Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 18;70(Pt 11):344–347. doi: 10.1107/S1600536814022016

Isotypic crystal structures of 1-benzyl-4-(4-bromo­phen­yl)-2-imino-1,2,5,6,7,8,9,10-octa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile and 1-benzyl-4-(4-fluoro­phen­yl)-2-imino-1,2,5,6,7,8,9,10-octa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile

R A Nagalakshmi a, J Suresh a, S Maharani b, R Ranjith Kumar b, P L Nilantha Lakshman c,*
PMCID: PMC4257254  PMID: 25484741

Two isotypic title compounds comprise a 2-imino­pyridine ring fused with a cyclo­octane ring. In one compound, the cyclo­octane ring adopts a twisted chair–chair conformation, while in the second, this ring adopts a twisted boat–chair conformation.

Keywords: crystal structure, cyclo­octa­pyridine, hydrogen bonding

Abstract

The mol­ecules of the two isotypic title compounds, C25H24BrN3, (I), and C25H24FN3, (II), comprise a 2-imino­pyridine ring fused with a cyclo­octane ring. In (I), the cyclo­octane ring adopts a twisted chair–chair conformation, while in (II), this ring adopts a twisted boat–chair conformation. The dihedral angles between the planes of the pyridine ring and the bromo­benzene and phenyl rings are 80.14 (12) and 71.72 (13)°, respectively, in (I). The equivalent angles in (II) are 75.25 (8) and 68.34 (9)°, respectively. In both crystals, inversion dimers linked by pairs of C—H⋯N inter­actions generate R 2 2(14) loops, which are further connected by weak C—H⋯π inter­actions, generating (110) sheets.

Chemical context  

The pyridine skeleton is of great importance to chemists as well as to biologists as it is found in a large variety of naturally occurring compounds and also in clinically useful mol­ecules having diverse biological activities. Its derivatives are known to possess anti­microbial (Jo et al., 2004) and anti­viral (Mavel et al., 2002) activities. The heterocyclic 1,4-di­hydro­pyridine ring is a common feature in compounds with various pharmacological activities such as anti­microbial (Hooper et al., 1982) and anti­thrombotic (Sunkel et al., 1990) activities. The chemistry of imines in particular is of special inter­est in the literature due to their numerous practical applications (Echevarria et al., 1999). Imines have attracted much attention because of their wide variety of applications in the electronics and photonics fields (Wang et al., 2001). Imines and their complexes have a variety of applications in the biological, clinical and analytical fields (Singh et al., 1975; Patel et al., 1999). Our inter­est in the preparation of pharmacologically active 2-imino pyridines led us to synthesise the title compounds and we have undertaken the X-ray crystal structure determination of these compounds in order to establish their conformations.

Structural commentary  

The structures of compounds (I) and (II) are shown in Figs. 1 and 2, respectively. The cyclo­octane ring adopts a twisted chair–chair conformation in compound (I) and twisted boat–chair conformation (Wiberg, 2003) in compound (II).graphic file with name e-70-00344-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of (I), showing 50% probability displacement ellipsoids.

Figure 2.

Figure 2

The mol­ecular structure of (II), showing 50% probability displacement ellipsoids.

In both compounds, the imino group is nearly coplanar with the pyridine ring, as indicated by the N1=C1—N3—C5 torsion angle [178.8 (2) for compound (I) and 179.05 (13)° for compound (II)]. Steric hindrances rotate the phenyl (C13–C18) and aromatic (C31–C36) rings out of the plane of the central pyridine ring by 71.72 (13) and 80.14 (12)°, respectively, in compound (I), and by 68.34 (9) and 75.25 (8)°, respectively, in compound (II). Opening up of the N3—C5—C4 angle [121.54 (19)° for compound (I) and 121.29 (13)° for compound (II)] and considerable shortening of the C5—N3 [1.376 (3) Å for compound (I) and 1.3777 (18) Å for compound (II)] bond distance may directly be attributed to the bulky substituents at the ortho position C5. The endocyclic angles of the pyridine ring cover the range 114.29 (18)–123.02 (2)° and 118.86 (13)–123.11 (12)° for compounds (I) and (II) respectively. The C1—N3—C5 angle [122.93 (2) for compound (I) and 123.11 (12)° for compound (II)] is expanded as in pyridine itself [123.9 (3)°; Jin et al., 2005].

Supramol­ecular features  

In the crystals, pairs of C—H⋯N inter­actions form Inline graphic(14) ring motifs (Bernstein et al., 1995), and the resulting dimers are further connected through weak C—H⋯π inter­actions involving the phenyl ring as acceptor (Tables 1 and 2, Figs. 3, 4). In each case, the resulting supra­molecular structure is a layer propagating parallel to the (110) plane.

Table 1. Hydrogen-bond geometry (, ) for (I) .

Cg1 is the centroid of the C13C18 phenyl ring.

DHA DH HA D A DHA
C32H32N1i 0.93 2.56 3.421(3) 154
C11H11A Cg1ii 0.97 2.97 3.648(3) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Hydrogen-bond geometry (, ) for (II) .

Cg1 is the centroid of the C13C18 phenyl ring.

DHA DH HA D A DHA
C32H32N1i 0.93 2.53 3.421(2) 160
C11H11A Cg1ii 0.97 2.93 3.484(2) 118

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 3.

Figure 3

Partial packing diagram of the title compound (I). Dashed lines represent inter­molecular hydrogen bonds and C—H⋯π contacts. For clarity, H atoms not involved in hydrogen bonding have been omitted.

Figure 4.

Figure 4

Partial packing diagram of the title compound (II). Dashed lines represent inter­molecular hydrogen bonds and C—H⋯π contacts. For clarity, H atoms not involved in hydrogen bonding have been omitted.

Database survey  

Similar structures reported in the literature are 2-meth­oxy-4-(2-meth­oxy­phen­yl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyr­idine-3-carbo­nitrile (Vishnupriya et al., 2014a ) and 4-(2-fluorophen­yl)-2-meth­oxy-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]-pyridine-3-carbo­nitrile (Vishnupriya et al., 2014b ). The twisted conformation of the cyclo­octane ring of compound (I) is similar to those found in the related structures. However, the C=NH functional group present in the title compound allows the formation of C—H⋯N hydrogen bonds, which are not present in the above-cited compounds. In the title compounds, the bond lengths in the central pyridine ring span the range 1.369–1.446 Å, which compare well with the range observed in the similar structures (1.314–1.400 Å), but these bonds are systematically longer in the title compounds, due to the substitution of the pyridine N atom by a benzyl group. The bond length of the nitrile group attached to pyridine ring [N2  C38 = 1.137 (3) Å in compound (I) and 1.1426 (19) Å in compound (II)] and the linearity of the cyano moiety [N2 C38—C2 = 176.3 (3) for compound (I) and 175.68 (17)° for compound (II)] have characteristic features that are observed in 3-cyano-2-pyridine derivatives (Hursthouse et al., 1992; Patel et al., 2002).

Synthesis and crystallization  

The two compounds were prepared in a similar manner using 4-fluoro aldehyde (1 mmol) for compound (I) and 4-bromo aldehyde (1 mmol) for compound (II). A mixture of cyclo­octa­none (1mmol), respective aldehyde (1 mmol) and malono­nitrile (1 mmol) were taken in ethanol (10 mL) to which p-toluene­sulfonic acid (pTSA) (0.5 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. After completion of the reaction (TLC), the reaction mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to afford pure product. The product was recrystallized from ethyl acetate, affording colourless crystals of compounds (I) and (II) [m.p. 493 K; yield 91% for (I) and m.p. 473 K; yield 65% for (II)].

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93 (aromatic CH) or 0.97 Å (methyl­ene CH2). Imine atom H1 was found in a difference map and refined with a distance restraint in both compounds of N—H = 0.86 (10) Å. Isotropic displacement parameters for H atoms were calculated as U iso = 1.5U eq(C) for CH3 groups and U iso = 1.2U eq(carrier atom) for all other H atoms. The DELU restraint was applied in compound (II).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C25H24BrN3 C25H24FN3
M r 446.38 385.47
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c () 10.2103(3), 10.7643(4), 11.6942(4) 10.1370(4), 10.2078(3), 11.8238(4)
, , () 101.074(1), 106.726(1), 115.058(1) 109.688(2), 100.309(2), 111.420(2)
V (3) 1039.46(6) 1006.73(6)
Z 2 2
Radiation type Mo K Mo K
(mm1) 1.99 0.08
Crystal size (mm) 0.21 0.19 0.18 0.21 0.19 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004) Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.967, 0.974 0.967, 0.974
No. of measured, independent and observed [I > 2(I)] reflections 25106, 4532, 3830 23254, 3752, 2876
R int 0.027 0.022
(sin /)max (1) 0.639 0.606
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.039, 0.107, 1.03 0.039, 0.109, 1.05
No. of reflections 4532 3752
No. of parameters 266 267
No. of restraints 2 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.93, 0.87 0.17, 0.14

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97, SHELXL97 and SHELXL2014/6 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S1600536814022016/hb7284sup1.cif

e-70-00344-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814022016/hb7284Isup2.hkl

e-70-00344-Isup2.hkl (248.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S1600536814022016/hb7284IIsup3.hkl

e-70-00344-IIsup3.hkl (205.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814022016/hb7284Isup4.cml

Supporting information file. DOI: 10.1107/S1600536814022016/hb7284IIsup5.cml

CCDC references: 1027782, 1027783

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR).

supplementary crystallographic information

Crystal data

C25H24FN3 Z = 2
Mr = 385.47 F(000) = 408
Triclinic, P1 Dx = 1.272 Mg m3
a = 10.1370 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.2078 (3) Å Cell parameters from 2000 reflections
c = 11.8238 (4) Å θ = 2–31°
α = 109.688 (2)° µ = 0.08 mm1
β = 100.309 (2)° T = 293 K
γ = 111.420 (2)° Block, colourless
V = 1006.73 (6) Å3 0.21 × 0.19 × 0.18 mm

Data collection

Bruker Kappa APEXII diffractometer 2876 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.022
φ and ω scans θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −12→12
Tmin = 0.967, Tmax = 0.974 k = −12→12
23254 measured reflections l = −14→14
3752 independent reflections

Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.3339P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.17 e Å3
3752 reflections Δρmin = −0.14 e Å3
267 parameters Extinction correction: SHELXL2014/6 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraints Extinction coefficient: 0.027 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.38640 (16) 0.41969 (17) 0.59999 (13) 0.0347 (3)
C2 0.28977 (16) 0.44165 (16) 0.50992 (13) 0.0343 (3)
C3 0.16525 (16) 0.32042 (16) 0.40896 (13) 0.0341 (3)
C4 0.12688 (16) 0.16454 (17) 0.39051 (13) 0.0366 (3)
C5 0.21646 (16) 0.13987 (16) 0.47452 (13) 0.0345 (3)
C6 0.18252 (19) −0.02211 (18) 0.46013 (15) 0.0442 (4)
H6A 0.0738 −0.0860 0.4268 0.053*
H6B 0.2196 −0.0159 0.5442 0.053*
C7 0.2506 (2) −0.1046 (2) 0.37256 (17) 0.0562 (5)
H7A 0.3563 −0.0323 0.3975 0.067*
H7B 0.2469 −0.1927 0.3887 0.067*
C8 0.1783 (2) −0.1646 (2) 0.22930 (17) 0.0583 (5)
H8A 0.2219 −0.2277 0.1857 0.070*
H8B 0.0716 −0.2328 0.2046 0.070*
C9 0.1946 (2) −0.0406 (2) 0.18178 (17) 0.0570 (5)
H9A 0.2813 0.0570 0.2441 0.068*
H9B 0.2155 −0.0717 0.1026 0.068*
C10 0.0585 (2) −0.0109 (2) 0.15827 (15) 0.0564 (5)
H10A −0.0238 −0.1036 0.0864 0.068*
H10B 0.0830 0.0743 0.1337 0.068*
C11 0.00304 (18) 0.02948 (18) 0.27088 (15) 0.0475 (4)
H11A −0.0777 0.0557 0.2488 0.057*
H11B −0.0377 −0.0616 0.2872 0.057*
C12 0.44774 (17) 0.23479 (19) 0.65601 (14) 0.0411 (4)
H12A 0.5478 0.3219 0.6876 0.049*
H12B 0.4517 0.1414 0.6027 0.049*
C13 0.41019 (17) 0.21501 (18) 0.76831 (14) 0.0409 (4)
C14 0.4226 (2) 0.0975 (2) 0.79530 (17) 0.0578 (5)
H14 0.4469 0.0274 0.7406 0.069*
C15 0.3991 (2) 0.0836 (3) 0.9035 (2) 0.0756 (7)
H15 0.4071 0.0040 0.9208 0.091*
C16 0.3641 (3) 0.1865 (3) 0.98465 (19) 0.0782 (7)
H16 0.3500 0.1780 1.0580 0.094*
C17 0.3499 (2) 0.3013 (2) 0.95823 (17) 0.0694 (6)
H17 0.3251 0.3706 1.0133 0.083*
C18 0.3719 (2) 0.31600 (19) 0.85034 (16) 0.0521 (4)
H18 0.3609 0.3944 0.8328 0.063*
C31 0.07281 (16) 0.35321 (17) 0.31963 (13) 0.0371 (3)
C32 0.12480 (18) 0.39428 (18) 0.22997 (15) 0.0435 (4)
H32 0.2186 0.4033 0.2270 0.052*
C33 0.0391 (2) 0.4221 (2) 0.14484 (16) 0.0491 (4)
H33 0.0734 0.4484 0.0839 0.059*
C34 −0.09671 (19) 0.4101 (2) 0.15238 (16) 0.0494 (4)
C35 −0.1521 (2) 0.3707 (2) 0.23943 (18) 0.0586 (5)
H35 −0.2454 0.3637 0.2424 0.070*
C36 −0.06628 (19) 0.3413 (2) 0.32320 (17) 0.0526 (4)
H36 −0.1027 0.3133 0.3827 0.063*
C38 0.33469 (17) 0.60054 (18) 0.53208 (14) 0.0395 (3)
N1 0.50412 (15) 0.52710 (17) 0.69710 (13) 0.0485 (4)
N2 0.37721 (18) 0.73047 (17) 0.55698 (14) 0.0572 (4)
N3 0.34211 (13) 0.26298 (14) 0.57514 (11) 0.0346 (3)
F1 −0.18123 (13) 0.43791 (15) 0.06937 (11) 0.0758 (4)
H1 0.520 (2) 0.6177 (14) 0.7008 (19) 0.065 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0340 (7) 0.0397 (8) 0.0314 (7) 0.0162 (6) 0.0147 (6) 0.0157 (6)
C2 0.0359 (7) 0.0374 (7) 0.0328 (7) 0.0173 (6) 0.0154 (6) 0.0167 (6)
C3 0.0353 (7) 0.0403 (8) 0.0326 (7) 0.0194 (6) 0.0157 (6) 0.0181 (6)
C4 0.0347 (8) 0.0383 (8) 0.0350 (8) 0.0157 (6) 0.0112 (6) 0.0158 (6)
C5 0.0360 (7) 0.0376 (8) 0.0322 (7) 0.0162 (6) 0.0153 (6) 0.0167 (6)
C6 0.0515 (9) 0.0422 (8) 0.0411 (8) 0.0199 (7) 0.0139 (7) 0.0238 (7)
C7 0.0739 (12) 0.0487 (10) 0.0532 (10) 0.0376 (9) 0.0180 (9) 0.0221 (8)
C8 0.0773 (13) 0.0448 (9) 0.0506 (10) 0.0314 (9) 0.0204 (9) 0.0156 (8)
C9 0.0743 (12) 0.0491 (10) 0.0431 (9) 0.0251 (9) 0.0243 (9) 0.0169 (8)
C10 0.0729 (12) 0.0428 (9) 0.0354 (9) 0.0186 (9) 0.0039 (8) 0.0135 (7)
C11 0.0421 (9) 0.0407 (8) 0.0467 (9) 0.0137 (7) 0.0027 (7) 0.0172 (7)
C12 0.0405 (8) 0.0499 (9) 0.0373 (8) 0.0251 (7) 0.0112 (6) 0.0204 (7)
C13 0.0387 (8) 0.0425 (8) 0.0324 (7) 0.0133 (7) 0.0039 (6) 0.0164 (7)
C14 0.0618 (11) 0.0604 (11) 0.0516 (10) 0.0290 (9) 0.0076 (9) 0.0299 (9)
C15 0.0747 (14) 0.0776 (14) 0.0661 (13) 0.0202 (12) 0.0013 (11) 0.0504 (12)
C16 0.0799 (15) 0.0760 (15) 0.0375 (10) −0.0012 (12) 0.0042 (10) 0.0284 (10)
C17 0.0788 (14) 0.0539 (11) 0.0429 (10) 0.0053 (10) 0.0240 (10) 0.0117 (9)
C18 0.0616 (11) 0.0412 (9) 0.0427 (9) 0.0140 (8) 0.0192 (8) 0.0164 (7)
C31 0.0391 (8) 0.0378 (8) 0.0346 (8) 0.0190 (6) 0.0110 (6) 0.0156 (6)
C32 0.0418 (8) 0.0477 (9) 0.0451 (9) 0.0207 (7) 0.0159 (7) 0.0246 (7)
C33 0.0565 (10) 0.0548 (10) 0.0469 (9) 0.0266 (8) 0.0200 (8) 0.0319 (8)
C34 0.0564 (10) 0.0532 (10) 0.0450 (9) 0.0318 (8) 0.0102 (8) 0.0250 (8)
C35 0.0529 (10) 0.0847 (13) 0.0617 (11) 0.0458 (10) 0.0251 (9) 0.0396 (10)
C36 0.0530 (10) 0.0756 (12) 0.0524 (10) 0.0389 (9) 0.0266 (8) 0.0389 (9)
C38 0.0427 (8) 0.0410 (8) 0.0368 (8) 0.0197 (7) 0.0155 (7) 0.0178 (7)
N1 0.0435 (8) 0.0441 (8) 0.0426 (8) 0.0135 (7) 0.0039 (6) 0.0149 (6)
N2 0.0693 (10) 0.0438 (8) 0.0571 (9) 0.0241 (7) 0.0215 (8) 0.0230 (7)
N3 0.0360 (6) 0.0407 (7) 0.0299 (6) 0.0189 (5) 0.0114 (5) 0.0168 (5)
F1 0.0799 (8) 0.1045 (9) 0.0715 (7) 0.0590 (7) 0.0180 (6) 0.0556 (7)

Geometric parameters (Å, º)

C1—N1 1.2847 (19) C12—N3 1.4790 (18)
C1—N3 1.3994 (18) C12—C13 1.501 (2)
C1—C2 1.446 (2) C12—H12A 0.9700
C2—C3 1.369 (2) C12—H12B 0.9700
C2—C38 1.428 (2) C13—C18 1.381 (2)
C3—C4 1.419 (2) C13—C14 1.382 (2)
C3—C31 1.4896 (19) C14—C15 1.385 (3)
C4—C5 1.3737 (19) C14—H14 0.9300
C4—C11 1.505 (2) C15—C16 1.366 (3)
C5—N3 1.3777 (18) C15—H15 0.9300
C5—C6 1.502 (2) C16—C17 1.358 (3)
C6—C7 1.533 (2) C16—H16 0.9300
C6—H6A 0.9700 C17—C18 1.381 (2)
C6—H6B 0.9700 C17—H17 0.9300
C7—C8 1.520 (2) C18—H18 0.9300
C7—H7A 0.9700 C31—C36 1.380 (2)
C7—H7B 0.9700 C31—C32 1.384 (2)
C8—C9 1.518 (2) C32—C33 1.382 (2)
C8—H8A 0.9700 C32—H32 0.9300
C8—H8B 0.9700 C33—C34 1.358 (2)
C9—C10 1.517 (3) C33—H33 0.9300
C9—H9A 0.9700 C34—F1 1.3570 (18)
C9—H9B 0.9700 C34—C35 1.363 (2)
C10—C11 1.525 (2) C35—C36 1.382 (2)
C10—H10A 0.9700 C35—H35 0.9300
C10—H10B 0.9700 C36—H36 0.9300
C11—H11A 0.9700 C38—N2 1.1426 (19)
C11—H11B 0.9700 N1—H1 0.864 (9)
N1—C1—N3 118.86 (13) C10—C11—H11B 109.2
N1—C1—C2 126.92 (14) H11A—C11—H11B 107.9
N3—C1—C2 114.22 (12) N3—C12—C13 115.71 (12)
C3—C2—C38 121.57 (13) N3—C12—H12A 108.4
C3—C2—C1 123.31 (13) C13—C12—H12A 108.4
C38—C2—C1 115.11 (13) N3—C12—H12B 108.4
C2—C3—C4 119.20 (13) C13—C12—H12B 108.4
C2—C3—C31 119.87 (13) H12A—C12—H12B 107.4
C4—C3—C31 120.92 (13) C18—C13—C14 118.55 (15)
C5—C4—C3 118.86 (13) C18—C13—C12 122.21 (14)
C5—C4—C11 120.91 (13) C14—C13—C12 119.14 (15)
C3—C4—C11 119.70 (13) C13—C14—C15 120.31 (19)
C4—C5—N3 121.29 (13) C13—C14—H14 119.8
C4—C5—C6 121.54 (13) C15—C14—H14 119.8
N3—C5—C6 117.16 (12) C16—C15—C14 120.2 (2)
C5—C6—C7 115.02 (13) C16—C15—H15 119.9
C5—C6—H6A 108.5 C14—C15—H15 119.9
C7—C6—H6A 108.5 C17—C16—C15 119.92 (19)
C5—C6—H6B 108.5 C17—C16—H16 120.0
C7—C6—H6B 108.5 C15—C16—H16 120.0
H6A—C6—H6B 107.5 C16—C17—C18 120.6 (2)
C8—C7—C6 117.39 (15) C16—C17—H17 119.7
C8—C7—H7A 108.0 C18—C17—H17 119.7
C6—C7—H7A 108.0 C17—C18—C13 120.41 (18)
C8—C7—H7B 108.0 C17—C18—H18 119.8
C6—C7—H7B 108.0 C13—C18—H18 119.8
H7A—C7—H7B 107.2 C36—C31—C32 118.80 (14)
C9—C8—C7 116.07 (15) C36—C31—C3 121.03 (13)
C9—C8—H8A 108.3 C32—C31—C3 120.16 (13)
C7—C8—H8A 108.3 C33—C32—C31 120.83 (15)
C9—C8—H8B 108.3 C33—C32—H32 119.6
C7—C8—H8B 108.3 C31—C32—H32 119.6
H8A—C8—H8B 107.4 C34—C33—C32 118.37 (15)
C10—C9—C8 115.10 (16) C34—C33—H33 120.8
C10—C9—H9A 108.5 C32—C33—H33 120.8
C8—C9—H9A 108.5 F1—C34—C33 118.67 (15)
C10—C9—H9B 108.5 F1—C34—C35 118.52 (16)
C8—C9—H9B 108.5 C33—C34—C35 122.81 (15)
H9A—C9—H9B 107.5 C34—C35—C36 118.38 (16)
C9—C10—C11 115.73 (14) C34—C35—H35 120.8
C9—C10—H10A 108.3 C36—C35—H35 120.8
C11—C10—H10A 108.3 C31—C36—C35 120.80 (16)
C9—C10—H10B 108.3 C31—C36—H36 119.6
C11—C10—H10B 108.3 C35—C36—H36 119.6
H10A—C10—H10B 107.4 N2—C38—C2 175.68 (17)
C4—C11—C10 112.25 (13) C1—N1—H1 109.5 (13)
C4—C11—H11A 109.2 C5—N3—C1 123.11 (12)
C10—C11—H11A 109.2 C5—N3—C12 120.92 (12)
C4—C11—H11B 109.2 C1—N3—C12 115.68 (12)
N1—C1—C2—C3 −179.54 (14) C14—C15—C16—C17 1.1 (3)
N3—C1—C2—C3 0.16 (19) C15—C16—C17—C18 −0.6 (3)
N1—C1—C2—C38 1.5 (2) C16—C17—C18—C13 −0.6 (3)
N3—C1—C2—C38 −178.81 (12) C14—C13—C18—C17 1.4 (3)
C38—C2—C3—C4 179.19 (13) C12—C13—C18—C17 −174.81 (16)
C1—C2—C3—C4 0.3 (2) C2—C3—C31—C36 −105.63 (18)
C38—C2—C3—C31 −0.3 (2) C4—C3—C31—C36 74.87 (19)
C1—C2—C3—C31 −179.22 (13) C2—C3—C31—C32 75.25 (18)
C2—C3—C4—C5 −0.2 (2) C4—C3—C31—C32 −104.25 (17)
C31—C3—C4—C5 179.26 (13) C36—C31—C32—C33 −0.4 (2)
C2—C3—C4—C11 −172.00 (13) C3—C31—C32—C33 178.75 (14)
C31—C3—C4—C11 7.5 (2) C31—C32—C33—C34 0.8 (2)
C3—C4—C5—N3 −0.3 (2) C32—C33—C34—F1 179.75 (15)
C11—C4—C5—N3 171.40 (13) C32—C33—C34—C35 −0.6 (3)
C3—C4—C5—C6 −179.76 (13) F1—C34—C35—C36 179.53 (16)
C11—C4—C5—C6 −8.1 (2) C33—C34—C35—C36 −0.2 (3)
C4—C5—C6—C7 87.41 (18) C32—C31—C36—C35 −0.4 (3)
N3—C5—C6—C7 −92.12 (16) C3—C31—C36—C35 −179.49 (16)
C5—C6—C7—C8 −73.7 (2) C34—C35—C36—C31 0.6 (3)
C6—C7—C8—C9 67.0 (2) C4—C5—N3—C1 0.7 (2)
C7—C8—C9—C10 −99.2 (2) C6—C5—N3—C1 −179.73 (12)
C8—C9—C10—C11 54.5 (2) C4—C5—N3—C12 −172.79 (13)
C5—C4—C11—C10 −89.02 (17) C6—C5—N3—C12 6.73 (19)
C3—C4—C11—C10 82.57 (17) N1—C1—N3—C5 179.05 (13)
C9—C10—C11—C4 53.53 (19) C2—C1—N3—C5 −0.67 (18)
N3—C12—C13—C18 −47.2 (2) N1—C1—N3—C12 −7.09 (19)
N3—C12—C13—C14 136.67 (15) C2—C1—N3—C12 173.18 (11)
C18—C13—C14—C15 −0.9 (3) C13—C12—N3—C5 −88.06 (16)
C12—C13—C14—C15 175.42 (16) C13—C12—N3—C1 97.94 (15)
C13—C14—C15—C16 −0.3 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C13–C18 phenyl ring.

D—H···A D—H H···A D···A D—H···A
C32—H32···N1i 0.93 2.53 3.421 (2) 160
C11—H11A···Cg1ii 0.97 2.93 3.484 (2) 118

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y+1, −z+1.

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  2. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Echevarria, A., Nascimento, M. G., d, G., Gerônimo, V., Miller, J. & Giesbrecht, A. (1999). J. Braz. Chem. Soc. 10, 60–64.
  4. Hooper, D. C., Wolfson, J. S., McHugh, G. L., Winters, M. B. & Swartz, M. N. (1982). Antimicrob. Agents Chemother. 22, 662–671. [DOI] [PMC free article] [PubMed]
  5. Hursthouse, M. B., Karaulov, A. I., Ciechanowicz-Rutkowska, M., Kolasa, A. & Zankowska-Jasińska, W. (1992). Acta Cryst. C48, 1257–1260.
  6. Jin, Z.-M., Shun, N., Lü, Y.-P., Hu, M.-L. & Shen, L. (2005). Acta Cryst. C61, m43–m45. [DOI] [PubMed]
  7. Jo, Y. W., Im, W. B., Rhee, J. K., Shim, M. J., Kim, W. B. & Choi, E. C. (2004). Bioorg. Med. Chem. 12, 5909–5915. [DOI] [PubMed]
  8. Mavel, S., Renou, J., Galtier, C., Allouchi, H., Snoeck, R., Andrei, G., De Clercq, E., Balzarini, J. & Gueiffier, A. (2002). Bioorg. Med. Chem. 10, 941–946. [DOI] [PubMed]
  9. Patel, U. H., Dave, C. G., Jotani, M. M. & Shah, H. C. (2002). Acta Cryst. C58, o191–o192. [DOI] [PubMed]
  10. Patel, P. R., Thaker, B. T. & Zele, S. (1999). Indian J. Chem. Sect. A, 38, 563–566.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Singh, P., Goel, R. L. & Singh, B. P. J. (1975). Indian Chem, 52, 958–959Yoeong.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Sunkel, C. E., de Casa-Juana, M. F., Santos, L., Gómez, M. M., Villarroya, M., González-Morales, M. A., Priego, J. G. & Ortega, M. P. (1990). J. Med. Chem. 33, 3205–3210. [DOI] [PubMed]
  15. Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o656. [DOI] [PMC free article] [PubMed]
  16. Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o872. [DOI] [PMC free article] [PubMed]
  17. Wang, X., Shen, Y., Pan, Y. & Liang, Y. (2001). Langmuir, 17, 3162–3167.
  18. Wiberg, K. B. (2003). J. Org. Chem. 68, 9322–9329. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S1600536814022016/hb7284sup1.cif

e-70-00344-sup1.cif (1.6MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814022016/hb7284Isup2.hkl

e-70-00344-Isup2.hkl (248.5KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S1600536814022016/hb7284IIsup3.hkl

e-70-00344-IIsup3.hkl (205.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814022016/hb7284Isup4.cml

Supporting information file. DOI: 10.1107/S1600536814022016/hb7284IIsup5.cml

CCDC references: 1027782, 1027783

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES