Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 24;70(Pt 11):370–372. doi: 10.1107/S1600536814022296

Crystal structure of dimethyl 3,3′-[(3-nitro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) ethanol monosolvate

Hong-Shun Sun a,*, Yu-Long Li a, Hong Jiang a, Ning Xu a, Hong Xu a
PMCID: PMC4257280  PMID: 25484748

In the title compound, the planes of the two indole ring systems are approximately perpendicular to each other, with a dihedral angle of 89.3 (5)°.

Keywords: indole, crystal structure, MRI contrast agent

Abstract

In the title compound, C27H21N3O6·C2H5OH, the indole ring systems are approximately perpendicular to each other, with a dihedral angle of 89.3 (5)°; the plane of the benzene ring is oriented with respect to the indole ring systems at 49.9 (5) and 73.4 (3)°. In the crystal, mol­ecules are linked by N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯π inter­actions into a three-dimensional supra­molecular architecture. A void of 33.0 (7) Å3 is observed in the crystal structure. The solvent ethanol molecule acts as a donor, forming an O—H⋯O hydrogen bond, reinforcing the framework structure.

Chemical context  

Indole derivatives are found abundantly in a variety of natural plants and exhibit various physiological properties (Poter et al., 1977; Sundberg, 1996). Among them, bis-indolymethane derivatives are found to be potentially bioactive compounds (Chang et al., 1999; Ge et al., 1999). In recent years, the synthesis and application of bis-indolymethane derivatives have been widely studied. The title compound is one of the bis-indolymethane derivatives as a precursor for MRI contrast agents (Ni, 2008). We report herein the synthesis and crystal structure of the title compound.graphic file with name e-70-00370-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The two indole ring systems are nearly perpendicular to each other [dihedral angle = 89.3 (5)°] while the benzene ring (C1–C6) is twisted to the N1/C8–C15 and N2/C18–C25 indole ring systems with dihedral angles of 49.9 (5) and 73.4 (3)°, respectively. The carboxyl groups are approximately coplanar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean plane of attached indole ring system are 10.0 (3) and 4.0 (4)°. The nitro group is also nearly coplanar with the attached benzene ring, the dihedral angle being 7.7 (7)°. A void of 33.0 (7) Å3 is observed in the crystal structure. The solvent ethanol molecule acts as a donor, forming an O—H⋯O hydrogen bond, reinforcing the framework structure.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule. showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. The dashed line indicates the hydrogen bond between the main molecule and the ethanol solvent molecule.

Supra­molecular features  

In the crystal, the organic mol­ecules and ethanol solvent mol­ecules are linked by classic N—H⋯O and O—H⋯O hydrogen bonds and weak C—H⋯π inter­actions involved the benzene rings, forming the three-dimensional supra­molecular architecture (Table 1).

Table 1. Hydrogen-bond geometry (, ).

Cg3, Cg4 and Cg5 are the centroids of the C1-ring, C10-ring and C20-ring, respectively.

DHA DH HA D A DHA
N2H2AO7i 0.86 2.17 2.924(3) 146
N3H3AO4ii 0.86 2.02 2.861(4) 166
O7H7BO5 0.82 2.13 2.892(4) 154
C10H10A Cg3 0.93 2.87 3.633(4) 140
C11H11A Cg5iii 0.93 2.76 3.634(4) 156
C17H17B Cg4i 0.96 2.89 3.813(5) 163
C27H27B Cg5ii 0.96 2.75 3.496(4) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

Several similar structures have been reported previously, i.e. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012) and dimethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles are 82.0 (5) and 84.5 (5)°, respectively.

Synthesis and crystallization  

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 3-nitro­benzaldehyde (7.6 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling the white product was filtered off and washed thoroughly with methanol. The reaction can be followed by thin-layer chromatography (CHCl3–hexane = 1:1 v/v). The yield was 90%. Crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of an ethanol solution.

Refinement  

H atoms were positioned geometrically, with N—H = 0.86Å and O—H = 0.82Å, and C—H = 0.93, 0.96, 0.97 or 0.98 Å for aromatic, methyl, methene and methine H atom, respectively, and constrained to ride on their parent atoms, with U iso(H) = xU eq(C,N,O), where x = 1.5 for methyl and hy­droxy, and x = 1.2 for all other H atoms.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814022296/xu5823sup1.cif

e-70-00370-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814022296/xu5823Isup2.hkl

e-70-00370-Isup2.hkl (246.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814022296/xu5823Isup3.cml

CCDC reference: 1028397

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 2. Experimental details.

Crystal data
Chemical formula C27H21N3O6C2H6O
M r 529.54
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c () 11.074(2), 11.585(2), 12.898(3)
, , () 114.09(3), 106.68(3), 99.20(3)
V (3) 1372.5(5)
Z 2
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.30 0.20 0.10
 
Data collection
Diffractometer EnrafNonius CAD-4
Absorption correction scan (North et al., 1968)
T min, T max 0.973, 0.991
No. of measured, independent and observed [I > 2(I)] reflections 5313, 5032, 3254
R int 0.029
(sin /)max (1) 0.604
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.059, 0.166, 1.04
No. of reflections 5032
No. of parameters 352
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.19, 0.26

Computer programs: CAD-4 EXPRESS (EnrafNonius, 1994), XCAD4 (Harms Wocadlo, 1995) and SHELXTL (Sheldrick, 2008).

Acknowledgments

Diffraction data were collected in the Center of Testing and Analysis, Nanjing University. The work was supported by the Funding of Nanjing College of Chemical Technology, China (NHKY-2013–02).

supplementary crystallographic information

Crystal data

C27H21N3O6·C2H6O Z = 2
Mr = 529.54 F(000) = 556
Triclinic, P1 Dx = 1.281 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 11.074 (2) Å Cell parameters from 25 reflections
b = 11.585 (2) Å θ = 9–13°
c = 12.898 (3) Å µ = 0.09 mm1
α = 114.09 (3)° T = 293 K
β = 106.68 (3)° Block, colorless
γ = 99.20 (3)° 0.30 × 0.20 × 0.10 mm
V = 1372.5 (5) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 3254 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.029
Graphite monochromator θmax = 25.4°, θmin = 1.9°
ω/2θ scans h = 0→13
Absorption correction: ψ scan (North et al., 1968) k = −13→13
Tmin = 0.973, Tmax = 0.991 l = −15→14
5313 measured reflections 3 standard reflections every 200 reflections
5032 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.4188P] where P = (Fo2 + 2Fc2)/3
5032 reflections (Δ/σ)max = 0.001
352 parameters Δρmax = 0.19 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.4712 (3) −0.2518 (3) 0.0074 (4) 0.0901 (11)
N2 1.1545 (2) 0.0075 (2) 0.4249 (2) 0.0438 (6)
H2A 1.2151 0.0123 0.4870 0.053*
N3 0.9859 (2) 0.4742 (2) 0.3448 (2) 0.0414 (5)
H3A 0.9740 0.5507 0.3650 0.050*
O1 0.4711 (3) −0.2634 (3) 0.0977 (4) 0.1266 (13)
O2 0.3872 (3) −0.3273 (3) −0.0959 (3) 0.1360 (14)
O3 1.1911 (2) 0.21184 (19) 0.64357 (18) 0.0599 (6)
O4 1.0053 (2) 0.25277 (18) 0.55999 (17) 0.0506 (5)
O5 0.71167 (19) 0.2865 (2) 0.36509 (19) 0.0548 (5)
O6 0.77081 (18) 0.49394 (18) 0.39092 (18) 0.0504 (5)
O7 0.6624 (2) 0.0902 (2) 0.4450 (2) 0.0733 (7)
H7B 0.7018 0.1489 0.4354 0.110*
C1 0.6788 (3) −0.0661 (3) 0.1405 (3) 0.0490 (7)
H1A 0.6817 −0.0846 0.2047 0.059*
C2 0.5754 (3) −0.1429 (3) 0.0248 (3) 0.0565 (8)
C3 0.5662 (3) −0.1189 (3) −0.0723 (3) 0.0616 (9)
H3B 0.4956 −0.1715 −0.1484 0.074*
C4 0.6637 (3) −0.0153 (3) −0.0543 (3) 0.0607 (9)
H4A 0.6603 0.0025 −0.1190 0.073*
C5 0.7674 (3) 0.0629 (3) 0.0598 (3) 0.0497 (7)
H5A 0.8323 0.1337 0.0710 0.060*
C6 0.7767 (3) 0.0382 (2) 0.1580 (2) 0.0395 (6)
C7 0.8906 (2) 0.1240 (2) 0.2847 (2) 0.0361 (6)
H7A 0.8495 0.1390 0.3451 0.043*
C8 0.9896 (2) 0.0532 (2) 0.3134 (2) 0.0354 (6)
C9 1.0194 (3) −0.0546 (2) 0.2304 (2) 0.0389 (6)
C10 0.9715 (3) −0.1346 (3) 0.1015 (3) 0.0484 (7)
H10A 0.9044 −0.1207 0.0497 0.058*
C11 1.0243 (3) −0.2330 (3) 0.0530 (3) 0.0598 (8)
H11A 0.9910 −0.2870 −0.0321 0.072*
C12 1.1276 (3) −0.2544 (3) 0.1288 (3) 0.0609 (9)
H12A 1.1624 −0.3211 0.0930 0.073*
C13 1.1778 (3) −0.1789 (3) 0.2542 (3) 0.0524 (8)
H13A 1.2462 −0.1931 0.3044 0.063*
C14 1.1231 (3) −0.0798 (3) 0.3043 (2) 0.0410 (6)
C15 1.0733 (3) 0.0872 (2) 0.4314 (2) 0.0390 (6)
C16 1.0840 (3) 0.1913 (3) 0.5490 (2) 0.0425 (7)
C17 1.2112 (4) 0.3165 (3) 0.7644 (3) 0.0695 (10)
H17A 1.2900 0.3234 0.8255 0.104*
H17B 1.1360 0.2952 0.7838 0.104*
H17C 1.2208 0.3999 0.7635 0.104*
C18 0.9553 (2) 0.2606 (2) 0.3046 (2) 0.0359 (6)
C19 1.0709 (3) 0.3062 (2) 0.2854 (2) 0.0378 (6)
C20 1.1640 (3) 0.2491 (3) 0.2473 (3) 0.0477 (7)
H20A 1.1577 0.1615 0.2292 0.057*
C21 1.2643 (3) 0.3253 (3) 0.2377 (3) 0.0624 (9)
H21A 1.3258 0.2880 0.2123 0.075*
C22 1.2763 (3) 0.4570 (3) 0.2648 (3) 0.0631 (9)
H22A 1.3456 0.5054 0.2570 0.076*
C23 1.1893 (3) 0.5166 (3) 0.3023 (3) 0.0529 (8)
H23A 1.1980 0.6047 0.3208 0.064*
C24 1.0863 (3) 0.4401 (3) 0.3120 (2) 0.0399 (6)
C25 0.9066 (2) 0.3671 (2) 0.3405 (2) 0.0366 (6)
C26 0.7876 (3) 0.3752 (3) 0.3664 (2) 0.0394 (6)
C27 0.6529 (3) 0.5128 (3) 0.4122 (3) 0.0663 (9)
H27A 0.6516 0.6011 0.4285 0.099*
H27B 0.6530 0.5013 0.4819 0.099*
H27C 0.5757 0.4485 0.3405 0.099*
C28 0.5250 (4) 0.0591 (4) 0.3849 (4) 0.0870 (12)
H28A 0.4800 −0.0202 0.3845 0.104*
H28B 0.5049 0.0384 0.2998 0.104*
C29 0.4715 (4) 0.1671 (5) 0.4421 (5) 0.1096 (17)
H29A 0.3772 0.1388 0.3969 0.164*
H29B 0.5131 0.2452 0.4404 0.164*
H29C 0.4894 0.1872 0.5260 0.164*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.062 (2) 0.059 (2) 0.101 (3) −0.0028 (16) 0.000 (2) 0.025 (2)
N2 0.0404 (13) 0.0425 (13) 0.0432 (14) 0.0130 (11) 0.0046 (10) 0.0235 (11)
N3 0.0425 (13) 0.0313 (11) 0.0503 (14) 0.0153 (10) 0.0173 (11) 0.0187 (10)
O1 0.096 (2) 0.107 (3) 0.129 (3) −0.0288 (19) 0.014 (2) 0.057 (2)
O2 0.102 (2) 0.087 (2) 0.109 (3) −0.0398 (19) −0.024 (2) 0.0179 (19)
O3 0.0643 (14) 0.0489 (12) 0.0396 (12) 0.0150 (10) −0.0031 (10) 0.0140 (10)
O4 0.0582 (13) 0.0395 (11) 0.0457 (12) 0.0168 (10) 0.0147 (10) 0.0163 (9)
O5 0.0454 (12) 0.0523 (12) 0.0729 (15) 0.0170 (10) 0.0255 (11) 0.0333 (11)
O6 0.0448 (11) 0.0443 (11) 0.0645 (13) 0.0227 (9) 0.0227 (10) 0.0243 (10)
O7 0.0597 (14) 0.0859 (17) 0.0859 (17) 0.0228 (13) 0.0164 (13) 0.0598 (15)
C1 0.0440 (16) 0.0369 (15) 0.0531 (18) 0.0118 (13) 0.0097 (14) 0.0166 (13)
C2 0.0388 (16) 0.0382 (16) 0.064 (2) 0.0084 (13) 0.0055 (15) 0.0110 (15)
C3 0.0479 (19) 0.054 (2) 0.0476 (19) 0.0224 (16) −0.0033 (15) 0.0054 (15)
C4 0.060 (2) 0.065 (2) 0.0404 (17) 0.0271 (18) 0.0054 (15) 0.0173 (15)
C5 0.0463 (17) 0.0507 (17) 0.0430 (17) 0.0149 (14) 0.0090 (14) 0.0203 (14)
C6 0.0372 (14) 0.0332 (14) 0.0385 (15) 0.0163 (12) 0.0081 (12) 0.0114 (12)
C7 0.0359 (14) 0.0326 (13) 0.0357 (14) 0.0115 (11) 0.0112 (11) 0.0142 (11)
C8 0.0331 (14) 0.0305 (13) 0.0385 (15) 0.0076 (11) 0.0090 (11) 0.0171 (11)
C9 0.0396 (15) 0.0355 (14) 0.0413 (15) 0.0124 (12) 0.0117 (12) 0.0207 (12)
C10 0.0544 (18) 0.0459 (16) 0.0425 (17) 0.0196 (14) 0.0143 (14) 0.0208 (14)
C11 0.077 (2) 0.0561 (19) 0.0492 (18) 0.0301 (18) 0.0282 (17) 0.0225 (15)
C12 0.073 (2) 0.0516 (18) 0.071 (2) 0.0364 (17) 0.0347 (19) 0.0298 (17)
C13 0.0521 (18) 0.0464 (17) 0.063 (2) 0.0234 (14) 0.0187 (16) 0.0296 (16)
C14 0.0419 (15) 0.0367 (14) 0.0438 (16) 0.0112 (12) 0.0134 (13) 0.0215 (13)
C15 0.0394 (15) 0.0315 (13) 0.0419 (15) 0.0086 (12) 0.0096 (12) 0.0189 (12)
C16 0.0462 (16) 0.0325 (14) 0.0395 (16) 0.0052 (13) 0.0062 (13) 0.0185 (12)
C17 0.086 (3) 0.0516 (19) 0.0377 (18) 0.0107 (18) −0.0004 (17) 0.0122 (15)
C18 0.0348 (14) 0.0337 (13) 0.0319 (14) 0.0104 (11) 0.0062 (11) 0.0141 (11)
C19 0.0365 (14) 0.0350 (14) 0.0348 (14) 0.0113 (12) 0.0090 (12) 0.0139 (12)
C20 0.0458 (17) 0.0403 (15) 0.0557 (18) 0.0156 (13) 0.0210 (14) 0.0205 (14)
C21 0.053 (2) 0.063 (2) 0.074 (2) 0.0243 (17) 0.0356 (18) 0.0269 (18)
C22 0.0520 (19) 0.056 (2) 0.083 (2) 0.0128 (16) 0.0345 (18) 0.0313 (18)
C23 0.0534 (18) 0.0423 (16) 0.065 (2) 0.0129 (15) 0.0245 (16) 0.0278 (15)
C24 0.0390 (15) 0.0374 (14) 0.0397 (15) 0.0115 (12) 0.0118 (12) 0.0179 (12)
C25 0.0358 (14) 0.0320 (13) 0.0357 (14) 0.0108 (11) 0.0088 (11) 0.0141 (11)
C26 0.0351 (14) 0.0378 (15) 0.0394 (15) 0.0115 (12) 0.0085 (12) 0.0174 (12)
C27 0.0509 (19) 0.071 (2) 0.085 (3) 0.0347 (17) 0.0318 (18) 0.035 (2)
C28 0.062 (2) 0.098 (3) 0.091 (3) 0.010 (2) 0.005 (2) 0.059 (3)
C29 0.070 (3) 0.117 (4) 0.187 (5) 0.039 (3) 0.061 (3) 0.103 (4)

Geometric parameters (Å, º)

N1—O2 1.218 (4) C10—C11 1.369 (4)
N1—O1 1.226 (5) C10—H10A 0.9300
N1—C2 1.459 (5) C11—C12 1.404 (4)
N2—C14 1.362 (3) C11—H11A 0.9300
N2—C15 1.383 (3) C12—C13 1.364 (4)
N2—H2A 0.8600 C12—H12A 0.9300
N3—C24 1.358 (3) C13—C14 1.395 (4)
N3—C25 1.372 (3) C13—H13A 0.9300
N3—H3A 0.8600 C15—C16 1.458 (4)
O3—C16 1.339 (3) C17—H17A 0.9600
O3—C17 1.456 (4) C17—H17B 0.9600
O4—C16 1.214 (3) C17—H17C 0.9600
O5—C26 1.211 (3) C18—C25 1.385 (3)
O6—C26 1.337 (3) C18—C19 1.433 (4)
O6—C27 1.441 (3) C19—C20 1.409 (4)
O7—C28 1.402 (4) C19—C24 1.414 (4)
O7—H7B 0.8200 C20—C21 1.372 (4)
C1—C6 1.380 (4) C20—H20A 0.9300
C1—C2 1.393 (4) C21—C22 1.393 (4)
C1—H1A 0.9300 C21—H21A 0.9300
C2—C3 1.370 (5) C22—C23 1.359 (4)
C3—C4 1.369 (5) C22—H22A 0.9300
C3—H3B 0.9300 C23—C24 1.397 (4)
C4—C5 1.384 (4) C23—H23A 0.9300
C4—H4A 0.9300 C25—C26 1.457 (4)
C5—C6 1.388 (4) C27—H27A 0.9600
C5—H5A 0.9300 C27—H27B 0.9600
C6—C7 1.529 (4) C27—H27C 0.9600
C7—C18 1.511 (3) C28—C29 1.482 (6)
C7—C8 1.521 (3) C28—H28A 0.9700
C7—H7A 0.9800 C28—H28B 0.9700
C8—C15 1.384 (3) C29—H29A 0.9600
C8—C9 1.435 (4) C29—H29B 0.9600
C9—C10 1.408 (4) C29—H29C 0.9600
C9—C14 1.420 (4)
O2—N1—O1 122.4 (4) N2—C15—C8 109.5 (2)
O2—N1—C2 118.9 (4) N2—C15—C16 121.9 (2)
O1—N1—C2 118.7 (3) C8—C15—C16 128.6 (2)
C14—N2—C15 109.2 (2) O4—C16—O3 123.8 (3)
C14—N2—H2A 125.4 O4—C16—C15 123.9 (2)
C15—N2—H2A 125.4 O3—C16—C15 112.2 (2)
C24—N3—C25 109.1 (2) O3—C17—H17A 109.5
C24—N3—H3A 125.4 O3—C17—H17B 109.5
C25—N3—H3A 125.4 H17A—C17—H17B 109.5
C16—O3—C17 115.9 (2) O3—C17—H17C 109.5
C26—O6—C27 117.0 (2) H17A—C17—H17C 109.5
C28—O7—H7B 109.5 H17B—C17—H17C 109.5
C6—C1—C2 118.6 (3) C25—C18—C19 105.9 (2)
C6—C1—H1A 120.7 C25—C18—C7 124.8 (2)
C2—C1—H1A 120.7 C19—C18—C7 129.2 (2)
C3—C2—C1 122.8 (3) C20—C19—C24 117.8 (2)
C3—C2—N1 118.8 (3) C20—C19—C18 135.2 (2)
C1—C2—N1 118.3 (3) C24—C19—C18 107.0 (2)
C4—C3—C2 118.2 (3) C21—C20—C19 118.7 (3)
C4—C3—H3B 120.9 C21—C20—H20A 120.6
C2—C3—H3B 120.9 C19—C20—H20A 120.6
C3—C4—C5 120.2 (3) C20—C21—C22 121.8 (3)
C3—C4—H4A 119.9 C20—C21—H21A 119.1
C5—C4—H4A 119.9 C22—C21—H21A 119.1
C4—C5—C6 121.5 (3) C23—C22—C21 121.6 (3)
C4—C5—H5A 119.2 C23—C22—H22A 119.2
C6—C5—H5A 119.2 C21—C22—H22A 119.2
C1—C6—C5 118.6 (3) C22—C23—C24 117.3 (3)
C1—C6—C7 119.3 (2) C22—C23—H23A 121.4
C5—C6—C7 122.1 (2) C24—C23—H23A 121.4
C18—C7—C8 113.3 (2) N3—C24—C23 129.1 (2)
C18—C7—C6 112.2 (2) N3—C24—C19 108.2 (2)
C8—C7—C6 113.1 (2) C23—C24—C19 122.8 (3)
C18—C7—H7A 105.8 N3—C25—C18 109.9 (2)
C8—C7—H7A 105.8 N3—C25—C26 120.3 (2)
C6—C7—H7A 105.8 C18—C25—C26 129.7 (2)
C15—C8—C9 106.5 (2) O5—C26—O6 123.4 (2)
C15—C8—C7 124.1 (2) O5—C26—C25 125.2 (2)
C9—C8—C7 129.4 (2) O6—C26—C25 111.4 (2)
C10—C9—C14 117.5 (2) O6—C27—H27A 109.5
C10—C9—C8 135.7 (2) O6—C27—H27B 109.5
C14—C9—C8 106.8 (2) H27A—C27—H27B 109.5
C11—C10—C9 119.5 (3) O6—C27—H27C 109.5
C11—C10—H10A 120.3 H27A—C27—H27C 109.5
C9—C10—H10A 120.3 H27B—C27—H27C 109.5
C10—C11—C12 121.5 (3) O7—C28—C29 114.0 (4)
C10—C11—H11A 119.2 O7—C28—H28A 108.8
C12—C11—H11A 119.2 C29—C28—H28A 108.8
C13—C12—C11 121.1 (3) O7—C28—H28B 108.8
C13—C12—H12A 119.4 C29—C28—H28B 108.8
C11—C12—H12A 119.4 H28A—C28—H28B 107.7
C12—C13—C14 117.7 (3) C28—C29—H29A 109.5
C12—C13—H13A 121.2 C28—C29—H29B 109.5
C14—C13—H13A 121.2 H29A—C29—H29B 109.5
N2—C14—C13 129.2 (3) C28—C29—H29C 109.5
N2—C14—C9 108.1 (2) H29A—C29—H29C 109.5
C13—C14—C9 122.7 (3) H29B—C29—H29C 109.5
C6—C1—C2—C3 −0.5 (4) C7—C8—C15—N2 −177.3 (2)
C6—C1—C2—N1 −179.1 (3) C9—C8—C15—C16 179.5 (3)
O2—N1—C2—C3 8.1 (5) C7—C8—C15—C16 1.0 (4)
O1—N1—C2—C3 −171.5 (4) C17—O3—C16—O4 −1.0 (4)
O2—N1—C2—C1 −173.3 (3) C17—O3—C16—C15 178.6 (2)
O1—N1—C2—C1 7.1 (5) N2—C15—C16—O4 −171.1 (2)
C1—C2—C3—C4 0.6 (5) C8—C15—C16—O4 10.7 (4)
N1—C2—C3—C4 179.1 (3) N2—C15—C16—O3 9.3 (4)
C2—C3—C4—C5 −0.7 (5) C8—C15—C16—O3 −168.9 (3)
C3—C4—C5—C6 0.9 (5) C8—C7—C18—C25 −149.2 (2)
C2—C1—C6—C5 0.6 (4) C6—C7—C18—C25 81.3 (3)
C2—C1—C6—C7 179.7 (2) C8—C7—C18—C19 34.6 (4)
C4—C5—C6—C1 −0.8 (4) C6—C7—C18—C19 −95.0 (3)
C4—C5—C6—C7 −179.9 (2) C25—C18—C19—C20 −178.9 (3)
C1—C6—C7—C18 −157.0 (2) C7—C18—C19—C20 −2.1 (5)
C5—C6—C7—C18 22.1 (3) C25—C18—C19—C24 0.5 (3)
C1—C6—C7—C8 73.4 (3) C7—C18—C19—C24 177.3 (2)
C5—C6—C7—C8 −107.6 (3) C24—C19—C20—C21 −0.2 (4)
C18—C7—C8—C15 73.3 (3) C18—C19—C20—C21 179.1 (3)
C6—C7—C8—C15 −157.5 (2) C19—C20—C21—C22 0.2 (5)
C18—C7—C8—C9 −104.8 (3) C20—C21—C22—C23 0.0 (5)
C6—C7—C8—C9 24.3 (4) C21—C22—C23—C24 −0.4 (5)
C15—C8—C9—C10 179.2 (3) C25—N3—C24—C23 179.3 (3)
C7—C8—C9—C10 −2.4 (5) C25—N3—C24—C19 0.2 (3)
C15—C8—C9—C14 −0.7 (3) C22—C23—C24—N3 −178.7 (3)
C7—C8—C9—C14 177.7 (2) C22—C23—C24—C19 0.4 (4)
C14—C9—C10—C11 0.8 (4) C20—C19—C24—N3 179.1 (2)
C8—C9—C10—C11 −179.1 (3) C18—C19—C24—N3 −0.4 (3)
C9—C10—C11—C12 −1.4 (5) C20—C19—C24—C23 −0.1 (4)
C10—C11—C12—C13 1.1 (5) C18—C19—C24—C23 −179.6 (3)
C11—C12—C13—C14 −0.1 (5) C24—N3—C25—C18 0.1 (3)
C15—N2—C14—C13 −179.4 (3) C24—N3—C25—C26 −177.3 (2)
C15—N2—C14—C9 0.8 (3) C19—C18—C25—N3 −0.4 (3)
C12—C13—C14—N2 179.7 (3) C7—C18—C25—N3 −177.4 (2)
C12—C13—C14—C9 −0.5 (4) C19—C18—C25—C26 176.8 (2)
C10—C9—C14—N2 −180.0 (2) C7—C18—C25—C26 −0.2 (4)
C8—C9—C14—N2 −0.1 (3) C27—O6—C26—O5 −2.3 (4)
C10—C9—C14—C13 0.2 (4) C27—O6—C26—C25 177.0 (2)
C8—C9—C14—C13 −179.9 (3) N3—C25—C26—O5 −179.9 (2)
C14—N2—C15—C8 −1.2 (3) C18—C25—C26—O5 3.2 (4)
C14—N2—C15—C16 −179.7 (2) N3—C25—C26—O6 0.8 (3)
C9—C8—C15—N2 1.2 (3) C18—C25—C26—O6 −176.1 (2)

Hydrogen-bond geometry (Å, º)

Cg3, Cg4 and Cg5 are the centroids of the C1-ring, C10-ring and C20-ring, respectively.

D—H···A D—H H···A D···A D—H···A
N2—H2A···O7i 0.86 2.17 2.924 (3) 146
N3—H3A···O4ii 0.86 2.02 2.861 (4) 166
O7—H7B···O5 0.82 2.13 2.892 (4) 154
C10—H10A···Cg3 0.93 2.87 3.633 (4) 140
C11—H11A···Cg5iii 0.93 2.76 3.634 (4) 156
C17—H17B···Cg4i 0.96 2.89 3.813 (5) 163
C27—H27B···Cg5ii 0.96 2.75 3.496 (4) 135

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y, −z.

References

  1. Chang, Y.-C., Riby, J., Grace, H. F., Peng, G.-F. & Bieldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834. [DOI] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  3. Ge, X., Fares, F. A. & Fares, S. Y. (1999). Anticancer Res. 19, 3199–3203. [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  5. Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Poter, J. K., Bacon, C. W., Robins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764. [DOI] [PMC free article] [PubMed]
  10. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516. [DOI] [PMC free article] [PubMed]
  11. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814022296/xu5823sup1.cif

e-70-00370-sup1.cif (25.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814022296/xu5823Isup2.hkl

e-70-00370-Isup2.hkl (246.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814022296/xu5823Isup3.cml

CCDC reference: 1028397

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES