Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 31;70(Pt 11):o1212–o1213. doi: 10.1107/S160053681402354X

Crystal structure of 5-(4,5-di­hydro-1H-imidazol-2-yl)-3-methyl-1-phenyl-1H-pyrazolo­[3,4-b]pyrazin-6-amine

Joel T Mague a, Shaaban K Mohamed b,c, Mehmet Akkurt d, Talaat I El-Emary e, Mustafa R Albayati f,*
PMCID: PMC4257272  PMID: 25484835

Abstract

In the title compound, C15H15N7, the phenyl ring is inclined by 19.86 (5)° to the mean plane of the pyrazolo­[3,4-b]pyrazine core. In the crystal, N—H⋯N and C—H⋯N hydrogen bonds form [010] chains, which stack via π–π inter­actions [centroid–centroid distance between the pyrazole rings = 3.4322 (7) Å].

Keywords: crystal structure; pyrazolo­[3,4-b]pyrazine; hydrogen bonding; π–π inter­actions; scaffold compounds

Related literature  

For the synthesis of similar pyrazolo­[3,4-b]pyrazines, see: El-Emary & El-Kashef (2013). For different biological and industrial applications of pyrazolo­pyrazine scaffold compounds, see: El-Emary et al. (1998); El-Kashef et al. (2000); El-Emary (2006); Rangnekar (1990).graphic file with name e-70-o1212-scheme1.jpg

Experimental  

Crystal data  

  • C15H15N7

  • M r = 293.34

  • Monoclinic, Inline graphic

  • a = 7.9412 (2) Å

  • b = 15.7078 (3) Å

  • c = 22.3276 (4) Å

  • β = 98.573 (1)°

  • V = 2754.00 (10) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.75 mm−1

  • T = 150 K

  • 0.15 × 0.10 × 0.05 mm

Data collection  

  • Bruker D8 VENTURE PHOTON 100 CMOS diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2014) T min = 0.93, T max = 0.97

  • 21033 measured reflections

  • 2685 independent reflections

  • 2335 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.094

  • S = 1.04

  • 2685 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2014); cell refinement: SAINT (Bruker, 2014); data reduction: SAINT; program(s) used to solve structure: SHELXT (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2012); software used to prepare material for publication: SHELXTL2014 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681402354X/hg5415sup1.cif

e-70-o1212-sup1.cif (631.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681402354X/hg5415Isup2.hkl

e-70-o1212-Isup2.hkl (147.7KB, hkl)

Supporting information file. DOI: 10.1107/S160053681402354X/hg5415Isup3.cml

. DOI: 10.1107/S160053681402354X/hg5415fig1.tif

The title mol­ecule with numbering scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is shown as a blue dotted line.

. DOI: 10.1107/S160053681402354X/hg5415fig2.tif

Plan view of the chain showing N—H⋯N and C—H⋯N hydrogen bonds as blue and black dotted lines, respectively.

. DOI: 10.1107/S160053681402354X/hg5415fig3.tif

Elevation view of two chains showing the π-π inter­actions as green dotted lines.

a . DOI: 10.1107/S160053681402354X/hg5415fig4.tif

Packing viewed down the a axis.

CCDC reference: 1031105

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C6H6N5i 0.95 2.56 3.3483(17) 140
N5H5BN2ii 0.91 2.31 3.1702(15) 158
N5H5AN6 0.91 1.97 2.7111(15) 138

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The support of NSF–MRI grant No. 1228232 for the purchase of the diffractometer and Tulane University for support of the Tulane Crystallography Laboratory are gratefully acknowledged. In addition, TIE would like to express his thanks to Professor H. M. S. El-Kashef, Assiut University, for his contribution to this study.

supplementary crystallographic information

S1. Comment

Pyrazine scaffold compounds are an interesting class of fused heterocyclic compounds due to their diverse properties in medicinal and applied chemistry. Pyrazolo[3,4-b]pyrazine derivatives have been reported to act as blood platelet aggregation inhibitors and bone metabolism improvers (El-Emary & El-Kashef, 2013). They also show antifungal and antiparasitic activities (El-Emary et al., 1998; El-Kashef et al., 2000; El-Emary, 2006). In addition, they are used as dye dispersants and as fluorescents (Rangnekar, 1990). In view of this medicinal importance, the crystal structure determination of the title compound was carried out and the results are presented here.

In the title compound, the pyrazolo[3,4-b]pyrazine core is planar (r.m.s. deviation 0.0089) with the phenyl ring inclined by 19.86 (5)° to it. An intramolecular N5—H5a···N6 hydrogen bond (Table 1 and Fig. 1) keeps the dihydroimidazolyl substituent nearly coplanar with the core. Intermolecular N5—H5b···N2 and C6—H6···N5 hydrogen bonds form chains of molecules (Table 1 and Fig. 2) which stack viaπ–π interactions between pyrazine rings (Cgi···Cgii = Cgiii··· Cgiv = 3.43 Å. Cgi: 0.5 - x, 1/2 + y, 0.5 - z; Cgii: -1/2 + x, 1/2 + y, z; Cgiii: 0.5 - x, -1/2 + y, 0.5 - z; Cgiv: -1/2 + x, -1/2 + y, z. Figs. 3 and 4). The chains run approximately parallel to (102).

S2. Experimental

The title compound has been prepared according to our reported method (El-Kashef et al., 2000). The product was crystallized from dioxan to furnish a good yield (68%) of colourles crystals (m.p. 503–505 K) which were of suffiecient quality for X-ray diffraction.

S3. Refinement

H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Figures

Fig. 1.

Fig. 1.

The title molecule with numbering scheme and 50% probability ellipsoids. The intramolecular hydrogen bond is shown as a blue dotted line.

Fig. 2.

Fig. 2.

Plan view of the chain showing N—H···N and C—H···N hydrogen bonds as blue and black dotted lines, respectively.

Fig. 3.

Fig. 3.

Elevation view of two chains showing the π-π interactions as green dotted lines.

Fig. 4.

Fig. 4.

Packing viewed down the a axis.

Crystal data

C15H15N7 F(000) = 1232
Mr = 293.34 Dx = 1.415 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
a = 7.9412 (2) Å Cell parameters from 9946 reflections
b = 15.7078 (3) Å θ = 4.0–71.7°
c = 22.3276 (4) Å µ = 0.75 mm1
β = 98.573 (1)° T = 150 K
V = 2754.00 (10) Å3 Block, colourless
Z = 8 0.15 × 0.10 × 0.05 mm

Data collection

Bruker D8 VENTURE PHOTON 100 CMOS diffractometer 2685 independent reflections
Radiation source: INCOATEC IµS micro–focus source 2335 reflections with I > 2σ(I)
Mirror monochromator Rint = 0.031
Detector resolution: 10.4167 pixels mm-1 θmax = 72.0°, θmin = 4.0°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Bruker, 2014) k = −19→18
Tmin = 0.93, Tmax = 0.97 l = −25→27
21033 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.047P)2 + 1.7272P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2685 reflections Δρmax = 0.23 e Å3
201 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00012 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 - 0.98 Å) while those attached to nitrogen were placed in locations derived from a difference map and their parameters adjusted to give N—H = 0.91 Å. All were included as riding contributions with isotropic displacement parameters 1.2 - 1.5 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.21440 (13) 0.23938 (6) 0.22995 (4) 0.0252 (2)
N2 0.24278 (14) 0.15429 (6) 0.24683 (5) 0.0284 (3)
N3 0.49830 (13) 0.27132 (6) 0.36366 (5) 0.0255 (2)
N4 0.31514 (13) 0.37679 (6) 0.27055 (4) 0.0258 (2)
N5 0.43603 (15) 0.49390 (7) 0.32160 (5) 0.0350 (3)
H5A 0.5051 0.5149 0.3545 0.042*
H5B 0.3806 0.5295 0.2931 0.042*
N6 0.62895 (15) 0.47203 (7) 0.43134 (5) 0.0345 (3)
N7 0.69317 (15) 0.33776 (7) 0.46313 (5) 0.0339 (3)
H7A 0.7265 0.2859 0.4511 0.041*
C1 0.10360 (15) 0.25899 (8) 0.17597 (5) 0.0255 (3)
C2 0.03232 (16) 0.33968 (8) 0.16704 (6) 0.0292 (3)
H2 0.0600 0.3829 0.1967 0.035*
C3 −0.07919 (17) 0.35656 (9) 0.11468 (6) 0.0325 (3)
H3 −0.1269 0.4119 0.1083 0.039*
C4 −0.12216 (18) 0.29404 (9) 0.07151 (6) 0.0366 (3)
H4 −0.2016 0.3057 0.0363 0.044*
C5 −0.04798 (19) 0.21408 (9) 0.08019 (6) 0.0382 (3)
H5 −0.0757 0.1711 0.0504 0.046*
C6 0.06600 (18) 0.19648 (8) 0.13184 (6) 0.0322 (3)
H6 0.1183 0.1421 0.1371 0.039*
C7 0.30685 (15) 0.29182 (8) 0.27108 (5) 0.0241 (3)
C8 0.39641 (15) 0.23910 (8) 0.31557 (5) 0.0251 (3)
C9 0.35066 (16) 0.15415 (8) 0.29763 (6) 0.0278 (3)
C10 0.4086 (2) 0.07325 (9) 0.32887 (7) 0.0377 (3)
H10A 0.3465 0.0253 0.3079 0.057*
H10B 0.3866 0.0753 0.3709 0.057*
H10C 0.5309 0.0659 0.3284 0.057*
C11 0.41803 (16) 0.40912 (8) 0.31815 (5) 0.0260 (3)
C12 0.50810 (15) 0.35545 (8) 0.36559 (5) 0.0253 (3)
C13 0.61270 (16) 0.39176 (8) 0.41964 (5) 0.0263 (3)
C14 0.80754 (19) 0.38977 (9) 0.50567 (6) 0.0366 (3)
H14A 0.9268 0.3854 0.4980 0.044*
H14B 0.8018 0.3736 0.5482 0.044*
C15 0.73523 (19) 0.47864 (9) 0.49128 (6) 0.0380 (3)
H15A 0.6658 0.4970 0.5223 0.046*
H15B 0.8283 0.5203 0.4901 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0278 (5) 0.0214 (5) 0.0242 (5) −0.0011 (4) −0.0036 (4) −0.0001 (4)
N2 0.0326 (6) 0.0213 (5) 0.0288 (6) −0.0016 (4) −0.0037 (4) 0.0005 (4)
N3 0.0263 (5) 0.0237 (5) 0.0250 (5) −0.0011 (4) −0.0008 (4) −0.0008 (4)
N4 0.0269 (6) 0.0230 (5) 0.0256 (5) −0.0006 (4) −0.0019 (4) −0.0005 (4)
N5 0.0429 (7) 0.0222 (5) 0.0345 (6) 0.0006 (5) −0.0123 (5) −0.0005 (4)
N6 0.0385 (6) 0.0279 (6) 0.0329 (6) −0.0012 (5) −0.0082 (5) −0.0059 (5)
N7 0.0434 (7) 0.0270 (6) 0.0269 (6) −0.0027 (5) −0.0087 (5) −0.0004 (4)
C1 0.0244 (6) 0.0276 (6) 0.0233 (6) −0.0040 (5) −0.0007 (5) 0.0017 (5)
C2 0.0300 (7) 0.0289 (7) 0.0269 (6) 0.0004 (5) −0.0014 (5) −0.0016 (5)
C3 0.0319 (7) 0.0319 (7) 0.0315 (7) 0.0023 (5) −0.0024 (6) 0.0031 (5)
C4 0.0370 (7) 0.0396 (8) 0.0289 (7) −0.0038 (6) −0.0095 (6) 0.0032 (6)
C5 0.0465 (8) 0.0337 (7) 0.0301 (7) −0.0065 (6) −0.0088 (6) −0.0033 (6)
C6 0.0387 (7) 0.0251 (6) 0.0300 (7) −0.0030 (5) −0.0035 (6) −0.0002 (5)
C7 0.0232 (6) 0.0249 (6) 0.0233 (6) −0.0013 (5) 0.0009 (5) −0.0011 (5)
C8 0.0260 (6) 0.0233 (6) 0.0245 (6) 0.0000 (5) −0.0010 (5) 0.0002 (5)
C9 0.0300 (7) 0.0246 (6) 0.0270 (6) −0.0013 (5) −0.0018 (5) −0.0002 (5)
C10 0.0463 (8) 0.0254 (7) 0.0364 (7) −0.0021 (6) −0.0108 (6) 0.0029 (5)
C11 0.0261 (6) 0.0244 (6) 0.0262 (6) 0.0006 (5) −0.0004 (5) −0.0016 (5)
C12 0.0251 (6) 0.0243 (6) 0.0253 (6) −0.0011 (5) 0.0005 (5) −0.0016 (5)
C13 0.0259 (6) 0.0268 (6) 0.0252 (6) −0.0011 (5) 0.0007 (5) −0.0008 (5)
C14 0.0408 (8) 0.0371 (7) 0.0280 (7) −0.0054 (6) −0.0075 (6) −0.0028 (6)
C15 0.0398 (8) 0.0359 (7) 0.0339 (7) −0.0033 (6) −0.0089 (6) −0.0089 (6)

Geometric parameters (Å, º)

N1—C7 1.3638 (15) C3—C4 1.3826 (19)
N1—N2 1.3978 (14) C3—H3 0.9500
N1—C1 1.4161 (16) C4—C5 1.389 (2)
N2—C9 1.3158 (17) C4—H4 0.9500
N3—C12 1.3241 (16) C5—C6 1.3836 (19)
N3—C8 1.3435 (16) C5—H5 0.9500
N4—C7 1.3365 (16) C6—H6 0.9500
N4—C11 1.3401 (16) C7—C8 1.4028 (17)
N5—C11 1.3404 (16) C8—C9 1.4246 (17)
N5—H5A 0.9100 C9—C10 1.4891 (18)
N5—H5B 0.9099 C10—H10A 0.9800
N6—C13 1.2902 (17) C10—H10B 0.9800
N6—C15 1.4755 (17) C10—H10C 0.9800
N7—C13 1.3732 (16) C11—C12 1.4554 (17)
N7—C14 1.4620 (17) C12—C13 1.4741 (16)
N7—H7A 0.9099 C14—C15 1.525 (2)
C1—C2 1.3904 (18) C14—H14A 0.9900
C1—C6 1.3916 (18) C14—H14B 0.9900
C2—C3 1.3829 (18) C15—H15A 0.9900
C2—H2 0.9500 C15—H15B 0.9900
C7—N1—N2 110.30 (10) N3—C8—C7 121.67 (11)
C7—N1—C1 130.20 (10) N3—C8—C9 132.50 (11)
N2—N1—C1 119.48 (10) C7—C8—C9 105.83 (11)
C9—N2—N1 106.98 (10) N2—C9—C8 110.29 (11)
C12—N3—C8 115.30 (10) N2—C9—C10 121.41 (11)
C7—N4—C11 113.36 (10) C8—C9—C10 128.29 (11)
C11—N5—H5A 116.9 C9—C10—H10A 109.5
C11—N5—H5B 122.3 C9—C10—H10B 109.5
H5A—N5—H5B 120.8 H10A—C10—H10B 109.5
C13—N6—C15 106.19 (11) C9—C10—H10C 109.5
C13—N7—C14 107.03 (11) H10A—C10—H10C 109.5
C13—N7—H7A 118.0 H10B—C10—H10C 109.5
C14—N7—H7A 120.9 N4—C11—N5 117.98 (11)
C2—C1—C6 120.12 (12) N4—C11—C12 122.21 (11)
C2—C1—N1 120.56 (11) N5—C11—C12 119.81 (11)
C6—C1—N1 119.31 (11) N3—C12—C11 122.30 (11)
C3—C2—C1 119.46 (12) N3—C12—C13 115.85 (11)
C3—C2—H2 120.3 C11—C12—C13 121.83 (11)
C1—C2—H2 120.3 N6—C13—N7 116.00 (11)
C4—C3—C2 120.89 (13) N6—C13—C12 124.83 (11)
C4—C3—H3 119.6 N7—C13—C12 119.08 (11)
C2—C3—H3 119.6 N7—C14—C15 101.34 (10)
C3—C4—C5 119.33 (12) N7—C14—H14A 111.5
C3—C4—H4 120.3 C15—C14—H14A 111.5
C5—C4—H4 120.3 N7—C14—H14B 111.5
C6—C5—C4 120.54 (13) C15—C14—H14B 111.5
C6—C5—H5 119.7 H14A—C14—H14B 109.3
C4—C5—H5 119.7 N6—C15—C14 105.85 (10)
C5—C6—C1 119.60 (13) N6—C15—H15A 110.6
C5—C6—H6 120.2 C14—C15—H15A 110.6
C1—C6—H6 120.2 N6—C15—H15B 110.6
N4—C7—N1 128.29 (11) C14—C15—H15B 110.6
N4—C7—C8 125.12 (11) H15A—C15—H15B 108.7
N1—C7—C8 106.59 (10)
C7—N1—N2—C9 0.15 (14) N1—N2—C9—C8 −0.06 (15)
C1—N1—N2—C9 179.34 (11) N1—N2—C9—C10 179.61 (12)
C7—N1—C1—C2 −20.6 (2) N3—C8—C9—N2 178.77 (13)
N2—N1—C1—C2 160.36 (11) C7—C8—C9—N2 −0.05 (15)
C7—N1—C1—C6 159.58 (12) N3—C8—C9—C10 −0.9 (2)
N2—N1—C1—C6 −19.42 (17) C7—C8—C9—C10 −179.69 (14)
C6—C1—C2—C3 1.55 (19) C7—N4—C11—N5 179.53 (11)
N1—C1—C2—C3 −178.23 (11) C7—N4—C11—C12 −0.94 (17)
C1—C2—C3—C4 0.8 (2) C8—N3—C12—C11 −1.44 (17)
C2—C3—C4—C5 −2.0 (2) C8—N3—C12—C13 177.08 (10)
C3—C4—C5—C6 0.9 (2) N4—C11—C12—N3 2.23 (19)
C4—C5—C6—C1 1.4 (2) N5—C11—C12—N3 −178.24 (12)
C2—C1—C6—C5 −2.6 (2) N4—C11—C12—C13 −176.20 (11)
N1—C1—C6—C5 177.17 (12) N5—C11—C12—C13 3.32 (18)
C11—N4—C7—N1 179.70 (12) C15—N6—C13—N7 0.00 (16)
C11—N4—C7—C8 −0.87 (18) C15—N6—C13—C12 176.46 (12)
N2—N1—C7—N4 179.34 (12) C14—N7—C13—N6 −12.26 (16)
C1—N1—C7—N4 0.3 (2) C14—N7—C13—C12 171.07 (11)
N2—N1—C7—C8 −0.18 (13) N3—C12—C13—N6 −175.55 (12)
C1—N1—C7—C8 −179.25 (12) C11—C12—C13—N6 3.0 (2)
C12—N3—C8—C7 −0.33 (17) N3—C12—C13—N7 0.80 (17)
C12—N3—C8—C9 −178.99 (13) C11—C12—C13—N7 179.33 (11)
N4—C7—C8—N3 1.63 (19) C13—N7—C14—C15 17.78 (15)
N1—C7—C8—N3 −178.84 (11) C13—N6—C15—C14 11.67 (16)
N4—C7—C8—C9 −179.40 (12) N7—C14—C15—N6 −17.76 (15)
N1—C7—C8—C9 0.14 (13)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···N5i 0.95 2.56 3.3483 (17) 140
N5—H5B···N2ii 0.91 2.31 3.1702 (15) 158
N5—H5A···N6 0.91 1.97 2.7111 (15) 138

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5415).

References

  1. Brandenburg, K. & Putz, H. (2012). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2014). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  3. El-Emary, T. I. (2006). J. Chin. Chem. Soc. 53, 391–401.
  4. El-Emary, T. I., El-Dean, A. M. K. & El-Kashef, H. S. (1998). Farmaco, 53, 383–388.
  5. El-Emary, T. I. & El-Kashef, H. (2013). Eur. J. Med. Chem. 62, 478–485. [DOI] [PubMed]
  6. El-Kashef, H. S., El-Emary, T. I., Gasquet, M., Timon-David, P., Maldonado, J. & Vanelle, P. (2000). Pharmazie, 55, 572–576. [DOI] [PubMed]
  7. Rangnekar, D. W. (1990). J. Chem. Technol. Biotechnol. 49, 311–320.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681402354X/hg5415sup1.cif

e-70-o1212-sup1.cif (631.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681402354X/hg5415Isup2.hkl

e-70-o1212-Isup2.hkl (147.7KB, hkl)

Supporting information file. DOI: 10.1107/S160053681402354X/hg5415Isup3.cml

. DOI: 10.1107/S160053681402354X/hg5415fig1.tif

The title mol­ecule with numbering scheme and 50% probability ellipsoids. The intra­molecular hydrogen bond is shown as a blue dotted line.

. DOI: 10.1107/S160053681402354X/hg5415fig2.tif

Plan view of the chain showing N—H⋯N and C—H⋯N hydrogen bonds as blue and black dotted lines, respectively.

. DOI: 10.1107/S160053681402354X/hg5415fig3.tif

Elevation view of two chains showing the π-π inter­actions as green dotted lines.

a . DOI: 10.1107/S160053681402354X/hg5415fig4.tif

Packing viewed down the a axis.

CCDC reference: 1031105

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES