Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 11;70(Pt 11):o1154. doi: 10.1107/S1600536814021886

Crystal structure of 4-acetamido­benzoic acid monohydrate

Wen-Juan Cai a, Shao-Ming Chi a, Jun-Feng Kou a, Feng-Yi Liu a,*
PMCID: PMC4257246  PMID: 25484798

Abstract

In the title compound, C9H9NO3·H2O, the plane of the acetamide group is oriented at 20.52 (8)° with respect to the benzene ring, whereas the plane of the carb­oxy­lic acid group is essentially coplanar with the benzene ring [maximum deviation = 0.033 (1) Å]. In the crystal, classical O—H⋯O and N—H⋯O hydrogen bonds and weak C—H⋯O hydrogen bonds link the organic mol­ecules and water mol­ecules of crystallization into a three-dimensional supra­molecular architecture.

Keywords: crystal structure, 4-acetamido­benzoic acid, hydrogen bonding, hydrated carb­oxy­lic acid

Related literature  

For applications of 4-acetamido­benzoic acid in coordination chemistry, see: Yin et al. (2011); Wang et al. (2009). For related structures, see: Kashino et al. (1986); Jedrzejas et al. (1995).graphic file with name e-70-o1154-scheme1.jpg

Experimental  

Crystal data  

  • C9H9NO3·H2O

  • M r = 197.19

  • Monoclinic, Inline graphic

  • a = 6.6712 (13) Å

  • b = 28.870 (6) Å

  • c = 4.992 (1) Å

  • β = 100.01 (3)°

  • V = 946.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.31 × 0.28 × 0.26 mm

Data collection  

  • Rigaku MM007-HF CCD (Saturn 724+) diffractometer

  • 7525 measured reflections

  • 1819 independent reflections

  • 1448 reflections with I > 2σ(I)

  • R int = 0.025

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.116

  • S = 1.06

  • 1819 reflections

  • 140 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, new_global_publ_block. DOI: 10.1107/S1600536814021886/xu5824sup1.cif

e-70-o1154-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814021886/xu5824Isup2.hkl

e-70-o1154-Isup2.hkl (89.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814021886/xu5824Isup3.cml

. DOI: 10.1107/S1600536814021886/xu5824fig1.tif

The mol­ecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

. DOI: 10.1107/S1600536814021886/xu5824fig2.tif

Hydrogen bonds are shown as brown dashed lines.

. DOI: 10.1107/S1600536814021886/xu5824fig3.tif

A view of the crystal packing.

CCDC reference: 906509

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H4O4i 0.89(2) 2.17(2) 3.003(2) 155.4(17)
O1H1O2ii 0.88(2) 1.75(2) 2.6285(18) 174(2)
O4H2WO4iii 0.92(2) 1.98(2) 2.8920(14) 176(2)
O4H1WO3iv 0.83(3) 1.93(3) 2.7549(18) 173(2)
C9H9CO3i 0.96 2.57 3.484(2) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The work was supported by the Natural Science Foundation of Yunnan Province, China (grant No. 2009CD048).

supplementary crystallographic information

S1. Comment

In the past few years, 4-acetamidobenzoic acid has attracted increasing attention as a multifunctional ligand (Kashino et al., 1986; Jedrzejas et al., 1995). It shows potential diversified coordination and exhibits various coordination modes, such as monodentate, chelating, and multidentate bridging, etc in those reported complexes (Yin et al., 2011; Wang et al., 2009). Herein we report the synthesis and structure of the title compound.

The structure of the title compound is shown in Fig. 1, Fig. 2 and hydrogen bond geometry is given in Table 1. In the title compound, the acetamide moiety is oriented with respect to the benzene ring at 20.52 (8)° whereas the carboxyl group is essentially co-planar with the benzene ring [the maximum deviation = 0.033 (1) Å]. In the crystal, classic O—H···O, N—H···O hydrogen bonds and weak C—H···O hydrogen bond link organic molecules and crystalline water molecules into the three dimensional supramolecular architecture.

S2. Experimental

4-Aminobenzoic acid (5 mmol, 686 mg) was added to 20 ml acetic anhydride. The mixture was then refluxed under argon for 8 h. The excess of acetic anhydride was then evaporated under reduced pressure. Water was then added to the resulting solid. The colorless block crystals were obtained after 48 h. Yield: 90% (based on 4-aminobenzoic acid).

S3. Refinement

H atoms attached to N and O atoms were located in a difference Fourier map and refined with positional parameters, Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O). H atoms attached to carbons were geometrically fixed and allowed to ride on the corresponding non-H atom with C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Hydrogen bonds are shown as brown dashed lines.

Fig. 3.

Fig. 3.

A view of the crystal packing.

Crystal data

C9H9NO3·H2O F(000) = 416
Mr = 197.19 Dx = 1.383 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8729 reflections
a = 6.6712 (13) Å θ = 3.1–26.0°
b = 28.870 (6) Å µ = 0.11 mm1
c = 4.992 (1) Å T = 293 K
β = 100.01 (3)° Block, colorless
V = 946.8 (3) Å3 0.31 × 0.28 × 0.26 mm
Z = 4

Data collection

Rigaku MM007-HF CCD (Saturn 724+) diffractometer 1448 reflections with I > 2σ(I)
Radiation source: rotating anode Rint = 0.025
Confocal monochromator θmax = 26.0°, θmin = 3.1°
ω scans at fixed χ = 45° h = −8→8
7525 measured reflections k = −35→35
1819 independent reflections l = −6→5

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.1929P] where P = (Fo2 + 2Fc2)/3
1819 reflections (Δ/σ)max < 0.001
140 parameters Δρmax = 0.16 e Å3
1 restraint Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.6802 (3) 0.43025 (5) 0.5354 (3) 0.0370 (4)
C2 0.8849 (3) 0.42983 (5) 0.6534 (3) 0.0432 (4)
H2 0.9751 0.4497 0.5886 0.052*
C3 0.9563 (3) 0.40000 (5) 0.8671 (3) 0.0420 (4)
H3 1.0932 0.4000 0.9459 0.050*
C4 0.8203 (2) 0.37010 (5) 0.9622 (3) 0.0346 (4)
C5 0.6157 (3) 0.37085 (6) 0.8459 (4) 0.0430 (4)
H5 0.5249 0.3511 0.9107 0.052*
C6 0.5461 (3) 0.40082 (6) 0.6342 (3) 0.0439 (4)
H6 0.4086 0.4012 0.5578 0.053*
C7 0.6019 (3) 0.46170 (5) 0.3049 (3) 0.0394 (4)
C8 1.0650 (2) 0.32340 (5) 1.2903 (3) 0.0344 (3)
C9 1.0717 (3) 0.29285 (6) 1.5361 (3) 0.0423 (4)
H9A 1.1507 0.2657 1.5161 0.063*
H9B 0.9358 0.2839 1.5528 0.063*
H9C 1.1329 0.3095 1.6961 0.063*
H1 0.684 (3) 0.5062 (7) 0.080 (4) 0.063*
H4 0.775 (3) 0.3275 (7) 1.251 (4) 0.051*
H1W 0.452 (4) 0.2928 (8) 0.293 (5) 0.063*
H2W 0.545 (4) 0.2597 (7) 0.471 (5) 0.063*
N1 0.8780 (2) 0.33893 (5) 1.1819 (3) 0.0386 (3)
O1 0.7308 (2) 0.48727 (4) 0.2144 (3) 0.0554 (4)
O2 0.4148 (2) 0.46159 (4) 0.2106 (3) 0.0546 (4)
O3 1.21944 (18) 0.33300 (4) 1.1992 (2) 0.0475 (3)
O4 0.5523 (2) 0.27530 (5) 0.3128 (3) 0.0486 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0446 (9) 0.0327 (7) 0.0322 (8) 0.0049 (6) 0.0030 (7) 0.0027 (6)
C2 0.0428 (9) 0.0409 (8) 0.0444 (9) −0.0030 (7) 0.0037 (7) 0.0100 (7)
C3 0.0355 (8) 0.0426 (8) 0.0452 (9) −0.0011 (6) −0.0006 (7) 0.0091 (7)
C4 0.0379 (8) 0.0341 (7) 0.0311 (7) 0.0040 (6) 0.0041 (6) 0.0028 (6)
C5 0.0369 (9) 0.0463 (9) 0.0445 (9) −0.0028 (7) 0.0031 (7) 0.0120 (7)
C6 0.0384 (9) 0.0465 (9) 0.0428 (9) 0.0018 (7) −0.0037 (7) 0.0064 (7)
C7 0.0490 (10) 0.0339 (7) 0.0338 (8) 0.0049 (7) 0.0033 (7) 0.0020 (6)
C8 0.0387 (8) 0.0331 (7) 0.0297 (7) 0.0021 (6) 0.0012 (6) −0.0010 (5)
C9 0.0467 (10) 0.0463 (9) 0.0326 (8) 0.0083 (7) 0.0035 (7) 0.0071 (6)
N1 0.0358 (7) 0.0428 (7) 0.0369 (7) 0.0029 (6) 0.0056 (6) 0.0113 (5)
O1 0.0595 (9) 0.0540 (7) 0.0495 (7) −0.0018 (6) 0.0003 (7) 0.0215 (6)
O2 0.0504 (8) 0.0573 (7) 0.0515 (7) 0.0061 (6) −0.0043 (6) 0.0177 (6)
O3 0.0349 (6) 0.0563 (7) 0.0500 (7) 0.0022 (5) 0.0041 (5) 0.0156 (5)
O4 0.0409 (7) 0.0569 (8) 0.0496 (7) 0.0028 (5) 0.0122 (6) 0.0053 (6)

Geometric parameters (Å, º)

C1—C6 1.386 (2) C7—O2 1.255 (2)
C1—C2 1.390 (2) C7—O1 1.274 (2)
C1—C7 1.487 (2) C8—O3 1.228 (2)
C2—C3 1.389 (2) C8—N1 1.347 (2)
C2—H2 0.9300 C8—C9 1.505 (2)
C3—C4 1.394 (2) C9—H9A 0.9600
C3—H3 0.9300 C9—H9B 0.9600
C4—C5 1.388 (2) C9—H9C 0.9600
C4—N1 1.4193 (19) N1—H4 0.89 (2)
C5—C6 1.382 (2) O1—H1 0.881 (16)
C5—H5 0.9300 O4—H1W 0.83 (3)
C6—H6 0.9300 O4—H2W 0.92 (2)
C6—C1—C2 119.44 (14) O2—C7—O1 123.84 (14)
C6—C1—C7 119.22 (16) O2—C7—C1 118.76 (15)
C2—C1—C7 121.34 (15) O1—C7—C1 117.40 (16)
C3—C2—C1 120.74 (15) O3—C8—N1 123.64 (14)
C3—C2—H2 119.6 O3—C8—C9 121.75 (15)
C1—C2—H2 119.6 N1—C8—C9 114.60 (14)
C2—C3—C4 119.27 (16) C8—C9—H9A 109.5
C2—C3—H3 120.4 C8—C9—H9B 109.5
C4—C3—H3 120.4 H9A—C9—H9B 109.5
C5—C4—C3 119.93 (14) C8—C9—H9C 109.5
C5—C4—N1 116.64 (14) H9A—C9—H9C 109.5
C3—C4—N1 123.41 (15) H9B—C9—H9C 109.5
C6—C5—C4 120.34 (15) C8—N1—C4 128.98 (14)
C6—C5—H5 119.8 C8—N1—H4 116.6 (13)
C4—C5—H5 119.8 C4—N1—H4 114.4 (13)
C5—C6—C1 120.27 (16) C7—O1—H1 117.5 (15)
C5—C6—H6 119.9 H1W—O4—H2W 104 (2)
C1—C6—H6 119.9
C6—C1—C2—C3 0.6 (2) C7—C1—C6—C5 179.16 (15)
C7—C1—C2—C3 −179.47 (15) C6—C1—C7—O2 1.9 (2)
C1—C2—C3—C4 0.3 (3) C2—C1—C7—O2 −178.08 (15)
C2—C3—C4—C5 −0.9 (2) C6—C1—C7—O1 −177.98 (15)
C2—C3—C4—N1 −178.96 (15) C2—C1—C7—O1 2.1 (2)
C3—C4—C5—C6 0.6 (3) O3—C8—N1—C4 −3.9 (3)
N1—C4—C5—C6 178.79 (15) C9—C8—N1—C4 176.06 (14)
C4—C5—C6—C1 0.3 (3) C5—C4—N1—C8 163.45 (15)
C2—C1—C6—C5 −0.9 (2) C3—C4—N1—C8 −18.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H4···O4i 0.89 (2) 2.17 (2) 3.003 (2) 155.4 (17)
O1—H1···O2ii 0.88 (2) 1.75 (2) 2.6285 (18) 174 (2)
O4—H2W···O4iii 0.92 (2) 1.98 (2) 2.8920 (14) 176 (2)
O4—H1W···O3iv 0.83 (3) 1.93 (3) 2.7549 (18) 173 (2)
C9—H9C···O3i 0.96 2.57 3.484 (2) 160

Symmetry codes: (i) x, y, z+1; (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z+1/2; (iv) x−1, y, z−1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5824).

References

  1. Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Jedrzejas, M. J., Luo, M., Singh, S., Brouillette, W. J. & Air, G. M. (1995). Acta Cryst. C51, 1910–1912. [DOI] [PubMed]
  3. Kashino, S., Matsushita, T., Iwamoto, T., Yamaguchi, K. & Haisa, M. (1986). Acta Cryst. C42, 457–462.
  4. Rigaku/MSC. (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wang, Z. H., Fan, J. & Zhang, W. G. (2009). Z. Anorg. Allg. Chem. 635, 2333–2339.
  7. Yin, X., Fan, J., Wang, Z.-H. & Zhang, W.-G. (2011). Z. Anorg. Allg. Chem. 637, 773–777.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, new_global_publ_block. DOI: 10.1107/S1600536814021886/xu5824sup1.cif

e-70-o1154-sup1.cif (19.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814021886/xu5824Isup2.hkl

e-70-o1154-Isup2.hkl (89.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814021886/xu5824Isup3.cml

. DOI: 10.1107/S1600536814021886/xu5824fig1.tif

The mol­ecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids.

. DOI: 10.1107/S1600536814021886/xu5824fig2.tif

Hydrogen bonds are shown as brown dashed lines.

. DOI: 10.1107/S1600536814021886/xu5824fig3.tif

A view of the crystal packing.

CCDC reference: 906509

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES