Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 24;70(Pt 11):415–417. doi: 10.1107/S1600536814023216

Crystal structure of (2E)-N-methyl-2-(2-oxo-1,2-di­hydroacenaphthylen-1-ylidene)hydrazinecarbo­thioamide

G Vimala a, J Govindaraj b, J Haribabu c, R Karvembu c, A SubbiahPandi a,c,*
PMCID: PMC4257277  PMID: 25484761

In the title compound, the acenapthylene ring system and the hydrazinecarbo­thio­amide unit (=N—NH—C=S—NH–) are essentially coplanar, making a dihedral angle of 1.59 (9)°. The mol­ecular conformation is stabilized by two weak intra­molecular hydrogen bonds (N—H⋯O and N—H⋯N), which generate S(6) and S(5) ring motifs.

Keywords: crystal structure, ace­naphthyl­ene, hydrazinecarbo­thio­amide, thio­semicarbazones, hydrogen bonding, C—H⋯π inter­actions

Abstract

In the title compound, C14H11N3OS, the ace­naphthyl­ene ring system and hydrazinecarbo­thio­amide unit (=N—NH—C=S—NH–) are essentially coplanar [with maximum deviations from their mean planes of −0.009 (2) and 0.033 (2) Å, respectively], and make a dihedral angle of 1.59 (9)°. The mol­ecular conformation is stabilized by two weak intra­molecular hydrogen bonds (N—H⋯O and N—H⋯N), which generate S(6) and S(5) ring motifs. In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds, forming chains along [010]. The chains are linked via pairs of C—H⋯O hydrogen bonds, enclosing R 2 2(10) ring motifs, and C—H⋯π inter­actions, forming a three-dimensional framework. The absolute structure of the title compound was determined by resonant scattering.

Chemical context  

The design and synthesis of thio­semicarbazones are of considerable inter­est because of their versatile chemistry and various biological activities, such as anti­tumor, anti­bacterial, anti­viral, anti­amoebic and anti­malarial (Kelly et al., 1996). They comprise an intriguing class of chelating mol­ecules, which possess a wide range of beneficial medicinal properties (Prabhakaran et al. 2008). Thio­semicarbazones are a versatile class of ligands that have been studied for their biological activity (Chellan et al., 2010), their inter­esting binding motifs (Lobana et al., 2009) and their use as ligands in catalysis (Xie et al., 2010). In view of their biological importance, the crystal structure of the title compound has been determined and the results are presented herein.graphic file with name e-70-00415-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The atoms of both the ace­naphthyl­ene ring system and the =N—NH—C=S—NH– segment are essentially coplanar, the maximum deviations from their mean planes being −0.009 (2) and 0.033 (2) Å for atoms C12 and C14, respectively. The dihedral angle between the benzene and cyclo­pentane rings of the acenapthalene unit is 1.59 (9)°. The mol­ecular structure is stabilized by N—H⋯O and N—H⋯N hydrogen bonds, forming S(6) and S(5) ring motifs, respectively (Table 1 and Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Table 1. Hydrogen-bond geometry (, ).

Cg is the centroid of ring C1/C6C10.

DHA DH HA D A DHA
N2H2O1 0.86 2.03 2.7178(19) 136
N3H3N1 0.86 2.26 2.6437(19) 107
N3H3S1i 0.86 2.64 3.4407(15) 156
C4H4O1ii 0.93 2.47 3.246(2) 141
C2H2A Cg iii 0.93 2.76 3.502(2) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Supra­molecular features  

In the crystal, mol­ecules are linked by N—H⋯S hydrogen bonds (Table 1 and Fig. 2), forming chains along [010]. The chains are linked via pairs of C—H⋯O hydrogen bonds, enclosing Inline graphic(10) ring motifs, and C—H⋯π inter­actions, forming a three-dimensional framework (Table 1 and Fig. 2).

Figure 2.

Figure 2

The crystal packing of the title compound viewed along the a axis. Hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Database survey  

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) for the substructure 2-(imino)­ace­naphthylen-1(2H)-one gave 13 hits, including that of the ethyl analogue of the title compound, ace­naphthyl­ene-1,2-dione 4-ethyl­thio­semicarbazone (GUR­HAD; Pascu et al., 2010). The two mol­ecules differ in the dihedral angle between the mean planes of the ace­naphthyl­ene ring system and hydrazinecarbo­thio­amide unit (=N—NH—C=S—NH–) which is 1.59 (9)° in the title compound but 9.14 (6)° in the ethyl analogue (GURHAD; Pascu et al., 2010). In the crystals of both compounds, mol­ecules are linked via N—H⋯S hydrogen bonds, forming chains along [010].

Synthesis and crystallization  

An ethano­lic solution of N-methyl­hydrazinecarbo­thio­amide (0.01 mol) was added to an ethano­lic solution (50 ml) containing ace­naphthyl­ene-1,2-dione (0.01 mol). The mixture was refluxed for 2 h during which time a yellow precipitate separated out. The reaction mixture was then cooled to room temperature and the precipitate was filtered off. It was then washed with ethanol and dried under vacuum. The yield of the isolated product was 89%. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms were fixed geom­etrically and allowed to ride on their parent atoms: N—H = 0.86 and C—H = 0.93–0.97 Å and with U iso(H) = 1.5U eq(C) for methyl H atoms and = 1.2U eq(C) for other H atoms. The absolute structure of the title compound was determined by resonant scattering, with a Flack parameter of 0.02 (8).

Table 2. Experimental details.

Crystal data
Chemical formula C14H11N3OS
M r 269.33
Crystal system, space group Orthorhombic, P212121
Temperature (K) 293
a, b, c () 6.1110(6), 10.0547(11), 21.497(2)
V (3) 1320.8(2)
Z 4
Radiation type Mo K
(mm1) 0.24
Crystal size (mm) 0.30 0.25 0.20
 
Data collection
Diffractometer Bruker SMART APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.932, 0.954
No. of measured, independent and observed [I > 2(I)] reflections 23135, 3941, 2929
R int 0.030
(sin /)max (1) 0.708
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.035, 0.100, 0.99
No. of reflections 3941
No. of parameters 173
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.19, 0.21
Absolute structure Flack (1983); Friedel pairs
Absolute structure parameter 0.02(8)

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814023216/su2796sup1.cif

e-70-00415-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023216/su2796Isup2.hkl

e-70-00415-Isup2.hkl (181.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023216/su2796Isup3.cml

CCDC reference: 1030348

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Babu Varghese, SAIF, IIT, Chennai, India for the data collection.

supplementary crystallographic information

Crystal data

C14H11N3OS Z = 4
Mr = 269.33 F(000) = 560
Orthorhombic, P212121 Dx = 1.354 Mg m3
Hall symbol: P 2ac 2ab Mo Kα radiation, λ = 0.71073 Å
a = 6.1110 (6) Å µ = 0.24 mm1
b = 10.0547 (11) Å T = 293 K
c = 21.497 (2) Å Block, yellow
V = 1320.8 (2) Å3 0.30 × 0.25 × 0.20 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3941 independent reflections
Radiation source: fine-focus sealed tube 2929 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
ω and φ scans θmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −8→8
Tmin = 0.932, Tmax = 0.954 k = −13→14
23135 measured reflections l = −29→29

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0532P)2 + 0.2048P] where P = (Fo2 + 2Fc2)/3
S = 0.99 (Δ/σ)max = 0.001
3941 reflections Δρmax = 0.19 e Å3
173 parameters Δρmin = −0.21 e Å3
0 restraints Absolute structure: Flack (1983); Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.02 (8)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.25692 (8) 0.16757 (4) 0.21243 (2) 0.04960 (13)
N1 0.7542 (2) −0.05741 (12) 0.17414 (6) 0.0365 (3)
C6 1.2232 (3) −0.09719 (15) 0.07905 (7) 0.0371 (3)
O1 0.8428 (2) 0.16301 (14) 0.08374 (6) 0.0550 (4)
N2 0.6084 (2) 0.04380 (14) 0.17558 (7) 0.0416 (3)
H2 0.6259 0.1109 0.1513 0.050*
C7 1.0847 (3) −0.14650 (15) 0.12619 (7) 0.0342 (3)
C13 0.4342 (3) 0.04074 (16) 0.21510 (8) 0.0380 (3)
N3 0.4208 (2) −0.06205 (15) 0.25248 (7) 0.0445 (3)
H3 0.5225 −0.1210 0.2506 0.053*
C12 0.9103 (3) −0.04864 (16) 0.13442 (7) 0.0350 (3)
C5 1.1533 (3) 0.02565 (17) 0.05510 (8) 0.0425 (4)
C11 0.9539 (3) 0.06370 (17) 0.08912 (8) 0.0403 (4)
C8 1.1346 (3) −0.26514 (17) 0.15336 (8) 0.0416 (4)
H8 1.0445 −0.3015 0.1838 0.050*
C9 1.3268 (3) −0.3313 (2) 0.13404 (9) 0.0492 (4)
H9 1.3632 −0.4114 0.1530 0.059*
C14 0.2450 (4) −0.0824 (2) 0.29673 (10) 0.0634 (5)
H14A 0.2421 −0.0099 0.3258 0.095*
H14B 0.2686 −0.1642 0.3187 0.095*
H14C 0.1080 −0.0866 0.2750 0.095*
C1 1.4122 (3) −0.16161 (19) 0.05877 (8) 0.0435 (4)
C2 1.5292 (4) −0.0968 (2) 0.01114 (10) 0.0604 (6)
H2A 1.6559 −0.1356 −0.0045 0.072*
C4 1.2699 (4) 0.0860 (2) 0.00894 (9) 0.0578 (5)
H4 1.2252 0.1668 −0.0078 0.069*
C3 1.4596 (4) 0.0221 (2) −0.01250 (11) 0.0671 (6)
H3A 1.5408 0.0621 −0.0439 0.080*
C10 1.4618 (3) −0.2829 (2) 0.08867 (9) 0.0505 (5)
H10 1.5867 −0.3300 0.0775 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0421 (2) 0.0413 (2) 0.0654 (3) 0.0080 (2) 0.0033 (2) −0.01024 (19)
N1 0.0345 (6) 0.0331 (6) 0.0420 (7) 0.0008 (6) 0.0020 (7) −0.0007 (5)
C6 0.0373 (9) 0.0370 (8) 0.0369 (8) −0.0031 (7) −0.0004 (7) −0.0047 (6)
O1 0.0621 (8) 0.0423 (7) 0.0605 (8) 0.0123 (7) 0.0046 (7) 0.0140 (6)
N2 0.0397 (7) 0.0361 (7) 0.0488 (8) 0.0054 (6) 0.0055 (7) 0.0043 (6)
C7 0.0353 (8) 0.0338 (8) 0.0336 (7) 0.0004 (6) −0.0001 (6) −0.0013 (6)
C13 0.0337 (8) 0.0365 (8) 0.0438 (8) −0.0028 (6) 0.0001 (7) −0.0089 (7)
N3 0.0401 (8) 0.0406 (7) 0.0528 (8) 0.0015 (6) 0.0077 (7) −0.0009 (7)
C12 0.0356 (8) 0.0326 (7) 0.0368 (7) 0.0007 (6) −0.0014 (7) 0.0021 (6)
C5 0.0498 (10) 0.0395 (9) 0.0381 (8) −0.0029 (8) 0.0047 (8) −0.0009 (7)
C11 0.0436 (9) 0.0357 (8) 0.0415 (8) −0.0005 (7) −0.0003 (7) 0.0040 (7)
C8 0.0454 (10) 0.0386 (9) 0.0407 (9) 0.0029 (8) 0.0000 (8) 0.0019 (7)
C9 0.0523 (10) 0.0432 (9) 0.0521 (10) 0.0129 (9) −0.0088 (8) −0.0013 (8)
C14 0.0583 (12) 0.0610 (12) 0.0707 (13) −0.0037 (11) 0.0226 (12) 0.0021 (9)
C1 0.0388 (9) 0.0476 (9) 0.0441 (9) −0.0044 (8) 0.0042 (7) −0.0129 (8)
C2 0.0513 (12) 0.0702 (14) 0.0596 (12) −0.0090 (10) 0.0196 (10) −0.0180 (10)
C4 0.0742 (14) 0.0496 (10) 0.0495 (10) −0.0103 (11) 0.0164 (11) 0.0068 (8)
C3 0.0747 (16) 0.0684 (15) 0.0581 (12) −0.0179 (12) 0.0285 (12) −0.0009 (10)
C10 0.0397 (10) 0.0547 (11) 0.0572 (11) 0.0100 (8) −0.0044 (8) −0.0157 (9)

Geometric parameters (Å, º)

S1—C13 1.6744 (17) C5—C11 1.472 (3)
N1—C12 1.283 (2) C8—C9 1.412 (2)
N1—N2 1.3528 (19) C8—H8 0.9300
C6—C1 1.394 (2) C9—C10 1.367 (3)
C6—C5 1.405 (2) C9—H9 0.9300
C6—C7 1.410 (2) C14—H14A 0.9600
O1—C11 1.213 (2) C14—H14B 0.9600
N2—C13 1.362 (2) C14—H14C 0.9600
N2—H2 0.8600 C1—C2 1.409 (3)
C7—C8 1.363 (2) C1—C10 1.411 (3)
C7—C12 1.461 (2) C2—C3 1.367 (3)
C13—N3 1.312 (2) C2—H2A 0.9300
N3—C14 1.449 (2) C4—C3 1.403 (3)
N3—H3 0.8600 C4—H4 0.9300
C12—C11 1.515 (2) C3—H3A 0.9300
C5—C4 1.364 (3) C10—H10 0.9300
C12—N1—N2 116.93 (13) C7—C8—H8 120.9
C1—C6—C5 123.08 (16) C9—C8—H8 120.9
C1—C6—C7 123.95 (16) C10—C9—C8 122.95 (18)
C5—C6—C7 112.96 (15) C10—C9—H9 118.5
N1—N2—C13 120.78 (14) C8—C9—H9 118.5
N1—N2—H2 119.6 N3—C14—H14A 109.5
C13—N2—H2 119.6 N3—C14—H14B 109.5
C8—C7—C6 118.78 (16) H14A—C14—H14B 109.5
C8—C7—C12 134.48 (16) N3—C14—H14C 109.5
C6—C7—C12 106.73 (13) H14A—C14—H14C 109.5
N3—C13—N2 116.67 (15) H14B—C14—H14C 109.5
N3—C13—S1 125.49 (13) C6—C1—C2 115.65 (19)
N2—C13—S1 117.84 (13) C6—C1—C10 115.92 (16)
C13—N3—C14 124.05 (16) C2—C1—C10 128.43 (18)
C13—N3—H3 118.0 C3—C2—C1 121.1 (2)
C14—N3—H3 118.0 C3—C2—H2A 119.4
N1—C12—C7 125.20 (14) C1—C2—H2A 119.4
N1—C12—C11 127.56 (15) C5—C4—C3 117.9 (2)
C7—C12—C11 107.22 (14) C5—C4—H4 121.1
C4—C5—C6 119.92 (18) C3—C4—H4 121.1
C4—C5—C11 132.73 (18) C2—C3—C4 122.4 (2)
C6—C5—C11 107.34 (15) C2—C3—H3A 118.8
O1—C11—C5 129.05 (16) C4—C3—H3A 118.8
O1—C11—C12 125.21 (16) C9—C10—C1 120.19 (17)
C5—C11—C12 105.74 (14) C9—C10—H10 119.9
C7—C8—C9 118.19 (17) C1—C10—H10 119.9
C12—N1—N2—C13 178.14 (14) C6—C5—C11—C12 −0.95 (18)
C1—C6—C7—C8 −1.1 (2) N1—C12—C11—O1 −0.7 (3)
C5—C6—C7—C8 −179.95 (15) C7—C12—C11—O1 −179.08 (17)
C1—C6—C7—C12 178.56 (15) N1—C12—C11—C5 179.18 (16)
C5—C6—C7—C12 −0.34 (19) C7—C12—C11—C5 0.76 (18)
N1—N2—C13—N3 2.3 (2) C6—C7—C8—C9 1.7 (2)
N1—N2—C13—S1 −178.08 (12) C12—C7—C8—C9 −177.74 (17)
N2—C13—N3—C14 −179.01 (17) C7—C8—C9—C10 −1.3 (3)
S1—C13—N3—C14 1.4 (3) C5—C6—C1—C2 −1.3 (2)
N2—N1—C12—C7 179.26 (15) C7—C6—C1—C2 179.96 (16)
N2—N1—C12—C11 1.1 (2) C5—C6—C1—C10 178.58 (16)
C8—C7—C12—N1 0.8 (3) C7—C6—C1—C10 −0.2 (2)
C6—C7—C12—N1 −178.75 (15) C6—C1—C2—C3 0.6 (3)
C8—C7—C12—C11 179.24 (18) C10—C1—C2—C3 −179.2 (2)
C6—C7—C12—C11 −0.29 (17) C6—C5—C4—C3 −0.7 (3)
C1—C6—C5—C4 1.4 (3) C11—C5—C4—C3 178.57 (19)
C7—C6—C5—C4 −179.72 (17) C1—C2—C3—C4 0.0 (4)
C1—C6—C5—C11 −178.08 (15) C5—C4—C3—C2 0.1 (3)
C7—C6—C5—C11 0.83 (19) C8—C9—C10—C1 0.0 (3)
C4—C5—C11—O1 −0.5 (4) C6—C1—C10—C9 0.7 (2)
C6—C5—C11—O1 178.88 (19) C2—C1—C10—C9 −179.5 (2)
C4—C5—C11—C12 179.7 (2)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of ring C1/C6–C10.

D—H···A D—H H···A D···A D—H···A
N2—H2···O1 0.86 2.03 2.7178 (19) 136
N3—H3···N1 0.86 2.26 2.6437 (19) 107
N3—H3···S1i 0.86 2.64 3.4407 (15) 156
C4—H4···O1ii 0.93 2.47 3.246 (2) 141
C2—H2A···Cgiii 0.93 2.76 3.502 (2) 137

Symmetry codes: (i) −x+1, y−1/2, −z+1/2; (ii) x+1/2, −y+1/2, −z; (iii) x+1/2, −y−1/2, −z.

References

  1. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chellan, P., Shunmoogam-Gounden, N., Hendricks, D. T., Gut, J., Rosenthal, P. J., Lategan, C., Smith, P. J., Chibale, K. & Smith, G. S. (2010). Eur. J. Inorg. Chem. pp, 3520–3528.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Kelly, P. F., Slawin, A. M. Z. & Soriano-Rama, A. (1996). J. Chem. Soc. Dalton Trans. pp. 53–59.
  7. Lobana, T. S., Sharma, R., Bawa, G. & Khanna, S. (2009). Coord. Chem. Rev. 253, 977–1055.
  8. Pascu, S. I., Waghorn, P. A., Kennedy, B. W. C., Arrowsmith, R. L., Bayly, S. R., Dilworth, J. R., Christlieb, M., Tyrrell, R. M., Zhong, J., Kowalczyk, R. M., Collison, D., Aley, P. K., Churchill, G. C. & Aigbirhio, F. I. (2010). Chem. Asian J. 5, 506–519. [DOI] [PubMed]
  9. Prabhakaran, R., Huang, R., Renukadevi, S. V., Karvembu, R., Zeller, M. & Natarajan, K. (2008). Inorg. Chim. Acta, 361, 2547–2552.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Xie, G., Chellan, P., Mao, J., Chibale, K. & Smith, G. S. (2010). Adv. Synth. Catal. 352, 1641–1647.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814023216/su2796sup1.cif

e-70-00415-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023216/su2796Isup2.hkl

e-70-00415-Isup2.hkl (181.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023216/su2796Isup3.cml

CCDC reference: 1030348

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES