Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 31;70(Pt 11):438–440. doi: 10.1107/S1600536814023496

Crystal structure of trans-aqua­(perchlorato-κO)bis­(propane-1,3-di­amine-κ2 N,N′)copper(II) perchlorate

J Govindaraj a, K Rajkumar b, A S Ganeshraja b, K Anbalagan b, A SubbiahPandi c,a,*
PMCID: PMC4257260  PMID: 25484768

In the title compound, the CuII atom has a distorted octa­hedral coordination sphere coordinated by the N atoms of two propane-1,3-di­amine ligands in the equatorial plane. The axial positions are occupied by a water O atom and an O atom of a disordered perchlorate anion [occupancy ratio 0.631 (9):369 (9)].

Keywords: crystal structure; propane-1,3-di­amine; copper(II) complex

Abstract

In the title compound, [Cu(ClO4)(C3H10N2)2(H2O)]ClO4, the CuII atom has a distorted octa­hedral coordination sphere and is coordinated by the N atoms of two propane-1,3-di­amine ligands in the equatorial plane. The axial positions are occupied by a water O atom and an O atom of a disordered perchlorate anion [occupancy ratio 0.631 (9):0.369 (9)]. In the crystal, the various components are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds, forming sheets lying parallel to (001).

Chemical context  

There have been numerous reports of bis­(propane-1,3-di­amine)­copper(II) complexes, essentially with the copper atom coordinated by the N atoms of the ligands in the equatorial plane of the copper octa­hedral coordination sphere and with two identical O-containing ligands in the axial positions, for example, trans-di­aqua­bis­(propane-1,3-di­amine-κ2 N,N′)copper(II) di­thio­nate (Kim et al., 2003) and bis­[aqua­(1,3-di­amino­propane-κ2 N,N′)]copper(II) difluoride (Emsley et al., 1988). In order to further develop the coordination chemistry of such copper complexes, we report herein on the synthesis and crystal structure of the title complex, which has two different ligands in the axial positions of the octa­hedral coordination sphere of the copper atom.graphic file with name e-70-00438-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title complex is illustrated in Fig. 1. The CuII atom has a distorted octa­hedral coordination sphere, reflecting the characteristic Jahn–Teller distortion. It is coordinated by the N atoms of two propane-1,3-di­amine ligands in the equatorial plane with Cu—N bond lengths varying between 2.003 (4)–2.023 (3) Å. The axial positions are occupied by the water O9 atom and by atom O7 of a disordered perchlorate anion [occupancy ratio 0.631 (9):0.369 (9)], with Cu—O bond lengths of 2.585 (6) and 2.680 (10) Å, respectively.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. The minor components of the disordered coordinating perchlorate anion have been omitted for clarity.

Supra­molecular features  

In the crystal, the various components are linked via O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds forming sheets lying parallel to (001); see Table 1 and Fig. 2.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O9H9BO3i 0.90(2) 2.38(11) 2.917(9) 118(9)
N1H1CO1 0.90 2.22 3.040(7) 151
N1H1DO1ii 0.90 2.69 3.511(8) 151
N1H1DO9 0.90 2.41 2.927(8) 117
N2H2CO5iii 0.90 2.58 3.443(12) 162
N2H2CO8iii 0.90 2.42 3.183(10) 143
N2H2CO5iii 0.90 2.39 3.23(3) 156
N2H2DO3iii 0.90 2.70 3.449(11) 141
N3H3CO6iv 0.90 2.15 3.014(9) 160
N3H3CO7iv 0.90 2.36 3.246(17) 169
N3H3DO3 0.90 2.28 3.137(8) 160
N4H4CO2iii 0.90 2.35 3.127(6) 144
N4H4DO4i 0.90 2.45 3.223(7) 145
C4H4AO5v 0.97 2.47 3.264(14) 139
C5H5BO4i 0.97 2.63 3.368(7) 133

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A view along the a axis of the crystal structure of the title compound. O—H⋯O and N—H⋯O hydrogen bonds are shown as dashed lines (see Table 1 for details; the minor components of the disordered coordinating perchlorate anion and the C-bound H atoms have been omitted for clarity)

Synthesis and crystallization  

The complex was prepared by mixing copper(II) perchlorate hexa­hydrate with 1,3-di­amino­propane in a (1:2) molar ratio. Cu(ClO4)2·6H2O (3.7 g, 1 M) was dissolved in 15 ml of warm water. After an hour, about 10 ml of an ethanol solution of 1,3-di­amino­propane (1.48 g, 2M) was added dropwise with continuous stirring. This solution was then filtered to remove any impurities and the solution was kept over P2O5 in a desiccator. Finally, violet–purple-coloured crystals suitable for X-ray diffraction analysis were harvested and washed repeatedly with cold water (yield 70%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The water H atoms were located in a difference Fourier map and refined with a distance restraint, O—H = 0.90 (2) Å, and with U iso(H) = 1.5U eq(O). The N -and C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with N—H = 0.90 and C—H = 0.97 Å, and with U iso(H) = 1.2U eq(N,C). The disordered coordinating perchlorate anion, involving atom Cl2, was refined with an occupancy ratio of 0.631 (9):0.369 (9).

Table 2. Experimental details.

Crystal data
Chemical formula [Cu(ClO4)(C3H10N2)2(H2O)]ClO4
M r 428.72
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c () 7.8563(4), 14.2936(6), 14.8769(7)
() 100.022(5)
V (3) 1645.11(13)
Z 4
Radiation type Mo K
(mm1) 1.70
Crystal size (mm) 0.30 0.30 0.25
 
Data collection
Diffractometer Oxford Diffraction Xcalibur with an Eos detector
Absorption correction Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009)
T min, T max 0.607, 0.654
No. of measured, independent and observed [I > 2(I)] reflections 7573, 2900, 2353
R int 0.032
(sin /)max (1) 0.595
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.046, 0.127, 1.06
No. of reflections 2900
No. of parameters 242
No. of restraints 109
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.60, 0.42

Computer programs: CrysAlis CCD and CrysAlis RED (Oxford Diffraction, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814023496/su2799sup1.cif

e-70-00438-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023496/su2799Isup2.hkl

e-70-00438-Isup2.hkl (141.4KB, hkl)

CCDC reference: 1031014

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JG and ASP are grateful to the CSIR, New Delhi [Lr: No. 01 (2570)/12/EMR-II/3.4.2012] for financial support through a major research project. The authors thank the Department of Chemistry, Pondicherry University, for the single-crystal XRD instrumentation facility.

supplementary crystallographic information

Crystal data

[Cu(ClO4)(C3H10N2)2(H2O)]ClO4 F(000) = 884
Mr = 428.72 Dx = 1.731 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2353 reflections
a = 7.8563 (4) Å θ = 3.8–25.0°
b = 14.2936 (6) Å µ = 1.70 mm1
c = 14.8769 (7) Å T = 293 K
β = 100.022 (5)° Block, violet-purple
V = 1645.11 (13) Å3 0.30 × 0.30 × 0.25 mm
Z = 4

Data collection

Oxford diffraction Xcalibur diffractometer with an Eos detector 2900 independent reflections
Radiation source: fine-focus sealed tube 2353 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω and φ scans θmax = 25.0°, θmin = 3.8°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −9→9
Tmin = 0.607, Tmax = 0.654 k = −16→16
7573 measured reflections l = −17→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0667P)2 + 1.2858P] where P = (Fo2 + 2Fc2)/3
2900 reflections (Δ/σ)max = 0.002
242 parameters Δρmax = 0.60 e Å3
109 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.2060 (10) 0.0648 (5) 0.4655 (4) 0.0879 (19)
H1A 0.2841 0.0599 0.5234 0.105*
H1B 0.1231 0.0142 0.4630 0.105*
C2 0.1130 (10) 0.1523 (5) 0.4648 (4) 0.099 (2)
H2A 0.0517 0.1508 0.5160 0.119*
H2B 0.1985 0.2017 0.4771 0.119*
C3 −0.0098 (8) 0.1800 (5) 0.3854 (4) 0.0846 (17)
H3A −0.0506 0.2423 0.3965 0.101*
H3B −0.1084 0.1383 0.3802 0.101*
C4 0.1631 (8) 0.0875 (3) 0.0573 (3) 0.0667 (14)
H4A 0.1641 0.1259 0.0037 0.080*
H4B 0.0489 0.0602 0.0524 0.080*
C5 0.2934 (7) 0.0105 (3) 0.0589 (3) 0.0659 (13)
H5A 0.2758 −0.0197 −0.0004 0.079*
H5B 0.4083 0.0376 0.0693 0.079*
C6 0.2841 (8) −0.0610 (3) 0.1296 (3) 0.0700 (14)
H6A 0.1671 −0.0851 0.1218 0.084*
H6B 0.3597 −0.1126 0.1208 0.084*
N1 0.3041 (7) 0.0504 (4) 0.3943 (3) 0.0860 (15)
H1C 0.3285 −0.0111 0.3940 0.103*
H1D 0.4054 0.0803 0.4113 0.103*
N2 0.0484 (6) 0.1812 (3) 0.2978 (3) 0.0705 (12)
H2C 0.0951 0.2380 0.2925 0.085*
H2D −0.0471 0.1780 0.2546 0.085*
N3 0.3333 (6) −0.0259 (3) 0.2235 (3) 0.0678 (11)
H3C 0.4473 −0.0136 0.2325 0.081*
H3D 0.3180 −0.0730 0.2614 0.081*
N4 0.1967 (6) 0.1474 (2) 0.1393 (2) 0.0573 (10)
H4C 0.1117 0.1902 0.1342 0.069*
H4D 0.2958 0.1786 0.1382 0.069*
O1 0.3452 (8) −0.1512 (3) 0.4593 (5) 0.149 (2)
O2 0.1810 (6) −0.2818 (4) 0.4266 (4) 0.1161 (16)
O3 0.3230 (12) −0.2194 (6) 0.3219 (5) 0.185 (3)
O4 0.4749 (7) −0.2926 (4) 0.4506 (5) 0.156 (3)
Cl1 0.33528 (15) −0.23745 (7) 0.41570 (8) 0.0557 (3)
Cl2 −0.18163 (15) −0.06425 (9) 0.24310 (7) 0.0576 (3)
Cu1 0.21563 (6) 0.08711 (3) 0.26368 (3) 0.0411 (2)
O5 −0.2890 (12) −0.1162 (7) 0.1754 (6) 0.102 (3) 0.631 (9)
O6 −0.2845 (9) −0.0126 (8) 0.2958 (6) 0.109 (3) 0.631 (9)
O7 −0.0828 (12) −0.0013 (7) 0.2023 (6) 0.133 (4) 0.631 (9)
O8 −0.0665 (16) −0.1226 (7) 0.3013 (6) 0.142 (4) 0.631 (9)
O5' −0.188 (3) −0.1082 (17) 0.1585 (9) 0.156 (9) 0.369 (9)
O6' −0.0084 (12) −0.0497 (11) 0.2830 (12) 0.117 (5) 0.369 (9)
O7' −0.2628 (19) 0.0227 (8) 0.2243 (14) 0.131 (6) 0.369 (9)
O8' −0.258 (2) −0.1212 (13) 0.2983 (10) 0.138 (6) 0.369 (9)
O9 0.4814 (7) 0.1951 (5) 0.3062 (4) 0.133 (2)
H9B 0.557 (10) 0.173 (8) 0.272 (6) 0.200*
H9A 0.536 (11) 0.222 (7) 0.357 (4) 0.200*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.121 (5) 0.097 (4) 0.048 (3) 0.019 (4) 0.022 (3) 0.011 (3)
C2 0.141 (6) 0.105 (5) 0.058 (3) 0.035 (5) 0.032 (4) −0.006 (3)
C3 0.081 (4) 0.101 (4) 0.076 (4) 0.024 (3) 0.026 (3) −0.019 (3)
C4 0.092 (4) 0.062 (3) 0.045 (2) 0.005 (3) 0.009 (3) 0.003 (2)
C5 0.073 (3) 0.067 (3) 0.064 (3) −0.004 (3) 0.028 (3) −0.013 (2)
C6 0.081 (4) 0.054 (3) 0.076 (3) 0.015 (3) 0.017 (3) −0.014 (2)
N1 0.115 (4) 0.086 (3) 0.056 (2) 0.043 (3) 0.013 (3) 0.019 (2)
N2 0.088 (3) 0.066 (3) 0.063 (2) 0.036 (2) 0.028 (2) 0.0098 (19)
N3 0.078 (3) 0.060 (2) 0.064 (2) 0.031 (2) 0.010 (2) 0.0014 (19)
N4 0.080 (3) 0.045 (2) 0.049 (2) 0.0049 (19) 0.0173 (19) 0.0063 (15)
O1 0.138 (5) 0.072 (3) 0.221 (6) 0.001 (3) −0.014 (4) −0.046 (4)
O2 0.078 (3) 0.114 (3) 0.163 (5) −0.024 (3) 0.039 (3) 0.001 (3)
O3 0.245 (9) 0.197 (7) 0.139 (5) 0.046 (6) 0.107 (6) 0.062 (5)
O4 0.080 (3) 0.107 (4) 0.276 (8) 0.042 (3) 0.021 (4) 0.059 (5)
Cl1 0.0524 (6) 0.0451 (6) 0.0733 (7) 0.0054 (5) 0.0212 (6) 0.0074 (5)
Cl2 0.0526 (6) 0.0603 (7) 0.0599 (7) −0.0013 (5) 0.0092 (5) −0.0059 (5)
Cu1 0.0435 (3) 0.0393 (3) 0.0415 (3) 0.0075 (2) 0.0096 (2) 0.00435 (19)
O5 0.104 (6) 0.099 (5) 0.097 (6) −0.017 (5) 0.002 (5) −0.030 (5)
O6 0.069 (4) 0.162 (9) 0.098 (5) 0.007 (5) 0.019 (4) −0.049 (6)
O7 0.109 (7) 0.167 (8) 0.127 (7) −0.064 (6) 0.037 (6) 0.023 (6)
O8 0.185 (10) 0.101 (6) 0.117 (6) 0.043 (7) −0.040 (7) 0.016 (5)
O5' 0.23 (2) 0.172 (15) 0.059 (8) 0.010 (18) 0.020 (12) −0.023 (9)
O6' 0.045 (6) 0.115 (11) 0.184 (14) −0.002 (7) −0.002 (7) 0.008 (10)
O7' 0.108 (11) 0.064 (7) 0.203 (16) 0.002 (7) −0.022 (12) −0.012 (9)
O8' 0.128 (12) 0.182 (15) 0.109 (10) −0.019 (12) 0.036 (9) 0.044 (10)
O9 0.118 (4) 0.150 (5) 0.133 (5) −0.054 (4) 0.024 (4) −0.030 (4)

Geometric parameters (Å, º)

C1—N1 1.429 (7) N2—H2C 0.9000
C1—C2 1.447 (8) N2—H2D 0.9000
C1—H1A 0.9700 N3—Cu1 2.003 (4)
C1—H1B 0.9700 N3—H3C 0.9000
C2—C3 1.445 (9) N3—H3D 0.9000
C2—H2A 0.9700 N4—Cu1 2.023 (3)
C2—H2B 0.9700 N4—H4C 0.9000
C3—N2 1.454 (6) N4—H4D 0.9000
C3—H3A 0.9700 O1—Cl1 1.388 (5)
C3—H3B 0.9700 O2—Cl1 1.402 (4)
C4—N4 1.476 (6) O3—Cl1 1.406 (6)
C4—C5 1.500 (7) O4—Cl1 1.377 (5)
C4—H4A 0.9700 Cl2—O8' 1.368 (11)
C4—H4B 0.9700 Cl2—O7 1.395 (7)
C5—C6 1.478 (7) Cl2—O5' 1.399 (12)
C5—H5A 0.9700 Cl2—O6' 1.402 (9)
C5—H5B 0.9700 Cl2—O7' 1.403 (10)
C6—N3 1.471 (6) Cl2—O5 1.408 (7)
C6—H6A 0.9700 Cl2—O8 1.411 (7)
C6—H6B 0.9700 Cl2—O6 1.425 (6)
N1—Cu1 2.015 (4) O9—H9B 0.90 (2)
N1—H1C 0.9000 O9—H9A 0.89 (2)
N1—H1D 0.9000 Cu1—09 2.585 (6)
N2—Cu1 2.006 (4) Cu1—O7 2.680 (1)
N1—C1—C2 117.2 (5) C6—N3—H3D 107.3
N1—C1—H1A 108.0 Cu1—N3—H3D 107.3
C2—C1—H1A 108.0 H3C—N3—H3D 106.9
N1—C1—H1B 108.0 C4—N4—Cu1 118.9 (3)
C2—C1—H1B 108.0 C4—N4—H4C 107.6
H1A—C1—H1B 107.3 Cu1—N4—H4C 107.6
C3—C2—C1 120.5 (5) C4—N4—H4D 107.6
C3—C2—H2A 107.2 Cu1—N4—H4D 107.6
C1—C2—H2A 107.2 H4C—N4—H4D 107.0
C3—C2—H2B 107.2 O4—Cl1—O1 110.8 (4)
C1—C2—H2B 107.2 O4—Cl1—O2 110.2 (3)
H2A—C2—H2B 106.8 O1—Cl1—O2 109.1 (4)
C2—C3—N2 117.8 (5) O4—Cl1—O3 113.1 (5)
C2—C3—H3A 107.9 O1—Cl1—O3 106.8 (5)
N2—C3—H3A 107.9 O2—Cl1—O3 106.6 (5)
C2—C3—H3B 107.9 O8'—Cl2—O7 169.0 (9)
N2—C3—H3B 107.9 O8'—Cl2—O5' 108.7 (11)
H3A—C3—H3B 107.2 O7—Cl2—O5' 80.5 (10)
N4—C4—C5 112.9 (4) O8'—Cl2—O6' 109.2 (10)
N4—C4—H4A 109.0 O7—Cl2—O6' 61.0 (7)
C5—C4—H4A 109.0 O5'—Cl2—O6' 109.2 (10)
N4—C4—H4B 109.0 O8'—Cl2—O7' 114.5 (10)
C5—C4—H4B 109.0 O7—Cl2—O7' 67.0 (8)
H4A—C4—H4B 107.8 O5'—Cl2—O7' 105.9 (13)
C6—C5—C4 113.7 (4) O6'—Cl2—O7' 109.1 (8)
C6—C5—H5A 108.8 O8'—Cl2—O5 81.0 (9)
C4—C5—H5A 108.8 O7—Cl2—O5 109.8 (6)
C6—C5—H5B 108.8 O5'—Cl2—O5 36.4 (9)
C4—C5—H5B 108.8 O6'—Cl2—O5 142.9 (7)
H5A—C5—H5B 107.7 O7'—Cl2—O5 97.5 (8)
N3—C6—C5 113.7 (4) O8'—Cl2—O8 65.3 (8)
N3—C6—H6A 108.8 O7—Cl2—O8 107.6 (6)
C5—C6—H6A 108.8 O5'—Cl2—O8 101.9 (11)
N3—C6—H6B 108.8 O6'—Cl2—O8 50.0 (7)
C5—C6—H6B 108.8 O7'—Cl2—O8 150.1 (8)
H6A—C6—H6B 107.7 O5—Cl2—O8 111.6 (6)
C1—N1—Cu1 122.5 (4) O8'—Cl2—O6 68.1 (8)
C1—N1—H1C 106.7 O7—Cl2—O6 108.5 (6)
Cu1—N1—H1C 106.7 O5'—Cl2—O6 142.2 (11)
C1—N1—H1D 106.7 O6'—Cl2—O6 106.9 (7)
Cu1—N1—H1D 106.7 O7'—Cl2—O6 50.9 (8)
H1C—N1—H1D 106.6 O5—Cl2—O6 109.9 (5)
C3—N2—Cu1 122.8 (3) O8—Cl2—O6 109.5 (6)
C3—N2—H2C 106.6 N3—Cu1—N2 166.5 (2)
Cu1—N2—H2C 106.6 N3—Cu1—N1 88.76 (17)
C3—N2—H2D 106.6 N2—Cu1—N1 93.53 (17)
Cu1—N2—H2D 106.6 N3—Cu1—N4 91.99 (15)
H2C—N2—H2D 106.6 N2—Cu1—N4 89.94 (15)
C6—N3—Cu1 120.0 (3) N1—Cu1—N4 161.9 (2)
C6—N3—H3C 107.3 H9B—O9—H9A 111 (3)
Cu1—N3—H3C 107.3
N1—C1—C2—C3 56.0 (10) C6—N3—Cu1—N4 −35.4 (4)
C1—C2—C3—N2 −53.1 (10) C3—N2—Cu1—N3 79.8 (9)
N4—C4—C5—C6 67.7 (6) C3—N2—Cu1—N1 −19.6 (5)
C4—C5—C6—N3 −66.7 (6) C3—N2—Cu1—N4 178.1 (5)
C2—C1—N1—Cu1 −41.1 (9) C1—N1—Cu1—N3 −144.4 (5)
C2—C3—N2—Cu1 35.8 (8) C1—N1—Cu1—N2 22.4 (5)
C5—C6—N3—Cu1 54.2 (6) C1—N1—Cu1—N4 123.0 (6)
C5—C4—N4—Cu1 −55.5 (5) C4—N4—Cu1—N3 36.2 (4)
C6—N3—Cu1—N2 62.7 (8) C4—N4—Cu1—N2 −130.4 (4)
C6—N3—Cu1—N1 162.7 (4) C4—N4—Cu1—N1 128.3 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O9—H9B···O3i 0.90 (2) 2.38 (11) 2.917 (9) 118 (9)
N1—H1C···O1 0.90 2.22 3.040 (7) 151
N1—H1D···O1ii 0.90 2.69 3.511 (8) 151
N1—H1D···O9 0.90 2.41 2.927 (8) 117
N2—H2C···O5iii 0.90 2.58 3.443 (12) 162
N2—H2C···O8iii 0.90 2.42 3.183 (10) 143
N2—H2C···O5′iii 0.90 2.39 3.23 (3) 156
N2—H2D···O3iii 0.90 2.70 3.449 (11) 141
N3—H3C···O6iv 0.90 2.15 3.014 (9) 160
N3—H3C···O7′iv 0.90 2.36 3.246 (17) 169
N3—H3D···O3 0.90 2.28 3.137 (8) 160
N4—H4C···O2iii 0.90 2.35 3.127 (6) 144
N4—H4D···O4i 0.90 2.45 3.223 (7) 145
C4—H4A···O5′v 0.97 2.47 3.264 (14) 139
C5—H5B···O4i 0.97 2.63 3.368 (7) 133

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, −y, −z+1; (iii) −x, y+1/2, −z+1/2; (iv) x+1, y, z; (v) −x, −y, −z.

References

  1. Emsley, J., Arif, M., Bates, P. A. & Hursthouse, M. B. (1988). Inorg. Chim. Acta, 154, 17–20.
  2. Kim, Y., Skelton, B. W. & White, A. H. (2003). Acta Cryst. C59, m546–m548. [DOI] [PubMed]
  3. Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814023496/su2799sup1.cif

e-70-00438-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023496/su2799Isup2.hkl

e-70-00438-Isup2.hkl (141.4KB, hkl)

CCDC reference: 1031014

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES