Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 24;70(Pt 11):o1193–o1194. doi: 10.1107/S1600536814023150

Crystal structure of 1,3-bis­(2,6-diiso­propyl­phen­yl)-4,5-dimethyl-1H-imid­azol-3-ium bromide di­chloro­methane disolvate

Matthias Berger a, Norbert Auner a, Michael Bolte a,*
PMCID: PMC4257239  PMID: 25484824

Abstract

The title solvated salt, C29H41N2 +·Br·2CH2Cl2 was obtained from the reaction of the Arduengo-type carbene 1,3-bis­(2,6-diiso­propyl­phen­yl)-1,3-dihydro-4,5-dimethyl-2H-imidazol-2-ylidene with Si2Br6 in di­chloro­methane. The complete cation is generated by a crystallographic mirror plane and the dihedral angle between the five-membered ring and the benzene ring is 89.8 (6)°; the dihedral angle between the benzene rings is 40.7 (2)°. The anion also lies on the mirror plane and both di­chloro­methane mol­ecules are disordered across the mirror plane over two equally occupied orientations. In the crystal, the cations are linked to the anions via C—H⋯Br hydrogen bonds.

Keywords: Arduengo-type carbene, C—H⋯Br hydrogen bond, crystal structure

Related literature  

For the preparation of imidazolium salts, see: Arduengo et al. (1995, 1999); Hinter­mann et al. (2007); Gaillard et al. (2009). For silylene stabilization, see: Wang et al. (2008); Ghadwal et al. (2009); Filippou et al. (2009). For structures with the same cation but different anions, see: Clavier et al. (2009); Gaillard et al. (2009). For other crystallographically characterized imidazolium structures, see: Arduengo et al. (1995, 1999); Fliedel et al. (2007); Hagos et al. (2008); Berger, Auner & Bolte (2012); Berger, Auner, Sinke & Bolte (2012); Ikhile & Bala (2010); Giffin et al. (2010)graphic file with name e-70-o1193-scheme1.jpg

Experimental  

Crystal data  

  • C29H41N2 +·Br·2CH2Cl2

  • M r = 667.40

  • Monoclinic, Inline graphic

  • a = 10.0644 (11) Å

  • b = 16.6082 (17) Å

  • c = 10.7107 (15) Å

  • β = 98.48 (1)°

  • V = 1770.7 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 173 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • STOE IPDS II two-circle diffractometer

  • Absorption correction: multi-scan (X-AREA Stoe & Cie, 2001) T min = 0.756, T max = 0.756

  • 21288 measured reflections

  • 3229 independent reflections

  • 2618 reflections with I > 2σ(I)

  • R int = 0.156

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.163

  • wR(F 2) = 0.393

  • S = 1.12

  • 3229 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 1.09 e Å−3

  • Δρmin = −1.13 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL2013, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814023150/hb7303sup1.cif

e-70-o1193-sup1.cif (794KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023150/hb7303Isup2.hkl

e-70-o1193-Isup2.hkl (177.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023150/hb7303Isup3.cml

x y z . DOI: 10.1107/S1600536814023150/hb7303fig1.tif

Perspective view of the title comopound with displacement ellipsoids drawn at the 50% probability level. The C—H⋯Br hydrogen bond is drawn as a dashed line. Atoms labelled with suffix A were generated by the symmetry operator x, −y + Inline graphic, z.

CCDC reference: 1030231

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
CHBr1 0.95 2.46 3.403(13) 172

supplementary crystallographic information

S1. Comment

Imidazolium salts are precursors for the synthesis of N-heterocyclic carbenes (NHC) and can be prepared according to Arduengo et al. (1995, 1999) and Hintermann (2007). To block deprotonation and substitution reactions at the unsaturated backbone of the imidazolium skeleton, methyl groups adjacent to the C=C bond can decrease NHC reactivity and increase the steric demand at these carbon positions (Gaillard et al., 2009). Deprotonation of these imidazolium salts by strong bases gives the free stable NHC, which is widely used as a ligand for e.g. silylene stabilization (Wang et al., 2008; Ghadwal et al., 2009; Filippou et al., 2009).

The title compound crystallizes with discrete cations, anions and solvent dichloromethane molecules. The cations and anions are located on a crystallographic mirror plane. Both dichloromethane molecules show a disorder across a mirror plane over two equally occupied positions. The Br anions are connnected to the cations via C—H···Br hydrogen bonds.

Structures with the same cation, but with different anions and solvent molecules, have been determined by Clavier et al. (2009) and Gaillard et al. (2009). For compounds with 1,3-Bis-(2,6-diisopropylphenyl)imidazolium unit, see: Ikhile et al. (2010), Giffin et al. (2010), Hagos et al. (2008), Fliedel et al. (2007), Berger, Auner & Bolte (2012); Berger, Auner, Sinke & Bolte (2012).

S2. Experimental

The title compound is synthesized according to Arduengo et al. (1995), Hintermann (2007) and Gaillard et al. (2009).

1,3-Bis(2,6-diisopropylphenyl)-4,5-dimethyl-1H-imidazol-3-ium bromide chloroform disolvate was prepared by reacting 340 mg of 1,3-bis(2,6-diisopropylphenyl)-1,3-dihydro-4,5-dimethyl-2H- imidazol-2-ylidene with 300 mg of Si2Br6 in 10 ml dichloromethane. After removing the solvent in vacuo and dissolving the residue in CD2Cl2 the NMR-Tube was stored for two weeks at 253 K. Colourless needles of the title compound crystallized.

S3. Refinement

All atoms have been anisotropically refined. H atoms were refined using a riding model, with Caromatic—H = 0.95 Å or Cmethyl—H = 0.98 Å, C—Htertiary = 0.99 Å and with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

Perspective view of the title comopound with displacement ellipsoids drawn at the 50% probability level. The C—H···Br hydrogen bond is drawn as a dashed line. Atoms labelled with suffix A were generated by the symmetry operator x, -y + 1/2, z.

Crystal data

C29H41N2+·Br·2CH2Cl2 F(000) = 696
Mr = 667.40 Dx = 1.252 Mg m3
Monoclinic, P21/m Mo Kα radiation, λ = 0.71073 Å
a = 10.0644 (11) Å Cell parameters from 20226 reflections
b = 16.6082 (17) Å θ = 3.2–25.8°
c = 10.7107 (15) Å µ = 1.48 mm1
β = 98.48 (1)° T = 173 K
V = 1770.7 (4) Å3 Block, colourless
Z = 2 0.20 × 0.20 × 0.20 mm

Data collection

STOE IPDS II two-circle diffractometer 2618 reflections with I > 2σ(I)
Radiation source: Genix 3D IµS microfocus X-ray source Rint = 0.156
ω scans θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan (X-AREA Stoe & Cie, 2001) h = −11→11
Tmin = 0.756, Tmax = 0.756 k = −19→19
21288 measured reflections l = −12→12
3229 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.163 H-atom parameters constrained
wR(F2) = 0.393 w = 1/[σ2(Fo2) + (0.1372P)2 + 27.7491P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max < 0.001
3229 reflections Δρmax = 1.09 e Å3
190 parameters Δρmin = −1.13 e Å3

Special details

Experimental. ;
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. ;

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.7876 (7) 0.1843 (5) 0.4157 (7) 0.0283 (17)
C1 0.7093 (13) 0.2500 0.4193 (12) 0.026 (3)
H1 0.6157 0.2500 0.4235 0.031*
C2 0.9196 (9) 0.2098 (7) 0.4076 (9) 0.035 (2)
C3 1.0285 (10) 0.1493 (7) 0.4038 (12) 0.046 (3)
H3A 0.9910 0.0949 0.4060 0.069*
H3B 1.0982 0.1569 0.4770 0.069*
H3C 1.0678 0.1562 0.3261 0.069*
C4 0.6880 (14) 0.1029 (8) 0.1817 (11) 0.054 (3)
H4 0.7369 0.1553 0.1943 0.065*
C5 0.5431 (19) 0.1214 (12) 0.1280 (16) 0.092 (6)
H5A 0.5398 0.1470 0.0451 0.138*
H5B 0.5049 0.1580 0.1852 0.138*
H5C 0.4911 0.0714 0.1192 0.138*
C6 0.7583 (18) 0.0522 (12) 0.0899 (14) 0.081 (5)
H6A 0.8504 0.0401 0.1290 0.121*
H6B 0.7602 0.0824 0.0117 0.121*
H6C 0.7089 0.0017 0.0708 0.121*
C7 0.7974 (12) 0.1111 (8) 0.6591 (11) 0.048 (3)
H7 0.8410 0.1618 0.6351 0.057*
C8 0.9077 (15) 0.0617 (10) 0.7486 (13) 0.069 (4)
H8A 0.9385 0.0932 0.8247 0.103*
H8B 0.9840 0.0504 0.7039 0.103*
H8C 0.8689 0.0108 0.7723 0.103*
C9 0.6840 (16) 0.1355 (10) 0.7316 (13) 0.068 (4)
H9A 0.7215 0.1645 0.8085 0.102*
H9B 0.6370 0.0873 0.7544 0.102*
H9C 0.6206 0.1705 0.6785 0.102*
C11 0.7393 (10) 0.1030 (7) 0.4224 (10) 0.037 (2)
C12 0.6930 (11) 0.0638 (7) 0.3109 (11) 0.045 (3)
C13 0.6476 (13) −0.0157 (8) 0.3211 (13) 0.056 (3)
H13 0.6160 −0.0452 0.2467 0.067*
C14 0.6482 (13) −0.0516 (8) 0.4379 (13) 0.057 (3)
H14 0.6130 −0.1043 0.4434 0.068*
C15 0.6993 (12) −0.0112 (8) 0.5450 (12) 0.048 (3)
H15 0.7018 −0.0373 0.6242 0.058*
C16 0.7483 (10) 0.0679 (7) 0.5420 (10) 0.040 (2)
Br1 0.36891 (18) 0.2500 0.4011 (2) 0.0582 (7)
C1L 0.250 (3) 0.2500 0.711 (3) 0.19 (3)
H1LA 0.2711 0.2180 0.6419 0.228* 0.5
H1LB 0.2390 0.3042 0.6806 0.228* 0.5
Cl1 0.3918 (6) 0.2500 0.8208 (6) 0.104 (3)
Cl2 0.1100 (7) 0.2217 (5) 0.7384 (7) 0.074 (2) 0.5
C2L 1.165 (2) 0.2500 0.089 (2) 0.090 (9)
H2LA 1.1999 0.2798 0.0233 0.108* 0.5
H2LB 1.2084 0.2646 0.1703 0.108* 0.5
Cl3 1.1536 (11) 0.1392 (7) 0.0594 (9) 0.100 (3) 0.5
Cl4 0.9934 (12) 0.2500 0.0734 (10) 0.253 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.022 (4) 0.037 (4) 0.025 (4) −0.004 (3) 0.001 (3) 0.001 (3)
C1 0.023 (6) 0.028 (7) 0.027 (6) 0.000 0.005 (5) 0.000
C2 0.019 (4) 0.046 (5) 0.036 (5) 0.011 (4) −0.004 (4) −0.003 (4)
C3 0.024 (5) 0.055 (7) 0.058 (7) 0.003 (5) 0.005 (5) −0.013 (6)
C4 0.069 (8) 0.055 (8) 0.035 (6) −0.007 (6) −0.003 (5) −0.009 (5)
C5 0.107 (14) 0.091 (13) 0.071 (10) 0.020 (11) −0.013 (9) −0.002 (9)
C6 0.086 (11) 0.101 (13) 0.051 (8) −0.012 (10) −0.004 (7) 0.001 (8)
C7 0.051 (7) 0.046 (7) 0.046 (6) 0.008 (6) 0.005 (5) 0.010 (5)
C8 0.070 (9) 0.079 (10) 0.050 (8) 0.015 (8) −0.015 (7) −0.005 (7)
C9 0.081 (10) 0.076 (10) 0.053 (8) 0.008 (8) 0.026 (7) 0.007 (7)
C11 0.025 (5) 0.047 (6) 0.038 (5) 0.006 (4) 0.000 (4) 0.002 (5)
C12 0.032 (5) 0.044 (7) 0.055 (7) 0.004 (5) −0.002 (5) 0.002 (5)
C13 0.050 (7) 0.054 (8) 0.061 (8) 0.002 (6) −0.004 (6) −0.015 (6)
C14 0.051 (7) 0.047 (7) 0.068 (8) −0.003 (6) −0.005 (6) 0.001 (6)
C15 0.045 (6) 0.051 (7) 0.049 (7) 0.003 (5) 0.007 (5) 0.015 (6)
C16 0.032 (5) 0.050 (7) 0.039 (6) 0.009 (5) 0.010 (4) 0.009 (5)
Br1 0.0341 (9) 0.0750 (13) 0.0665 (12) 0.000 0.0107 (7) 0.000
C1L 0.08 (2) 0.44 (8) 0.048 (15) 0.000 0.014 (14) 0.000
Cl1 0.044 (3) 0.183 (8) 0.079 (4) 0.000 −0.006 (3) 0.000
Cl2 0.055 (4) 0.097 (7) 0.068 (4) −0.026 (3) 0.002 (3) −0.002 (3)
C2L 0.057 (13) 0.17 (3) 0.047 (12) 0.000 0.010 (10) 0.000
Cl3 0.111 (7) 0.106 (7) 0.076 (6) −0.021 (6) −0.009 (5) −0.006 (5)
Cl4 0.119 (8) 0.56 (3) 0.081 (6) 0.000 0.031 (6) 0.000

Geometric parameters (Å, º)

N1—C1 1.350 (11) C8—H8C 0.9800
N1—C2 1.409 (12) C9—H9A 0.9800
N1—C11 1.440 (14) C9—H9B 0.9800
C1—N1i 1.350 (11) C9—H9C 0.9800
C1—H1 0.9500 C11—C12 1.380 (16)
C2—C2i 1.34 (2) C11—C16 1.398 (15)
C2—C3 1.492 (14) C12—C13 1.406 (18)
C3—H3A 0.9800 C13—C14 1.385 (19)
C3—H3B 0.9800 C13—H13 0.9500
C3—H3C 0.9800 C14—C15 1.362 (18)
C4—C5 1.52 (2) C14—H14 0.9500
C4—C12 1.523 (17) C15—C16 1.405 (17)
C4—C6 1.54 (2) C15—H15 0.9500
C4—H4 1.0000 C1L—Cl2 1.56 (3)
C5—H5A 0.9800 C1L—Cl2i 1.56 (3)
C5—H5B 0.9800 C1L—Cl1 1.71 (3)
C5—H5C 0.9800 C1L—H1LA 0.9592
C6—H6A 0.9800 C1L—H1LB 0.9585
C6—H6B 0.9800 Cl2—Cl2i 0.941 (16)
C6—H6C 0.9800 C2L—Cl4 1.71 (3)
C7—C16 1.466 (17) C2L—Cl3 1.867 (12)
C7—C9 1.527 (17) C2L—Cl3i 1.867 (12)
C7—C8 1.585 (17) C2L—H2LA 0.9648
C7—H7 1.0000 C2L—H2LB 0.9468
C8—H8A 0.9800 Cl3—Cl4 2.465 (14)
C8—H8B 0.9800 Cl4—Cl3i 2.465 (14)
C1—N1—C2 108.6 (8) C7—C9—H9A 109.5
C1—N1—C11 123.6 (8) C7—C9—H9B 109.5
C2—N1—C11 127.8 (8) H9A—C9—H9B 109.5
N1i—C1—N1 107.9 (11) C7—C9—H9C 109.5
N1i—C1—H1 126.1 H9A—C9—H9C 109.5
N1—C1—H1 126.1 H9B—C9—H9C 109.5
C2i—C2—N1 107.5 (5) C12—C11—C16 124.3 (11)
C2i—C2—C3 132.4 (6) C12—C11—N1 118.2 (9)
N1—C2—C3 120.2 (10) C16—C11—N1 117.4 (9)
C2—C3—H3A 109.5 C11—C12—C13 116.6 (11)
C2—C3—H3B 109.5 C11—C12—C4 123.2 (11)
H3A—C3—H3B 109.5 C13—C12—C4 120.2 (11)
C2—C3—H3C 109.5 C14—C13—C12 121.1 (12)
H3A—C3—H3C 109.5 C14—C13—H13 119.5
H3B—C3—H3C 109.5 C12—C13—H13 119.5
C5—C4—C12 109.4 (12) C15—C14—C13 119.9 (12)
C5—C4—C6 112.0 (12) C15—C14—H14 120.0
C12—C4—C6 112.9 (12) C13—C14—H14 120.0
C5—C4—H4 107.4 C14—C15—C16 122.1 (11)
C12—C4—H4 107.4 C14—C15—H15 118.9
C6—C4—H4 107.4 C16—C15—H15 118.9
C4—C5—H5A 109.5 C11—C16—C15 115.8 (11)
C4—C5—H5B 109.5 C11—C16—C7 123.2 (10)
H5A—C5—H5B 109.5 C15—C16—C7 120.9 (10)
C4—C5—H5C 109.5 Cl2—C1L—Cl1 123.9 (16)
H5A—C5—H5C 109.5 Cl2i—C1L—Cl1 123.9 (16)
H5B—C5—H5C 109.5 Cl2—C1L—H1LA 106.5
C4—C6—H6A 109.5 Cl2i—C1L—H1LA 128.3
C4—C6—H6B 109.5 Cl1—C1L—H1LA 106.1
H6A—C6—H6B 109.5 Cl2—C1L—H1LB 106.4
C4—C6—H6C 109.5 Cl1—C1L—H1LB 106.2
H6A—C6—H6C 109.5 H1LA—C1L—H1LB 106.8
H6B—C6—H6C 109.5 Cl2i—Cl2—C1L 72.4 (5)
C16—C7—C9 112.5 (11) Cl4—C2L—Cl3 86.9 (8)
C16—C7—C8 112.4 (10) Cl4—C2L—Cl3i 86.9 (8)
C9—C7—C8 109.9 (11) Cl3—C2L—Cl3i 160.3 (15)
C16—C7—H7 107.3 Cl4—C2L—H2LA 113.4
C9—C7—H7 107.3 Cl3—C2L—H2LA 113.8
C8—C7—H7 107.3 Cl3i—C2L—H2LA 52.5
C7—C8—H8A 109.5 Cl4—C2L—H2LB 114.0
C7—C8—H8B 109.5 Cl3—C2L—H2LB 114.6
H8A—C8—H8B 109.5 Cl3i—C2L—H2LB 85.0
C7—C8—H8C 109.5 H2LA—C2L—H2LB 112.0
H8A—C8—H8C 109.5 Cl3i—Cl4—Cl3 96.5 (6)
H8B—C8—H8C 109.5
C2—N1—C1—N1i −1.0 (13) C11—C12—C13—C14 0.8 (17)
C11—N1—C1—N1i 177.7 (6) C4—C12—C13—C14 −178.3 (12)
C1—N1—C2—C2i 0.6 (8) C12—C13—C14—C15 −3.1 (19)
C11—N1—C2—C2i −178.0 (8) C13—C14—C15—C16 2.1 (19)
C1—N1—C2—C3 179.2 (10) C12—C11—C16—C15 −3.6 (15)
C11—N1—C2—C3 0.6 (15) N1—C11—C16—C15 179.5 (9)
C1—N1—C11—C12 91.6 (12) C12—C11—C16—C7 −179.8 (10)
C2—N1—C11—C12 −89.9 (12) N1—C11—C16—C7 3.3 (15)
C1—N1—C11—C16 −91.3 (12) C14—C15—C16—C11 1.1 (17)
C2—N1—C11—C16 87.2 (12) C14—C15—C16—C7 177.4 (11)
C16—C11—C12—C13 2.6 (16) C9—C7—C16—C11 104.4 (13)
N1—C11—C12—C13 179.5 (9) C8—C7—C16—C11 −130.9 (12)
C16—C11—C12—C4 −178.2 (10) C9—C7—C16—C15 −71.5 (14)
N1—C11—C12—C4 −1.3 (16) C8—C7—C16—C15 53.1 (15)
C5—C4—C12—C11 −107.1 (14) Cl1—C1L—Cl2—Cl2i 102.3 (9)
C6—C4—C12—C11 127.4 (13) Cl3i—C2L—Cl3—Cl4 −72 (4)
C5—C4—C12—C13 72.0 (15) Cl3—C2L—Cl4—Cl3i −161.3 (14)
C6—C4—C12—C13 −53.5 (16) Cl3i—C2L—Cl4—Cl3 161.3 (14)

Symmetry code: (i) x, −y+1/2, z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C—H···Br1 0.95 2.46 3.403 (13) 172

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7303).

References

  1. Arduengo, A. J., Goerlich, J. R. & Marshall, W. J. (1995). J. Am. Chem. Soc. 117, 11027–11028.
  2. Arduengo, A. J., Krafczyk, R., Schmutzler, R., Craig, H. A., Goerlich, J. R., Marshall, W. J. & Unverzagt, M. (1999). Tetrahedron, 55, 14523–14534.
  3. Berger, M., Auner, N. & Bolte, M. (2012). Acta Cryst. E68, o1844. [DOI] [PMC free article] [PubMed]
  4. Berger, M., Auner, N., Sinke, T. & Bolte, M. (2012). Acta Cryst. E68, o1845. [DOI] [PMC free article] [PubMed]
  5. Clavier, H., Correa, A., Cavallo, L., Escudero-Adán, E. C., Benet-Buchholz, J., Slawin, A. M. Z. & Nolan, S. P. (2009). Eur. J. Inorg. Chem. pp. 1767–1773.
  6. Filippou, A. C., Chernov, O. & Schnakenburg, G. (2009). Angew. Chem. 121, 5797–5800.
  7. Fliedel, C., Maisse-François, A. & Bellemin-Laponnaz, S. (2007). Inorg. Chim. Acta, 360, 143–148.
  8. Gaillard, S., Bantreil, X., Slawin, A. M. Z. & Nolan, S. P. (2009). Dalton Trans. pp. 6967–6971. [DOI] [PubMed]
  9. Ghadwal, R. S., Roesky, H. W., Merkel, S., Henn, J. & Stalke, D. (2009). Angew. Chem. 121, 5793–5796. [DOI] [PubMed]
  10. Giffin, N. A., Hendsbee, A. D. & Masuda, J. D. (2010). Acta Cryst. E66, o2090–o2091. [DOI] [PMC free article] [PubMed]
  11. Hagos, T. K., Nogai, S. D., Dobrzańska, L. & Cronje, S. (2008). Acta Cryst. E64, m1357. [DOI] [PMC free article] [PubMed]
  12. Hintermann, L. (2007). Beilstein J. Org. Chem. 3 No. 22. 10.1186/1860-5397-3-22. [DOI] [PMC free article] [PubMed]
  13. Ikhile, M. I. & Bala, M. D. (2010). Acta Cryst. E66, o3121. [DOI] [PMC free article] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.
  17. Wang, Y., Xie, Y., Wei, P., King, R. B., Schaefer, H. F., von, R., Schleyer, P. & Robinson, G. H. (2008). Science, 321, 1069–1071. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814023150/hb7303sup1.cif

e-70-o1193-sup1.cif (794KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023150/hb7303Isup2.hkl

e-70-o1193-Isup2.hkl (177.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023150/hb7303Isup3.cml

x y z . DOI: 10.1107/S1600536814023150/hb7303fig1.tif

Perspective view of the title comopound with displacement ellipsoids drawn at the 50% probability level. The C—H⋯Br hydrogen bond is drawn as a dashed line. Atoms labelled with suffix A were generated by the symmetry operator x, −y + Inline graphic, z.

CCDC reference: 1030231

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES