (2) C43—C44 1.382 (3)
C13—C14 1.390 (3) C43—H43 0.9500
C13—H13 0.9500 C44—C45 1.392 (3)
C14—C15 1.383 (3) C44—H44 0.9500
C14—H14 0.9500 C45—C46 1.389 (3)
C15—C16 1.390 (2) C45—H45 0.9500
C15—H15 0.9500 C46—H46 0.9500
C16—H16 0.9500 C40—O42 1.237 (2)
C10—N10 1.289 (2) C40—O41 1.276 (2)
C10—H10 0.9500 C101—N101 1.453 (3)
N10—C22 1.428 (2) C101—H10A 0.9800
C21—C26 1.403 (2) C101—H10B 0.9800
C21—C22 1.410 (2) C101—H10C 0.9800
C21—C20 1.525 (2) C102—N101 1.456 (3)
C22—C23 1.404 (2) C102—H10D 0.9800
C23—C24 1.384 (2) C102—H10E 0.9800
C23—H23 0.9500 C102—H10F 0.9800
C24—C25 1.392 (3) N101—C103 1.336 (2)
C24—H24 0.9500 C103—O101 1.221 (2)
C25—C26 1.380 (2) C103—H103 0.9500
C25—H25 0.9500 C201—N201 1.366 (9)
C26—H26 0.9500 C201—H20A 0.9800
C20—O22 1.241 (2) C201—H20B 0.9800
C20—O21 1.265 (2) C201—H20C 0.9800
N31—C36 1.339 (2) C202—N201 1.442 (10)
N31—C32 1.347 (2) C202—H20D 0.9800
C32—C33 1.391 (2) C202—H20E 0.9800
C32—C30 1.468 (2) C202—H20F 0.9800
C33—C34 1.387 (3) N201—C203 1.278 (9)
C33—H33 0.9500 C203—O201 1.204 (11)
C34—C35 1.382 (3) C203—H203 0.9500
C34—H34 0.9500
O41—Co1—O21 103.70 (5) C33—C32—C30 121.74 (15)
O41—Co1—N30 89.97 (5) C34—C33—C32 118.64 (16)
O21—Co1—N30 90.57 (5) C34—C33—H33 120.7
O41—Co1—N10 91.81 (5) C32—C33—H33 120.7
O21—Co1—N10 90.92 (5) C35—C34—C33 119.31 (15)
N30—Co1—N10 177.35 (5) C35—C34—H34 120.3
O41—Co1—N31 161.53 (6) C33—C34—H34 120.3
O21—Co1—N31 90.55 (5) C34—C35—C36 118.72 (17)
N30—Co1—N31 78.03 (5) C34—C35—H35 120.6
N10—Co1—N31 99.76 (5) C36—C35—H35 120.6
O41—Co1—N11 87.74 (5) N31—C36—C35 122.40 (16)
O21—Co1—N11 164.36 (5) N31—C36—H36 118.8
N30—Co1—N11 100.20 (5) C35—C36—H36 118.8
N10—Co1—N11 77.91 (5) N30—C30—C32 118.03 (14)
N31—Co1—N11 80.75 (5) N30—C30—H30 121.0
C16—N11—C12 118.76 (14) C32—C30—H30 121.0
C16—N11—Co1 128.75 (11) C30—N30—C42 121.33 (14)
C12—N11—Co1 112.47 (10) C30—N30—Co1 114.82 (11)
N11—C12—C13 122.22 (15) C42—N30—Co1 123.70 (10)
N11—C12—C10 116.19 (13) C46—C41—C42 118.51 (15)
C13—C12—C10 121.57 (15) C46—C41—C40 115.46 (15)
C14—C13—C12 118.33 (16) C42—C41—C40 126.01 (15)
C14—C13—H13 120.8 C43—C42—C41 119.54 (16)
C12—C13—H13 120.8 C43—C42—N30 120.99 (15)
C15—C14—C13 119.39 (16) C41—C42—N30 119.40 (14)
C15—C14—H14 120.3 C44—C43—C42 120.71 (17)
C13—C14—H14 120.3 C44—C43—H43 119.6
C14—C15—C16 118.94 (17) C42—C43—H43 119.6
C14—C15—H15 120.5 C43—C44—C45 120.18 (17)
C16—C15—H15 120.5 C43—C44—H44 119.9
N11—C16—C15 122.28 (16) C45—C44—H44 119.9
N11—C16—H16 118.9 C46—C45—C44 119.41 (17)
C15—C16—H16 118.9 C46—C45—H45 120.3
N10—C10—C12 118.75 (14) C44—C45—H45 120.3
N10—C10—H10 120.6 C45—C46—C41 121.60 (17)
C12—C10—H10 120.6 C45—C46—H46 119.2
C10—N10—C22 120.97 (13) C41—C46—H46 119.2
C10—N10—Co1 114.38 (11) O42—C40—O41 123.49 (15)
C22—N10—Co1 124.31 (10) O42—C40—C41 116.99 (15)
C26—C21—C22 118.32 (14) O41—C40—C41 119.46 (14)
C26—C21—C20 115.13 (14) C40—O41—Co1 127.35 (11)
C22—C21—C20 126.52 (14) N101—C101—H10A 109.5
C23—C22—C21 119.32 (14) N101—C101—H10B 109.5
C23—C22—N10 121.59 (14) H10A—C101—H10B 109.5
C21—C22—N10 119.08 (13) N101—C101—H10C 109.5
C24—C23—C22 120.89 (15) H10A—C101—H10C 109.5
C24—C23—H23 119.6 H10B—C101—H10C 109.5
C22—C23—H23 119.6 N101—C102—H10D 109.5
C23—C24—C25 120.10 (15) N101—C102—H10E 109.5
C23—C24—H24 120.0 H10D—C102—H10E 109.5
C25—C24—H24 120.0 N101—C102—H10F 109.5
C26—C25—C24 119.40 (17) H10D—C102—H10F 109.5
C26—C25—H25 120.3 H10E—C102—H10F 109.5
C24—C25—H25 120.3 C103—N101—C101 120.47 (19)
C25—C26—C21 121.91 (16) C103—N101—C102 121.65 (18)
C25—C26—H26 119.0 C101—N101—C102 117.44 (19)
C21—C26—H26 119.0 O101—C103—N101 126.04 (18)
O22—C20—O21 123.53 (15) O101—C103—H103 117.0
O22—C20—C21 116.35 (15) N101—C103—H103 117.0
O21—C20—C21 120.06 (14) C203—N201—C201 115.3 (7)
C20—O21—Co1 124.57 (11) C203—N201—C202 120.1 (8)
C36—N31—C32 118.68 (14) C201—N201—C202 124.6 (7)
C36—N31—Co1 127.42 (11) O201—C203—N201 111.9 (8)
C32—N31—Co1 112.43 (11) O201—C203—H203 124.1
N31—C32—C33 122.15 (16) N201—C203—H203 124.1
N31—C32—C30 116.05 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C10—H10···O42i 0.95 2.46 3.393 (2) 169
C102—H10E···O42ii 0.98 2.46 3.369 (3) 154
C16—H16···O101 0.95 2.41 3.326 (3) 163
C201—H20C···O22iii 0.98 1.97 2.819 (10) 143
C23—H23···O42i 0.95 2.60 3.454 (2) 150
C30—H30···O22iv 0.95 2.42 3.344 (3) 163
C36—H36···O201v 0.95 2.54 3.235 (13) 130

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x+1, −y+1, −z+1; (iii) x, y−1, z; (iv) −x+1, −y+2, −z+2; (v) x, y+1, z.

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies, Yarnton, England.
  2. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
  3. Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  4. Buvaylo, E. A., Kokozay, V. N., Rubini, K., Vassilyeva, O. Yu. & Skelton, B. W. (2014b). J. Mol. Struct. 1072, 129–136.
  5. Buvaylo, E. A., Kokozay, V. N., Vassilyeva, O. Y. & Skelton, B. W. (2014a). Acta Cryst. E70, m136. [DOI] [PMC free article] [PubMed]
  6. Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.
  7. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  8. Mukhopadhyay, A. & Pal, S. (2005). J. Chem. Crystallogr. 35, 737–744.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Vigato, P. A., Peruzzo, V. & Tamburini, S. (2012). Coord. Chem. Rev. 256, 953–1114.
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814019485/wm5044sup1.cif

e-70-00164-sup1.cif (33.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814019485/wm5044Isup2.hkl

e-70-00164-Isup2.hkl (514.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814019485/wm5044Isup3.jpg

CCDC reference: 1021534

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES