Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 15;70(Pt 11):o1160. doi: 10.1107/S1600536814022041

Crystal structure of 2,6-bis­(2,5-di­meth­oxy­phen­yl)-3,5-di­methyl­piperidin-4-one

Dong Ho Park a, V Ramkumar b, P Parthiban a,c,*
PMCID: PMC4257243  PMID: 25484803

Abstract

In the title mol­ecule, C23H29NO5, the central piperidine ring has a chair conformation. The planes of the two benzene rings are inclined each to other at 61.7 (1)°. The crystal packing exhibits no directional inter­actions only van der Waals contacts.

Keywords: crystal structure, chair conformation, Mannich base, piperidin-4-one

Related literature  

For the synthesis, stereochemistry and biological actions of piperidin-4-ones, see: Sahu et al. (2013); Parthiban et al. (2011). For a related crystal structure, see: Parthiban et al. (2008).graphic file with name e-70-o1160-scheme1.jpg

Experimental  

Crystal data  

  • C23H29NO5

  • M r = 399.47

  • Monoclinic, Inline graphic

  • a = 11.1358 (7) Å

  • b = 9.4756 (5) Å

  • c = 20.4541 (11) Å

  • β = 92.271 (2)°

  • V = 2156.6 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.25 × 0.20 × 0.15 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.979, T max = 0.987

  • 11151 measured reflections

  • 3536 independent reflections

  • 2262 reflections with I > 2σ(I)

  • R int = 0.029

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.116

  • S = 0.98

  • 3536 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814022041/cv5470sup1.cif

e-70-o1160-sup1.cif (376.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814022041/cv5470Isup2.hkl

e-70-o1160-Isup2.hkl (194.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814022041/cv5470Isup3.cml

. DOI: 10.1107/S1600536814022041/cv5470fig1.tif

View of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

CCDC reference: 1027842

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Inje University Research Grant 2013. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

supplementary crystallographic information

S1. Comment

The piperidin-4-one pharmacophore is responsible for numerous biological actions such as antibacterial, antimycobacterial, antifungal, anticancer, antioxidant, antiinflammatory, neuronal nicotinistinic, and CNS stimulant and depressant. Its activity is further increased by the incorporation of aryl groups on both sides of the hetero atom along with/without the introduction of functionalities on the hetero atom itself. Interestingly, the amino group of the piperidone that is flanked by aryl groups are responsible not only for the increment in activity, but also in suppressing the toxicity (Sahu et al. 2013; Parthiban et al. 2011). Generally, the piperidin-4-one moiety exists in different stereochemistries upon the modifications in their structure. Since the stereochemistry of the molecule is an important key for its biological response, it is of curious to explore the stereochemistry. Hence the present study is caried out to explore the stereochemistry of the title compound (I) (Fig. 1).

The crystallographic parameters viz., torsion angles, asymmetry parameters and ring puckering parameters calculated for (I) show that the piperidone ring adopts a chair conformation. According to Cremer & Pople and Nardelli, the total puckering amplitude, QT is 0.5875 (8) Å, the phase angle θ is 0.94 (8)° and phi is 34 (4)°. The smallest displacement asymmetry parameters q2 and q3 are 0.0114 (8) and -0.5874 Å, respectively.

The benzene rings of anisyl groups are oriented at an angle of 61.7 (1)°, respect to each other. The torsion angles of C6—C1—C2—C3 and C3—C4—C5—C16 are 174.94 (18) and -174.42 (18)°, respectively. Similarly, the torsion angles of C2—C3—C4—C15 and C14—C2—C3—C4 are -177.8 (2) and 177.1 (2)%, respectively. The torsion angle values also clearly confirm the equatorial orientation of aryl and alkyl groups on the piperidin-4-one moiety.

On the whole, the complete crystallographic analysis of the title compound, C23H29NO5, exhibits a chair conformation with equatorial orientations of all the aryl and alkyl substituents.

S2. Experimental

The 2,6-bis(2,5-dimethoxyphenyl)-3,5-dimethylpiperidin-4-one was synthesized by a modified and an optimized Mannich condensation in one-pot, using 2,5-dimethoxybenzaldehyde (0.1 mol, 16.618 g), 2-pentanone (0.05 mol) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol (Parthiban et al., 2011). The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

S3. Refinement

All hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å, methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C), methyl H atoms at Uiso(H) = 1.5Ueq(C) and the hydrogen atoms were fixed geometrically and allowed to ride on the parent nitrogen atom with N—H = 0.86 Å and the displacement parameter was set at Uiso(H)= 1.2Ueq(N).

Figures

Fig. 1.

Fig. 1.

View of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

Crystal data

C23H29NO5 Z = 4
Mr = 399.47 F(000) = 856
Monoclinic, P21/c Dx = 1.230 Mg m3
a = 11.1358 (7) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.4756 (5) Å µ = 0.09 mm1
c = 20.4541 (11) Å T = 298 K
β = 92.271 (2)° Block, yellow
V = 2156.6 (2) Å3 0.25 × 0.20 × 0.15 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2262 reflections with I > 2σ(I)
phi and ω scans Rint = 0.029
Absorption correction: multi-scan (SADABS; Bruker, 2004) θmax = 25.0°, θmin = 2.4°
Tmin = 0.979, Tmax = 0.987 h = −12→12
11151 measured reflections k = −11→10
3536 independent reflections l = −20→24

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.046 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.0405P)2 + 0.9547P] where P = (Fo2 + 2Fc2)/3
S = 0.98 (Δ/σ)max < 0.001
3536 reflections Δρmax = 0.17 e Å3
272 parameters Δρmin = −0.18 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.54320 (17) 0.4952 (2) 0.14728 (9) 0.0380 (5)
H1 0.5445 0.3918 0.1468 0.046*
C2 0.59048 (18) 0.5485 (2) 0.21515 (10) 0.0439 (5)
H2 0.5876 0.6519 0.2147 0.053*
C3 0.50346 (19) 0.4971 (2) 0.26472 (10) 0.0447 (6)
C4 0.37508 (18) 0.5434 (3) 0.25295 (10) 0.0465 (6)
H4 0.3737 0.6469 0.2526 0.056*
C5 0.33417 (17) 0.4916 (2) 0.18398 (9) 0.0413 (5)
H5 0.3343 0.3882 0.1834 0.050*
C6 0.61644 (17) 0.5504 (2) 0.09201 (9) 0.0369 (5)
C7 0.6022 (2) 0.6895 (2) 0.07205 (10) 0.0461 (6)
H7 0.5514 0.7484 0.0946 0.055*
C8 0.6620 (2) 0.7426 (2) 0.01924 (11) 0.0510 (6)
C9 0.7397 (2) 0.6581 (3) −0.01319 (10) 0.0520 (6)
H9 0.7807 0.6936 −0.0484 0.062*
C10 0.7570 (2) 0.5200 (3) 0.00665 (10) 0.0495 (6)
H10 0.8106 0.4631 −0.0150 0.059*
C11 0.69529 (18) 0.4653 (2) 0.05833 (9) 0.0404 (5)
C12 0.6457 (4) 0.9225 (3) −0.06178 (14) 0.1112 (13)
H12A 0.7285 0.9324 −0.0725 0.167*
H12B 0.6053 1.0112 −0.0681 0.167*
H12C 0.6080 0.8525 −0.0896 0.167*
C13 0.7419 (4) 0.2273 (3) 0.03408 (15) 0.1146 (14)
H13A 0.6913 0.2362 −0.0048 0.172*
H13B 0.7329 0.1347 0.0523 0.172*
H13C 0.8242 0.2416 0.0233 0.172*
C14 0.7187 (2) 0.5047 (3) 0.23158 (12) 0.0684 (8)
H14A 0.7390 0.5282 0.2763 0.103*
H14B 0.7718 0.5533 0.2034 0.103*
H14C 0.7266 0.4047 0.2255 0.103*
C15 0.2921 (2) 0.4933 (3) 0.30574 (12) 0.0722 (8)
H15A 0.2847 0.3924 0.3037 0.108*
H15B 0.2143 0.5355 0.2988 0.108*
H15C 0.3251 0.5203 0.3480 0.108*
C16 0.20999 (18) 0.5443 (2) 0.16386 (10) 0.0425 (5)
C17 0.10969 (19) 0.4552 (3) 0.16077 (11) 0.0487 (6)
C18 0.0001 (2) 0.5069 (3) 0.13831 (12) 0.0595 (7)
H18 −0.0658 0.4466 0.1353 0.071*
C19 −0.0138 (2) 0.6459 (3) 0.12020 (12) 0.0610 (7)
H19 −0.0886 0.6794 0.1055 0.073*
C20 0.0835 (2) 0.7349 (3) 0.12398 (11) 0.0534 (6)
C21 0.1949 (2) 0.6839 (3) 0.14593 (10) 0.0480 (6)
H21 0.2604 0.7448 0.1486 0.058*
C22 0.0276 (3) 0.2382 (4) 0.19599 (19) 0.1093 (13)
H22A −0.0150 0.2881 0.2287 0.164*
H22B 0.0536 0.1484 0.2131 0.164*
H22C −0.0244 0.2240 0.1580 0.164*
C23 −0.0296 (3) 0.9292 (4) 0.08139 (18) 0.1084 (12)
H23A −0.0539 0.8772 0.0428 0.163*
H23B −0.0200 1.0270 0.0704 0.163*
H23C −0.0897 0.9201 0.1135 0.163*
N1 0.41929 (15) 0.5441 (2) 0.13674 (9) 0.0418 (5)
O1 0.6391 (2) 0.88138 (18) 0.00307 (9) 0.0849 (6)
O2 0.70918 (15) 0.32842 (17) 0.07975 (7) 0.0610 (5)
O3 0.53408 (14) 0.4179 (2) 0.30899 (8) 0.0667 (5)
O4 0.12791 (14) 0.31712 (18) 0.17881 (9) 0.0684 (5)
O5 0.08013 (16) 0.8756 (2) 0.10695 (10) 0.0790 (6)
H1N 0.3918 (19) 0.522 (2) 0.0956 (11) 0.054 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0316 (12) 0.0430 (13) 0.0398 (12) −0.0014 (10) 0.0056 (9) −0.0003 (9)
C2 0.0343 (13) 0.0565 (14) 0.0410 (12) −0.0045 (11) 0.0012 (9) 0.0011 (10)
C3 0.0425 (14) 0.0560 (15) 0.0355 (12) −0.0051 (11) 0.0007 (10) −0.0054 (11)
C4 0.0396 (14) 0.0601 (15) 0.0405 (12) 0.0024 (11) 0.0086 (10) −0.0017 (11)
C5 0.0325 (13) 0.0491 (14) 0.0428 (12) −0.0005 (10) 0.0065 (9) −0.0020 (10)
C6 0.0293 (12) 0.0436 (13) 0.0378 (11) −0.0002 (10) 0.0020 (9) −0.0019 (9)
C7 0.0478 (14) 0.0469 (15) 0.0442 (13) 0.0044 (11) 0.0081 (10) −0.0026 (10)
C8 0.0621 (16) 0.0460 (15) 0.0452 (13) −0.0051 (13) 0.0062 (12) 0.0016 (11)
C9 0.0586 (16) 0.0618 (17) 0.0364 (12) −0.0123 (13) 0.0106 (11) 0.0012 (11)
C10 0.0435 (14) 0.0636 (17) 0.0422 (13) 0.0039 (12) 0.0122 (10) −0.0060 (11)
C11 0.0377 (13) 0.0461 (14) 0.0374 (11) 0.0030 (11) 0.0028 (10) −0.0005 (10)
C12 0.191 (4) 0.077 (2) 0.065 (2) 0.003 (2) 0.001 (2) 0.0232 (16)
C13 0.212 (4) 0.059 (2) 0.075 (2) 0.041 (2) 0.034 (2) −0.0018 (16)
C14 0.0398 (15) 0.111 (2) 0.0547 (15) −0.0071 (15) −0.0020 (11) 0.0093 (15)
C15 0.0505 (16) 0.117 (2) 0.0500 (15) 0.0073 (16) 0.0181 (12) 0.0062 (15)
C16 0.0325 (13) 0.0549 (15) 0.0407 (12) 0.0019 (11) 0.0079 (9) −0.0023 (10)
C17 0.0326 (14) 0.0611 (17) 0.0530 (14) 0.0022 (12) 0.0087 (10) −0.0008 (12)
C18 0.0338 (15) 0.0736 (19) 0.0712 (17) −0.0039 (13) 0.0049 (12) 0.0005 (14)
C19 0.0351 (15) 0.083 (2) 0.0648 (17) 0.0121 (15) 0.0022 (12) 0.0024 (14)
C20 0.0474 (16) 0.0579 (17) 0.0556 (15) 0.0122 (14) 0.0087 (12) 0.0018 (12)
C21 0.0368 (14) 0.0584 (16) 0.0494 (13) 0.0013 (12) 0.0085 (10) −0.0027 (11)
C22 0.065 (2) 0.098 (3) 0.165 (3) −0.0243 (19) 0.002 (2) 0.051 (2)
C23 0.096 (3) 0.102 (3) 0.128 (3) 0.043 (2) 0.012 (2) 0.030 (2)
N1 0.0293 (10) 0.0615 (13) 0.0347 (10) 0.0010 (9) 0.0031 (8) −0.0022 (9)
O1 0.1432 (19) 0.0502 (12) 0.0627 (12) 0.0013 (11) 0.0232 (11) 0.0144 (9)
O2 0.0819 (12) 0.0503 (10) 0.0522 (10) 0.0217 (9) 0.0209 (8) 0.0043 (8)
O3 0.0544 (11) 0.0958 (14) 0.0499 (10) 0.0008 (10) 0.0020 (8) 0.0231 (9)
O4 0.0420 (10) 0.0605 (12) 0.1031 (14) −0.0078 (9) 0.0086 (9) 0.0132 (10)
O5 0.0660 (13) 0.0680 (13) 0.1032 (15) 0.0206 (10) 0.0044 (10) 0.0128 (11)

Geometric parameters (Å, º)

C1—N1 1.463 (2) C13—O2 1.396 (3)
C1—C6 1.513 (3) C13—H13A 0.9600
C1—C2 1.550 (3) C13—H13B 0.9600
C1—H1 0.9800 C13—H13C 0.9600
C2—C14 1.511 (3) C14—H14A 0.9600
C2—C3 1.511 (3) C14—H14B 0.9600
C2—H2 0.9800 C14—H14C 0.9600
C3—O3 1.215 (2) C15—H15A 0.9600
C3—C4 1.506 (3) C15—H15B 0.9600
C4—C15 1.525 (3) C15—H15C 0.9600
C4—C5 1.545 (3) C16—C21 1.381 (3)
C4—H4 0.9800 C16—C17 1.399 (3)
C5—N1 1.467 (2) C17—O4 1.373 (3)
C5—C16 1.512 (3) C17—C18 1.377 (3)
C5—H5 0.9800 C18—C19 1.376 (3)
C6—C7 1.388 (3) C18—H18 0.9300
C6—C11 1.394 (3) C19—C20 1.372 (3)
C7—C8 1.386 (3) C19—H19 0.9300
C7—H7 0.9300 C20—O5 1.378 (3)
C8—C9 1.369 (3) C20—C21 1.389 (3)
C8—O1 1.378 (3) C21—H21 0.9300
C9—C10 1.381 (3) C22—O4 1.400 (3)
C9—H9 0.9300 C22—H22A 0.9600
C10—C11 1.384 (3) C22—H22B 0.9600
C10—H10 0.9300 C22—H22C 0.9600
C11—O2 1.376 (2) C23—O5 1.405 (3)
C12—O1 1.387 (3) C23—H23A 0.9600
C12—H12A 0.9600 C23—H23B 0.9600
C12—H12B 0.9600 C23—H23C 0.9600
C12—H12C 0.9600 N1—H1N 0.91 (2)
N1—C1—C6 108.28 (16) H13A—C13—H13B 109.5
N1—C1—C2 108.30 (16) O2—C13—H13C 109.5
C6—C1—C2 112.50 (16) H13A—C13—H13C 109.5
N1—C1—H1 109.2 H13B—C13—H13C 109.5
C6—C1—H1 109.2 C2—C14—H14A 109.5
C2—C1—H1 109.2 C2—C14—H14B 109.5
C14—C2—C3 112.79 (18) H14A—C14—H14B 109.5
C14—C2—C1 113.20 (18) C2—C14—H14C 109.5
C3—C2—C1 106.98 (16) H14A—C14—H14C 109.5
C14—C2—H2 107.9 H14B—C14—H14C 109.5
C3—C2—H2 107.9 C4—C15—H15A 109.5
C1—C2—H2 107.9 C4—C15—H15B 109.5
O3—C3—C4 122.4 (2) H15A—C15—H15B 109.5
O3—C3—C2 122.1 (2) C4—C15—H15C 109.5
C4—C3—C2 115.40 (18) H15A—C15—H15C 109.5
C3—C4—C15 113.20 (19) H15B—C15—H15C 109.5
C3—C4—C5 107.28 (16) C21—C16—C17 118.5 (2)
C15—C4—C5 112.49 (19) C21—C16—C5 119.26 (19)
C3—C4—H4 107.9 C17—C16—C5 122.2 (2)
C15—C4—H4 107.9 O4—C17—C18 123.2 (2)
C5—C4—H4 107.9 O4—C17—C16 117.0 (2)
N1—C5—C16 108.48 (17) C18—C17—C16 119.8 (2)
N1—C5—C4 108.59 (17) C17—C18—C19 121.3 (2)
C16—C5—C4 112.15 (17) C17—C18—H18 119.4
N1—C5—H5 109.2 C19—C18—H18 119.4
C16—C5—H5 109.2 C20—C19—C18 119.5 (2)
C4—C5—H5 109.2 C20—C19—H19 120.2
C7—C6—C11 118.11 (19) C18—C19—H19 120.2
C7—C6—C1 119.29 (18) C19—C20—O5 124.5 (2)
C11—C6—C1 122.56 (19) C19—C20—C21 119.8 (2)
C8—C7—C6 121.4 (2) O5—C20—C21 115.7 (2)
C8—C7—H7 119.3 C16—C21—C20 121.1 (2)
C6—C7—H7 119.3 C16—C21—H21 119.4
C9—C8—O1 123.8 (2) C20—C21—H21 119.4
C9—C8—C7 119.9 (2) O4—C22—H22A 109.5
O1—C8—C7 116.3 (2) O4—C22—H22B 109.5
C8—C9—C10 119.6 (2) H22A—C22—H22B 109.5
C8—C9—H9 120.2 O4—C22—H22C 109.5
C10—C9—H9 120.2 H22A—C22—H22C 109.5
C11—C10—C9 120.8 (2) H22B—C22—H22C 109.5
C11—C10—H10 119.6 O5—C23—H23A 109.5
C9—C10—H10 119.6 O5—C23—H23B 109.5
O2—C11—C10 122.92 (19) H23A—C23—H23B 109.5
O2—C11—C6 116.93 (18) O5—C23—H23C 109.5
C10—C11—C6 120.1 (2) H23A—C23—H23C 109.5
O1—C12—H12A 109.5 H23B—C23—H23C 109.5
O1—C12—H12B 109.5 C1—N1—C5 115.22 (16)
H12A—C12—H12B 109.5 C1—N1—H1N 110.3 (13)
O1—C12—H12C 109.5 C5—N1—H1N 109.3 (13)
H12A—C12—H12C 109.5 C8—O1—C12 118.8 (2)
H12B—C12—H12C 109.5 C11—O2—C13 117.55 (19)
O2—C13—H13A 109.5 C17—O4—C22 117.8 (2)
O2—C13—H13B 109.5 C20—O5—C23 117.3 (2)
N1—C1—C2—C14 −179.85 (19) C7—C6—C11—C10 0.1 (3)
C6—C1—C2—C14 −60.2 (2) C1—C6—C11—C10 177.74 (19)
N1—C1—C2—C3 55.3 (2) N1—C5—C16—C21 −45.6 (3)
C6—C1—C2—C3 174.94 (18) C4—C5—C16—C21 74.4 (2)
C14—C2—C3—O3 −6.6 (3) N1—C5—C16—C17 132.4 (2)
C1—C2—C3—O3 118.5 (2) C4—C5—C16—C17 −107.7 (2)
C14—C2—C3—C4 177.1 (2) C21—C16—C17—O4 179.87 (19)
C1—C2—C3—C4 −57.8 (2) C5—C16—C17—O4 1.9 (3)
O3—C3—C4—C15 5.9 (3) C21—C16—C17—C18 1.9 (3)
C2—C3—C4—C15 −177.8 (2) C5—C16—C17—C18 −176.0 (2)
O3—C3—C4—C5 −118.8 (2) O4—C17—C18—C19 −179.4 (2)
C2—C3—C4—C5 57.5 (2) C16—C17—C18—C19 −1.6 (4)
C3—C4—C5—N1 −54.6 (2) C17—C18—C19—C20 0.6 (4)
C15—C4—C5—N1 −179.68 (19) C18—C19—C20—O5 179.7 (2)
C3—C4—C5—C16 −174.42 (18) C18—C19—C20—C21 0.1 (4)
C15—C4—C5—C16 60.5 (3) C17—C16—C21—C20 −1.3 (3)
N1—C1—C6—C7 44.2 (2) C5—C16—C21—C20 176.73 (19)
C2—C1—C6—C7 −75.5 (2) C19—C20—C21—C16 0.3 (3)
N1—C1—C6—C11 −133.4 (2) O5—C20—C21—C16 −179.4 (2)
C2—C1—C6—C11 106.9 (2) C6—C1—N1—C5 176.09 (17)
C11—C6—C7—C8 1.5 (3) C2—C1—N1—C5 −61.6 (2)
C1—C6—C7—C8 −176.22 (19) C16—C5—N1—C1 −176.60 (17)
C6—C7—C8—C9 −1.9 (3) C4—C5—N1—C1 61.3 (2)
C6—C7—C8—O1 178.8 (2) C9—C8—O1—C12 30.9 (4)
O1—C8—C9—C10 179.9 (2) C7—C8—O1—C12 −149.8 (3)
C7—C8—C9—C10 0.7 (3) C10—C11—O2—C13 −28.2 (3)
C8—C9—C10—C11 0.9 (3) C6—C11—O2—C13 153.0 (3)
C9—C10—C11—O2 179.8 (2) C18—C17—O4—C22 −21.9 (4)
C9—C10—C11—C6 −1.3 (3) C16—C17—O4—C22 160.3 (2)
C7—C6—C11—O2 179.04 (18) C19—C20—O5—C23 −2.8 (4)
C1—C6—C11—O2 −3.3 (3) C21—C20—O5—C23 176.8 (2)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5470).

References

  1. Bruker (2004). APEXII, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Parthiban, P., Pallela, R., Kim, S. K., Park, D. H. & Jeong, Y. T. (2011). Bioorg. Med. Chem. Lett. 22, 6004–6009. [DOI] [PubMed]
  4. Parthiban, P., Ramkumar, V., Kumar, N. A., Kim, J. S. & Jeong, Y. T. (2008). Acta Cryst. E64, o1631. [DOI] [PMC free article] [PubMed]
  5. Sahu, S. K., Dubey, B. K., Tripathi, A. C., Koshy, M. & Saraf, S. K. (2013). Mini Rev. Med. Chem. 4, 565–583. [DOI] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814022041/cv5470sup1.cif

e-70-o1160-sup1.cif (376.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814022041/cv5470Isup2.hkl

e-70-o1160-Isup2.hkl (194.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814022041/cv5470Isup3.cml

. DOI: 10.1107/S1600536814022041/cv5470fig1.tif

View of (I) showing the atomic numbering and 30% probability displacement ellipsoids.

CCDC reference: 1027842

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES