Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 31;70(Pt 11):447–450. doi: 10.1107/S1600536814023691

Crystal structure of a four-layered [3.3](3,5)pyridino­phane

Masahiko Shibahara a,*, Motonori Watanabe b, Taisuke Matsumoto c, Kenta Goto d, Teruo Shinmyozu d
PMCID: PMC4257295  PMID: 25484771

The title compound {systematic name: 12,30-di­aza­hepta­cyclo­[21.13.1.15,19.16,18.110,14.124,36.128,32]do­tetra­conta-1(37),5(40),6(41),10 (42),11,13,18,23,28,30,32 (39),36 (38)-dodeca­ene} has synantisyn geometry. Two types of inter­molecular short contacts are observed in its crystal structure.

Keywords: crystal structure, meta­cyclo­phane, pyridino­phane, transannular p-electronic inter­action, C—H⋯N hydrogen bond, inter­molecular short contact

Abstract

The title compound, C40H46N2 {systematic name: 12,30-di­aza­hepta­cyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]do­tetra­conta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),36(38)-dodeca­ene}, has synantisyn geometry wherein the two outer [3.3]meta­cyclo­phane (MCP) moieties have a syn geometry, and contain the facing benzene and pyridine rings at dihedral angles of 26.26 (10) and 26.46 (10)°, respectively. The rings of the central [3.3]MCP unit are not parallel, but orientated at a slight angle of 2.66 (9)°. Three bridging methyl­ene groups are disordered over two sets of sites in a 0.60:0.40 ratio. In the crystal, the mol­ecules are linked by C—H⋯N inter­actions and inter­molecular C—H⋯π short contacts, generating a three-dimensional network.

Chemical context  

[3.3]Meta­pyridino­phanes (MPyPs) have been used as ligands in transition metal complexes, and various kinds of metal complexes have been prepared using them (Muralidharan et al., 1989; Fronczek et al., 1989; Krüger, 1995). A variety of types of [3.3]MPyPs are possible, and the [3.3](2,6)PyPs have been studied in detail (Vögtle & Schunder, 1969; Shinmyozu et al., 1986; Bottino et al., 1988). Only a limited number of [3.3](3,5)PyPs have been produced up to now, mainly because of the instability of the coupling precursor, 3,5-bis­(halometh­yl)pyridine. We have previously used freshly prepared 3,5-bis­(chloro­meth­yl)pyridine as the coupling reaction to prepare 2,11-di­aza­[3.3](3,5)PyP (Satou & Shinmyozu, 2002). One of the major advantages of using [3.3](3,5)PyPs over using [3.3](2,6)PyPs is the potential for forming self-assembled supra­molecules when [3.3](3,5)PyPs become coordinated. This occurs because the meta­cyclo­phanes (MCPs) have syn geometries and the nitro­gen lone-pair electrons can readily coordinate with metals without steric hindrance being caused by the bridges. We have also described the synthesis of multilayered [3.3]cyclo­phanes using the (p-tolyl­sulfon­yl)methyl isocyanide method (MCPs; Shibahara et al., 2007) and the (p-ethyl­benzene­sulfon­yl)methyl isocyanide method (para­cyclo­phanes; Shibahara et al., 2008). Multilayered [3.3]MCPs that have a pyridine ring at each end may, therefore, form larger supra­molecules when they form complexes with transition metals. These new types of supra­molecules could have uses as catalysts, inclusion hosts or nanometer-scale materials.graphic file with name e-70-00447-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound (at 123 K) is shown Fig.1. The tri­methyl­ene bridges are highly flexible and disordered even at this temperature. The mol­ecule has a synantisyn geometry, in which the two outer [3.3]MCP moieties have a syn geometry and contain opposing benzene and pyridine rings at angles of 26.26 (10)° (between the C4–C8/N1 and C13—C18 planes) and 26.46 (10)° (between the C26—C31 and C35–C39/N2 planes). These angles are comparable to the corresponding angle (24°) in the parent two-layered [3.3]MCP (Semmelhack et al., 1985). The central [3.3]MCP unit is not parallel, but is at a slight angle of 2.66 (9)° between the C13–C18 and C26–C31 planes. There is a twist between the benzene rings of the parent two-layered [3.3]MCP of ca 15° about the axis through the centre of each ring, but the twists in the outer [3.3]MCP moieties are only 3.93° (between the N1–C8 and C15–C18 axes) and 2.49° (between the C28–C31 and N2–C36 axes), and the benzene rings overlap each other completely in this mol­ecule. However, the twist in the benzene rings in the central [3.3]MCP unit is quite large, at 11.6° between the C15–C18 and C28–C31 axes. The transannular distances between C8 and C18 [2.968 (3) Å], C28 and C36 [2.955 (3) Å], N1 and C15 [4.168 (3) Å], and N2 and C31 [4.174 (3) Å] are comparable to the distances in the parent two-layered [3.3]MCP (2.995 and 4.171 Å) while the distance between C15 and C31 [2.910 (3) Å] is much shorter than that in the parent two-layered [3.3]MCP-2,11-dione (2.99 Å), which adopts an anti geometry (Isaji et al., 2001).

Supra­molecular features  

The crystal-packing diagram of the mol­ecule (Fig. 2) shows that mol­ecules are stacked alternately changing direction in the bc plane. Two types of inter­molecular short contacts are observed. One is the C—H⋯π-type inter­actions between C6 and H11 (2.811 Å) and between C35 and H49 (2.868 Å) in the bc plane, while the other is between N1 and H9 (2.429 Å) and between N2 and H50 (2.468 Å) along the a axis (Table 1). Both instances of the second type of short contact were found to be shorter than the sum of the van der Waals radii of a nitro­gen and hydrogen atom.

Figure 2.

Figure 2

Short contacts of the title compound; C—H⋯π-type inter­actions between C6 and H11 and C35 and H49 (orange dashed lines) and short contacts between N1 and H9 and N2 and H50 (light-blue dashed lines).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C8H9N1i 0.95 2.43 3.373(3) 173
C36H50N2ii 0.95 2.47 3.394(3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Database survey  

The title compound is closely related to the four-layered [3.3]MCP, hepta­cyclo[21.13.1.15,19.16,18.110,14.124,36.128,32]dotetra­conta-1(37),5(40),6(41),10(42),11,13,18,23,28,30,32(39),36(38)-dodeca­ene), which is the hydro­carbon-only parent mol­ecule (Shibahara et al., 2007), and its charge-transfer complex with tetra­cyano­ethyl­ene (Shibahara et al., 2011, 2014). The four-layered [3.3]MCP changes conformation in the solid state depending on the environment its circumference is in, having a synantisyn geometry like the letter ‘ω’ in a ligand-free environment and have a geometry like the letter ‘s’ when it forms a complex.

Synthesis and crystallization  

The title compound was prepared as described by Shibahara et al. (2008) by a coupling reaction of 5,7,14,16-tetra­kis­(bromo­meth­yl)[3.3]meta­cyclo­phane with 3,5-bis­[2-iso­cyano-2-(tolyl­sulfon­yl)eth­yl]pyridine, which afforded four-layered [3.3](3,5)pyridino­phane tetra­one, which was converted to the four-layered[3.3](3,5)pyridino­phane Shibahara et al., 2009) by a Wolff–Kishner reduction. Purification of the crude product by silica gel column chromatography with CH2Cl2/EtOH (9:1; v/v, Rf = 0.53) gave the four-layered pyridino­phane (12% isolated yield in two steps). Finally, the product was crystallized from CH2Cl2/acetone to give single crystals (colourless prisms), m.p. 518 K (decomposed).

1H NMR (600 MHz, CDCl3): δ 1.8–2.0 (m, 12H, CH2CH 2CH2), 2.4–2.7 (m, 24H, CH 2CH2CH 2), 5.97 (s, 2H, ArH), 6.21 (s, 2H, ArH), 6.91 (s, 2H, ArH), 7.84 (d, J = 1.5 Hz, 4H, ArH). 13C NMR (150 MHz, CDCl3) δ 26.2, 27.7, 32.4, 32.7, 33.2, 134.0, 134.4, 134.8, 134.8, 135.8, 140.4, 146.8. HRMS (FAB): m/z [M+H]+ calculated for C40H47N2 555.3739, found 555.3739. Analysis calculated for C40H46N2: C, 86.59; H, 8.36; N, 5.05. found: C, 86.35; H, 8.34; N, 5.01.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geom­etrically and refined using a riding model: C—H = 0.95–0.99 Å with U iso(H) = 1.2U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C40H46N2
M r 554.79
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 123
a, b, c () 6.1377(15), 14.643(4), 17.519(4)
, , () 75.619(16), 88.369(17), 86.755(17)
V (3) 1522.6(7)
Z 2
Radiation type Cu K
(mm1) 0.52
Crystal size (mm) 0.45 0.30 0.16
 
Data collection
Diffractometer Rigaku R-AXIS RAPID
No. of measured, independent and observed [I > 2(I)] reflections 20167, 5396, 4455
R int 0.040
(sin /)max (1) 0.602
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.070, 0.204, 1.07
No. of reflections 5396
No. of parameters 410
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.42, 0.32

Computer programs: RAPID-AUTO (Rigaku, 1998), SIR2011 (Camalli et al., 2012), SHELXL2014 (Sheldrick, 2008), Yadokari-XG 2009 (Wakita, 2001; Kabuto et al., 2009), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2006), publCIF (Westrip, 2010) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814023691/hb7300sup1.cif

e-70-00447-sup1.cif (617.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023691/hb7300Isup2.hkl

e-70-00447-Isup2.hkl (295.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023691/hb7300Isup3.cml

CCDC reference: 1031274

Additional supporting information: crystallographic information; 3D view; checkCIF report

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Acknowledgments

This work was partially supported by a Grant-in-Aid for Science Research (C 25410050) from the Japan Society for the Promotion of Science (JSPS), Japan, and was performed under the Cooperative Research Program of the Network Joint Research Center for Materials and Devices (IMCE, Kyushu University). MW thanks the World Premier Inter­national Research Center Initiative (WPI), Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT), Japan.

supplementary crystallographic information

Crystal data

C40H46N2 Z = 2
Mr = 554.79 F(000) = 600
Triclinic, P1 Dx = 1.210 Mg m3
a = 6.1377 (15) Å Cu Kα radiation, λ = 1.54187 Å
b = 14.643 (4) Å Cell parameters from 20167 reflections
c = 17.519 (4) Å θ = 3.1–68.2°
α = 75.619 (16)° µ = 0.52 mm1
β = 88.369 (17)° T = 123 K
γ = 86.755 (17)° Block, colorless
V = 1522.6 (7) Å3 0.45 × 0.30 × 0.16 mm

Data collection

Rigaku R-AXIS RAPID diffractometer 4455 reflections with I > 2σ(I)
Radiation source: Rotating anode Rint = 0.040
Graphite monochromator θmax = 68.2°, θmin = 3.1°
Detector resolution: 10.00 pixels mm-1 h = −7→7
ω scans k = −17→17
20167 measured reflections l = −21→20
5396 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.204 w = 1/[σ2(Fo2) + (0.0985P)2 + 0.5512P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max < 0.001
5396 reflections Δρmax = 0.42 e Å3
410 parameters Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ (F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 −0.1497 (3) 0.89284 (14) 0.15093 (15) 0.0710 (6)
N2 −0.3765 (3) 0.11241 (14) 0.34741 (14) 0.0686 (6)
C1 −0.6871 (4) 0.71516 (16) 0.33718 (12) 0.0548 (6)
H1 −0.6992 0.6659 0.3871 0.066*
H2 −0.8360 0.7317 0.3161 0.066*
C2 −0.5956 (4) 0.80319 (16) 0.35507 (13) 0.0611 (6)
H3 −0.6656 0.8121 0.4045 0.073*
H4 −0.4377 0.7900 0.3652 0.073*
C3 −0.6234 (4) 0.89604 (15) 0.29260 (14) 0.0568 (6)
H5 −0.7804 0.9087 0.2805 0.068*
H6 −0.5757 0.9476 0.3146 0.068*
C4 −0.4983 (3) 0.89824 (13) 0.21695 (14) 0.0489 (5)
C5 −0.2702 (3) 0.89796 (15) 0.21396 (16) 0.0593 (6)
H7 −0.1969 0.9017 0.2600 0.071*
C6 −0.2568 (4) 0.88533 (16) 0.08720 (17) 0.0694 (7)
H8 −0.1726 0.8797 0.0421 0.083*
C7 −0.4813 (4) 0.88527 (14) 0.08282 (14) 0.0585 (6)
C8 −0.6003 (3) 0.89542 (13) 0.14854 (13) 0.0505 (5)
H9 −0.7551 0.9006 0.1466 0.061*
C9 −0.5889 (6) 0.86779 (17) 0.01185 (15) 0.0813 (9)
H10 −0.4757 0.8638 −0.0288 0.098* 0.6
H11 −0.6909 0.9221 −0.0105 0.098* 0.6
H12 −0.5535 0.9178 −0.0356 0.098* 0.4
H13 −0.7493 0.8692 0.0196 0.098* 0.4
C10 −0.5062 (11) 0.7705 (4) 0.0003 (3) 0.0600 (14) 0.4
H14 −0.5447 0.7669 −0.0533 0.072* 0.4
H15 −0.3450 0.7658 0.0034 0.072* 0.4
C11 −0.7216 (7) 0.7719 (3) 0.0321 (2) 0.0624 (10) 0.6
H16 −0.8340 0.7766 0.0728 0.075* 0.6
H17 −0.7987 0.7684 −0.0159 0.075* 0.6
C12 −0.5953 (5) 0.68650 (16) 0.05909 (12) 0.0624 (6)
H18 −0.4697 0.6872 0.0223 0.075* 0.6
H19 −0.6855 0.6342 0.0546 0.075* 0.6
H20 −0.5686 0.6304 0.0375 0.075* 0.4
H21 −0.7554 0.6976 0.0628 0.075* 0.4
C13 −0.5062 (4) 0.66231 (13) 0.14222 (10) 0.0439 (5)
C14 −0.3006 (4) 0.61736 (13) 0.15950 (11) 0.0465 (5)
C15 −0.2239 (3) 0.60393 (13) 0.23604 (12) 0.0458 (5)
H22 −0.0810 0.5762 0.2473 0.055*
C16 −0.3447 (3) 0.62880 (13) 0.29652 (11) 0.0438 (5)
C17 −0.5504 (3) 0.67436 (13) 0.27882 (11) 0.0410 (4)
C18 −0.6270 (3) 0.68750 (13) 0.20271 (11) 0.0409 (4)
H23 −0.7698 0.7152 0.1915 0.049*
C19 −0.2635 (4) 0.6006 (2) 0.38046 (13) 0.0730 (8)
H24 −0.1814 0.6546 0.3865 0.088* 0.5
H25 −0.3961 0.6001 0.4141 0.088* 0.5
H26 −0.3104 0.6488 0.4092 0.088* 0.5
H27 −0.1022 0.5927 0.3812 0.088* 0.5
C20 −0.3775 (7) 0.4969 (3) 0.4213 (2) 0.0438 (9) 0.5
H28 −0.4192 0.4961 0.4765 0.053* 0.5
H29 −0.5135 0.4949 0.3929 0.053* 0.5
C21 −0.1416 (7) 0.5230 (3) 0.4162 (2) 0.0446 (9) 0.5
H30 −0.1111 0.5271 0.4704 0.054* 0.5
H31 0.0001 0.5235 0.3876 0.054* 0.5
C22 −0.2538 (4) 0.4179 (2) 0.42155 (14) 0.0656 (7)
H32 −0.2123 0.3718 0.4713 0.088 (18)* 0.5
H33 −0.4149 0.4262 0.4200 0.058 (13)* 0.5
H34 −0.3369 0.3655 0.4537 0.060 (13)* 0.5
H35 −0.1237 0.4216 0.4526 0.078 (15)* 0.5
C23 −0.1580 (5) 0.57678 (16) 0.10252 (13) 0.0699 (8)
H36 −0.0159 0.5545 0.1277 0.084*
H37 −0.1295 0.6282 0.0553 0.084*
C24 −0.2510 (5) 0.49556 (16) 0.07572 (12) 0.0804 (9)
H38 −0.1332 0.4667 0.0483 0.097*
H39 −0.3658 0.5222 0.0367 0.097*
C25 −0.3485 (5) 0.41715 (15) 0.14020 (12) 0.0644 (7)
H40 −0.4924 0.4407 0.1565 0.077*
H41 −0.3737 0.3632 0.1175 0.077*
C26 −0.2098 (3) 0.38177 (13) 0.21302 (10) 0.0435 (5)
C27 −0.0039 (3) 0.33628 (13) 0.21292 (11) 0.0448 (5)
C28 0.1172 (3) 0.31807 (13) 0.28151 (12) 0.0443 (5)
H42 0.2606 0.2902 0.2807 0.053*
C29 0.0400 (3) 0.33839 (12) 0.35121 (10) 0.0392 (4)
C30 −0.1672 (3) 0.38350 (12) 0.35142 (10) 0.0377 (4)
C31 −0.2876 (3) 0.40213 (12) 0.28279 (11) 0.0396 (4)
H43 −0.4307 0.4303 0.2835 0.048*
C32 0.1769 (4) 0.30603 (15) 0.42464 (13) 0.0553 (6)
H44 0.1901 0.3602 0.4484 0.066*
H45 0.3255 0.2868 0.4090 0.066*
C33 0.0864 (4) 0.22411 (16) 0.48715 (13) 0.0651 (7)
H46 0.1605 0.2208 0.5373 0.078*
H47 −0.0703 0.2395 0.4953 0.078*
C34 0.1071 (4) 0.12618 (16) 0.47135 (15) 0.0628 (6)
H48 0.2628 0.1108 0.4614 0.075*
H49 0.0597 0.0795 0.5193 0.075*
C35 −0.0238 (3) 0.11599 (13) 0.40259 (15) 0.0532 (6)
C36 0.0739 (3) 0.11169 (14) 0.33139 (15) 0.0553 (6)
H50 0.2286 0.1072 0.3271 0.066*
C37 −0.0508 (4) 0.11380 (15) 0.26629 (16) 0.0595 (6)
C38 −0.2743 (4) 0.11317 (17) 0.27859 (18) 0.0680 (7)
H51 −0.3623 0.1133 0.2348 0.082*
C39 −0.2509 (3) 0.11535 (15) 0.40745 (16) 0.0597 (6)
H52 −0.3199 0.1171 0.4563 0.072*
C40 0.0508 (5) 0.12235 (19) 0.18544 (18) 0.0774 (8)
H53 −0.0669 0.1207 0.1484 0.093* 0.6
H54 0.1502 0.0661 0.1876 0.093* 0.6
H55 0.2112 0.1122 0.1902 0.093* 0.4
H56 −0.0033 0.0728 0.1624 0.093* 0.4
C41 0.1840 (8) 0.2138 (3) 0.1500 (2) 0.0668 (11) 0.6
H57 0.3133 0.2097 0.1834 0.080* 0.6
H58 0.2389 0.2097 0.0972 0.080* 0.6
C42 0.0035 (11) 0.2064 (4) 0.1380 (4) 0.0637 (16) 0.4
H59 −0.1577 0.2140 0.1391 0.076* 0.4
H60 0.0441 0.1999 0.0844 0.076* 0.4
C43 0.0848 (5) 0.30389 (18) 0.14163 (14) 0.0708 (7)
H61 −0.0378 0.3097 0.1049 0.085* 0.6
H62 0.1923 0.3497 0.1150 0.085* 0.6
H63 0.2463 0.2999 0.1430 0.085* 0.4
H64 0.0403 0.3516 0.0932 0.085* 0.4

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0479 (11) 0.0539 (12) 0.1144 (18) −0.0067 (9) 0.0227 (11) −0.0285 (12)
N2 0.0409 (10) 0.0638 (12) 0.1137 (18) −0.0058 (9) −0.0037 (11) −0.0448 (12)
C1 0.0666 (14) 0.0559 (13) 0.0480 (11) −0.0095 (11) 0.0150 (10) −0.0248 (10)
C2 0.0778 (15) 0.0628 (14) 0.0530 (12) −0.0038 (12) 0.0063 (11) −0.0346 (11)
C3 0.0511 (12) 0.0500 (12) 0.0799 (15) −0.0006 (9) 0.0029 (11) −0.0369 (12)
C4 0.0444 (10) 0.0324 (10) 0.0750 (14) −0.0021 (8) 0.0053 (10) −0.0234 (10)
C5 0.0450 (11) 0.0454 (12) 0.0942 (17) −0.0045 (9) −0.0016 (11) −0.0292 (12)
C6 0.0770 (17) 0.0441 (13) 0.0855 (18) −0.0014 (11) 0.0254 (14) −0.0165 (12)
C7 0.0746 (15) 0.0308 (10) 0.0663 (14) 0.0007 (10) 0.0092 (12) −0.0069 (9)
C8 0.0471 (11) 0.0335 (10) 0.0720 (14) −0.0005 (8) −0.0029 (10) −0.0155 (10)
C9 0.137 (3) 0.0452 (13) 0.0563 (14) 0.0068 (15) −0.0120 (15) −0.0034 (11)
C10 0.091 (4) 0.048 (3) 0.037 (3) −0.008 (3) −0.003 (3) −0.002 (2)
C11 0.093 (3) 0.051 (2) 0.0446 (19) 0.011 (2) −0.0237 (19) −0.0144 (16)
C12 0.1004 (19) 0.0522 (13) 0.0364 (11) −0.0181 (12) −0.0042 (11) −0.0109 (9)
C13 0.0676 (13) 0.0327 (9) 0.0324 (9) −0.0112 (9) 0.0030 (8) −0.0089 (7)
C14 0.0672 (13) 0.0309 (9) 0.0396 (10) −0.0050 (9) 0.0170 (9) −0.0068 (8)
C15 0.0492 (11) 0.0328 (10) 0.0515 (11) −0.0034 (8) 0.0065 (9) −0.0036 (8)
C16 0.0559 (11) 0.0379 (10) 0.0379 (10) −0.0118 (9) −0.0004 (8) −0.0080 (8)
C17 0.0536 (11) 0.0360 (9) 0.0370 (9) −0.0121 (8) 0.0084 (8) −0.0147 (8)
C18 0.0478 (10) 0.0337 (9) 0.0434 (10) −0.0084 (8) 0.0026 (8) −0.0123 (8)
C19 0.0617 (14) 0.105 (2) 0.0419 (12) −0.0207 (14) −0.0051 (10) 0.0048 (12)
C20 0.065 (2) 0.041 (2) 0.0260 (16) 0.0018 (18) 0.0066 (16) −0.0124 (15)
C21 0.062 (2) 0.043 (2) 0.0361 (19) −0.0004 (18) −0.0067 (17) −0.0238 (16)
C22 0.0569 (13) 0.101 (2) 0.0585 (14) −0.0181 (13) 0.0111 (11) −0.0554 (15)
C23 0.105 (2) 0.0451 (12) 0.0507 (13) 0.0090 (12) 0.0363 (13) −0.0029 (10)
C24 0.159 (3) 0.0534 (13) 0.0282 (10) 0.0263 (16) 0.0051 (13) −0.0161 (10)
C25 0.110 (2) 0.0449 (12) 0.0435 (12) 0.0036 (12) −0.0247 (12) −0.0202 (10)
C26 0.0670 (13) 0.0339 (9) 0.0330 (9) −0.0082 (9) −0.0032 (8) −0.0133 (7)
C27 0.0641 (12) 0.0366 (10) 0.0388 (10) −0.0132 (9) 0.0129 (9) −0.0181 (8)
C28 0.0466 (10) 0.0359 (10) 0.0554 (12) −0.0076 (8) 0.0077 (9) −0.0202 (9)
C29 0.0490 (10) 0.0314 (9) 0.0393 (10) −0.0099 (8) −0.0017 (8) −0.0108 (8)
C30 0.0502 (10) 0.0349 (9) 0.0322 (9) −0.0092 (8) 0.0044 (7) −0.0151 (7)
C31 0.0488 (10) 0.0334 (9) 0.0401 (10) −0.0028 (8) −0.0016 (8) −0.0153 (8)
C32 0.0626 (13) 0.0455 (11) 0.0574 (13) −0.0127 (10) −0.0183 (10) −0.0080 (10)
C33 0.0859 (17) 0.0526 (13) 0.0535 (13) −0.0114 (12) −0.0261 (12) −0.0020 (10)
C34 0.0543 (13) 0.0446 (12) 0.0803 (16) −0.0028 (10) −0.0135 (11) 0.0036 (11)
C35 0.0433 (11) 0.0291 (9) 0.0860 (16) −0.0004 (8) −0.0084 (10) −0.0114 (10)
C36 0.0391 (10) 0.0331 (10) 0.0970 (17) 0.0025 (8) 0.0045 (11) −0.0240 (11)
C37 0.0520 (12) 0.0411 (11) 0.0972 (18) −0.0018 (9) −0.0017 (12) −0.0399 (12)
C38 0.0522 (13) 0.0585 (14) 0.108 (2) −0.0025 (11) −0.0110 (13) −0.0475 (14)
C39 0.0447 (11) 0.0446 (12) 0.0938 (17) −0.0024 (9) 0.0033 (11) −0.0253 (12)
C40 0.0780 (17) 0.0647 (17) 0.110 (2) −0.0023 (13) 0.0105 (15) −0.0612 (17)
C41 0.084 (3) 0.069 (3) 0.050 (2) 0.018 (2) 0.014 (2) −0.0262 (19)
C42 0.071 (4) 0.064 (4) 0.075 (4) −0.011 (3) 0.022 (3) −0.053 (3)
C43 0.0954 (18) 0.0707 (16) 0.0608 (14) −0.0262 (14) 0.0334 (13) −0.0428 (13)

Geometric parameters (Å, º)

N1—C5 1.327 (3) C21—H30 0.9900
N1—C6 1.342 (3) C21—H31 0.9900
N2—C39 1.332 (3) C22—C30 1.512 (2)
N2—C38 1.341 (3) C22—H32 0.9900
C1—C17 1.518 (2) C22—H33 0.9900
C1—C2 1.539 (3) C22—H34 0.9900
C1—H1 0.9900 C22—H35 0.9900
C1—H2 0.9900 C23—C24 1.527 (4)
C2—C3 1.524 (3) C23—H36 0.9900
C2—H3 0.9900 C23—H37 0.9900
C2—H4 0.9900 C24—C25 1.532 (3)
C3—C4 1.507 (3) C24—H38 0.9900
C3—H5 0.9900 C24—H39 0.9900
C3—H6 0.9900 C25—C26 1.518 (3)
C4—C8 1.378 (3) C25—H40 0.9900
C4—C5 1.399 (3) C25—H41 0.9900
C5—H7 0.9500 C26—C31 1.394 (2)
C6—C7 1.383 (4) C26—C27 1.395 (3)
C6—H8 0.9500 C27—C28 1.392 (3)
C7—C8 1.381 (3) C27—C43 1.519 (2)
C7—C9 1.507 (4) C28—C29 1.391 (3)
C8—H9 0.9500 C28—H42 0.9500
C9—C10 1.544 (6) C29—C30 1.399 (3)
C9—C11 1.621 (5) C29—C32 1.516 (3)
C9—H10 0.9900 C30—C31 1.390 (2)
C9—H11 0.9900 C31—H43 0.9500
C9—H12 0.9900 C32—C33 1.528 (3)
C9—H13 0.9900 C32—H44 0.9900
C10—C12 1.512 (6) C32—H45 0.9900
C10—H14 0.9900 C33—C34 1.524 (3)
C10—H15 0.9900 C33—H46 0.9900
C11—C12 1.416 (4) C33—H47 0.9900
C11—H16 0.9900 C34—C35 1.509 (3)
C11—H17 0.9900 C34—H48 0.9900
C12—C13 1.521 (3) C34—H49 0.9900
C12—H18 0.9900 C35—C36 1.383 (3)
C12—H19 0.9900 C35—C39 1.395 (3)
C12—H20 0.9900 C36—C37 1.385 (3)
C12—H21 0.9900 C36—H50 0.9500
C13—C18 1.388 (3) C37—C38 1.383 (3)
C13—C14 1.395 (3) C37—C40 1.510 (4)
C14—C15 1.397 (3) C38—H51 0.9500
C14—C23 1.517 (3) C39—H52 0.9500
C15—C16 1.386 (3) C40—C42 1.325 (7)
C15—H22 0.9500 C40—C41 1.591 (5)
C16—C17 1.399 (3) C40—H53 0.9900
C16—C19 1.516 (3) C40—H54 0.9900
C17—C18 1.391 (3) C40—H55 0.9900
C18—H23 0.9500 C40—H56 0.9900
C19—C21 1.350 (5) C41—C43 1.396 (5)
C19—C20 1.691 (5) C41—H57 0.9900
C19—H24 0.9900 C41—H58 0.9900
C19—H25 0.9900 C42—C43 1.555 (6)
C19—H26 0.9900 C42—H59 0.9900
C19—H27 0.9900 C42—H60 0.9900
C20—C22 1.347 (4) C43—H61 0.9900
C20—H28 0.9900 C43—H62 0.9900
C20—H29 0.9900 C43—H63 0.9900
C21—C22 1.701 (5) C43—H64 0.9900
C5—N1—C6 116.8 (2) C30—C22—H32 110.3
C39—N2—C38 116.6 (2) C21—C22—H32 110.3
C17—C1—C2 114.26 (18) C30—C22—H33 110.3
C17—C1—H1 108.7 C21—C22—H33 110.3
C2—C1—H1 108.7 H32—C22—H33 108.6
C17—C1—H2 108.7 C20—C22—H34 105.3
C2—C1—H2 108.7 C30—C22—H34 105.3
H1—C1—H2 107.6 C20—C22—H35 105.3
C3—C2—C1 117.46 (19) C30—C22—H35 105.3
C3—C2—H3 107.9 H34—C22—H35 106.0
C1—C2—H3 107.9 C14—C23—C24 115.7 (2)
C3—C2—H4 107.9 C14—C23—H36 108.4
C1—C2—H4 107.9 C24—C23—H36 108.4
H3—C2—H4 107.2 C14—C23—H37 108.4
C4—C3—C2 114.39 (17) C24—C23—H37 108.4
C4—C3—H5 108.7 H36—C23—H37 107.4
C2—C3—H5 108.7 C23—C24—C25 116.52 (17)
C4—C3—H6 108.7 C23—C24—H38 108.2
C2—C3—H6 108.7 C25—C24—H38 108.2
H5—C3—H6 107.6 C23—C24—H39 108.2
C8—C4—C5 116.5 (2) C25—C24—H39 108.2
C8—C4—C3 122.13 (19) H38—C24—H39 107.3
C5—C4—C3 121.2 (2) C26—C25—C24 115.1 (2)
N1—C5—C4 124.2 (2) C26—C25—H40 108.5
N1—C5—H7 117.9 C24—C25—H40 108.5
C4—C5—H7 117.9 C26—C25—H41 108.5
N1—C6—C7 124.4 (2) C24—C25—H41 108.5
N1—C6—H8 117.8 H40—C25—H41 107.5
C7—C6—H8 117.8 C31—C26—C27 118.34 (17)
C8—C7—C6 116.8 (2) C31—C26—C25 117.50 (19)
C8—C7—C9 121.8 (2) C27—C26—C25 124.01 (18)
C6—C7—C9 121.3 (2) C28—C27—C26 118.03 (16)
C4—C8—C7 121.1 (2) C28—C27—C43 120.2 (2)
C4—C8—H9 119.4 C26—C27—C43 121.71 (19)
C7—C8—H9 119.4 C29—C28—C27 123.65 (18)
C7—C9—C10 109.2 (3) C29—C28—H42 118.2
C7—C9—C11 113.0 (2) C27—C28—H42 118.2
C7—C9—H10 109.0 C28—C29—C30 118.22 (17)
C11—C9—H10 109.0 C28—C29—C32 118.96 (18)
C7—C9—H11 109.0 C30—C29—C32 122.72 (17)
C11—C9—H11 109.0 C31—C30—C29 118.05 (16)
H10—C9—H11 107.8 C31—C30—C22 120.01 (18)
C7—C9—H12 109.8 C29—C30—C22 121.79 (17)
C10—C9—H12 109.8 C30—C31—C26 123.58 (18)
C7—C9—H13 109.8 C30—C31—H43 118.2
C10—C9—H13 109.8 C26—C31—H43 118.2
H12—C9—H13 108.3 C29—C32—C33 114.53 (17)
C12—C10—C9 115.1 (4) C29—C32—H44 108.6
C12—C10—H14 108.5 C33—C32—H44 108.6
C9—C10—H14 108.5 C29—C32—H45 108.6
C12—C10—H15 108.5 C33—C32—H45 108.6
C9—C10—H15 108.5 H44—C32—H45 107.6
H14—C10—H15 107.5 C34—C33—C32 117.7 (2)
C12—C11—C9 116.1 (3) C34—C33—H46 107.9
C12—C11—H16 108.3 C32—C33—H46 107.9
C9—C11—H16 108.3 C34—C33—H47 107.9
C12—C11—H17 108.3 C32—C33—H47 107.9
C9—C11—H17 108.3 H46—C33—H47 107.2
H16—C11—H17 107.4 C35—C34—C33 114.42 (17)
C11—C12—C13 119.1 (2) C35—C34—H48 108.7
C10—C12—C13 117.6 (3) C33—C34—H48 108.7
C11—C12—H18 107.5 C35—C34—H49 108.7
C13—C12—H18 107.5 C33—C34—H49 108.7
C11—C12—H19 107.5 H48—C34—H49 107.6
C13—C12—H19 107.5 C36—C35—C39 117.3 (2)
H18—C12—H19 107.0 C36—C35—C34 121.9 (2)
C10—C12—H20 107.9 C39—C35—C34 120.8 (2)
C13—C12—H20 107.9 C35—C36—C37 120.85 (19)
C10—C12—H21 107.9 C35—C36—H50 119.6
C13—C12—H21 107.9 C37—C36—H50 119.6
H20—C12—H21 107.2 C38—C37—C36 116.2 (2)
C18—C13—C14 118.27 (17) C38—C37—C40 121.9 (2)
C18—C13—C12 120.13 (19) C36—C37—C40 121.8 (2)
C14—C13—C12 121.57 (18) N2—C38—C37 125.2 (2)
C13—C14—C15 118.04 (17) N2—C38—H51 117.4
C13—C14—C23 124.8 (2) C37—C38—H51 117.4
C15—C14—C23 117.1 (2) N2—C39—C35 123.7 (2)
C16—C15—C14 123.64 (19) N2—C39—H52 118.1
C16—C15—H22 118.2 C35—C39—H52 118.1
C14—C15—H22 118.2 C42—C40—C37 111.4 (3)
C15—C16—C17 118.06 (17) C37—C40—C41 116.6 (2)
C15—C16—C19 120.7 (2) C37—C40—H53 108.1
C17—C16—C19 121.05 (19) C41—C40—H53 108.1
C18—C17—C16 118.22 (17) C37—C40—H54 108.1
C18—C17—C1 118.57 (18) C41—C40—H54 108.1
C16—C17—C1 123.10 (17) H53—C40—H54 107.3
C13—C18—C17 123.63 (18) C42—C40—H55 109.3
C13—C18—H23 118.2 C37—C40—H55 109.3
C17—C18—H23 118.2 C42—C40—H56 109.3
C21—C19—C16 128.5 (3) C37—C40—H56 109.3
C16—C19—C20 104.8 (2) H55—C40—H56 108.0
C21—C19—H24 105.2 C43—C41—C40 120.6 (3)
C16—C19—H24 105.2 C43—C41—H57 107.2
C21—C19—H25 105.2 C40—C41—H57 107.2
C16—C19—H25 105.2 C43—C41—H58 107.2
H24—C19—H25 105.9 C40—C41—H58 107.2
C16—C19—H26 110.8 H57—C41—H58 106.8
C20—C19—H26 110.8 C40—C42—C43 128.5 (5)
C16—C19—H27 110.8 C40—C42—H59 105.2
C20—C19—H27 110.8 C43—C42—H59 105.2
H26—C19—H27 108.9 C40—C42—H60 105.2
C22—C20—C19 116.5 (3) C43—C42—H60 105.2
C22—C20—H28 108.2 H59—C42—H60 105.9
C19—C20—H28 108.2 C41—C43—C27 120.9 (3)
C22—C20—H29 108.2 C27—C43—C42 113.0 (3)
C19—C20—H29 108.2 C41—C43—H61 107.1
H28—C20—H29 107.3 C27—C43—H61 107.1
C19—C21—C22 115.7 (3) C41—C43—H62 107.1
C19—C21—H30 108.4 C27—C43—H62 107.1
C22—C21—H30 108.4 H61—C43—H62 106.8
C19—C21—H31 108.4 C27—C43—H63 109.0
C22—C21—H31 108.4 C42—C43—H63 109.0
H30—C21—H31 107.4 C27—C43—H64 109.0
C20—C22—C30 127.9 (3) C42—C43—H64 109.0
C30—C22—C21 106.9 (2) H63—C43—H64 107.8
C17—C1—C2—C3 75.5 (3) C19—C21—C22—C30 94.6 (3)
C1—C2—C3—C4 −66.0 (3) C13—C14—C23—C24 −63.4 (3)
C2—C3—C4—C8 107.4 (2) C15—C14—C23—C24 113.0 (2)
C2—C3—C4—C5 −69.0 (3) C14—C23—C24—C25 −46.4 (3)
C6—N1—C5—C4 −1.6 (3) C23—C24—C25—C26 −46.4 (3)
C8—C4—C5—N1 −1.8 (3) C24—C25—C26—C31 111.4 (2)
C3—C4—C5—N1 174.8 (2) C24—C25—C26—C27 −63.9 (3)
C5—N1—C6—C7 1.9 (4) C31—C26—C27—C28 −3.2 (3)
N1—C6—C7—C8 1.2 (3) C25—C26—C27—C28 172.08 (18)
N1—C6—C7—C9 −174.4 (2) C31—C26—C27—C43 174.58 (18)
C5—C4—C8—C7 5.0 (3) C25—C26—C27—C43 −10.1 (3)
C3—C4—C8—C7 −171.58 (17) C26—C27—C28—C29 3.4 (3)
C6—C7—C8—C4 −4.8 (3) C43—C27—C28—C29 −174.48 (18)
C9—C7—C8—C4 170.89 (19) C27—C28—C29—C30 −3.0 (3)
C8—C7—C9—C10 −117.0 (3) C27—C28—C29—C32 173.57 (17)
C6—C7—C9—C10 58.5 (4) C28—C29—C30—C31 2.5 (3)
C8—C7—C9—C11 −59.7 (3) C32—C29—C30—C31 −173.94 (16)
C6—C7—C9—C11 115.8 (3) C28—C29—C30—C22 −173.11 (19)
C7—C9—C10—C12 73.5 (5) C32—C29—C30—C22 10.5 (3)
C11—C9—C10—C12 −31.4 (3) C20—C22—C30—C31 −32.6 (4)
C7—C9—C11—C12 −63.3 (4) C21—C22—C30—C31 −95.1 (2)
C10—C9—C11—C12 34.1 (3) C20—C22—C30—C29 142.9 (3)
C9—C11—C12—C10 −32.8 (3) C21—C22—C30—C29 80.4 (3)
C9—C11—C12—C13 73.3 (4) C29—C30—C31—C26 −2.7 (3)
C9—C10—C12—C11 34.3 (4) C22—C30—C31—C26 173.01 (19)
C9—C10—C12—C13 −74.3 (5) C27—C26—C31—C30 3.1 (3)
C11—C12—C13—C18 35.0 (4) C25—C26—C31—C30 −172.56 (18)
C10—C12—C13—C18 101.7 (4) C28—C29—C32—C33 −108.0 (2)
C11—C12—C13—C14 −143.1 (3) C30—C29—C32—C33 68.4 (3)
C10—C12—C13—C14 −76.3 (4) C29—C32—C33—C34 73.9 (3)
C18—C13—C14—C15 −2.7 (3) C32—C33—C34—C35 −65.6 (3)
C12—C13—C14—C15 175.31 (18) C33—C34—C35—C36 105.7 (2)
C18—C13—C14—C23 173.67 (19) C33—C34—C35—C39 −71.0 (3)
C12—C13—C14—C23 −8.3 (3) C39—C35—C36—C37 4.7 (3)
C13—C14—C15—C16 3.1 (3) C34—C35—C36—C37 −172.15 (18)
C23—C14—C15—C16 −173.58 (18) C35—C36—C37—C38 −4.7 (3)
C14—C15—C16—C17 −3.5 (3) C35—C36—C37—C40 171.67 (19)
C14—C15—C16—C19 171.89 (19) C39—N2—C38—C37 2.1 (4)
C15—C16—C17—C18 3.5 (3) C36—C37—C38—N2 1.3 (3)
C19—C16—C17—C18 −171.89 (19) C40—C37—C38—N2 −175.1 (2)
C15—C16—C17—C1 −172.74 (18) C38—N2—C39—C35 −2.2 (3)
C19—C16—C17—C1 11.9 (3) C36—C35—C39—N2 −1.1 (3)
C2—C1—C17—C18 −106.2 (2) C34—C35—C39—N2 175.7 (2)
C2—C1—C17—C16 69.9 (3) C38—C37—C40—C42 67.1 (4)
C14—C13—C18—C17 3.1 (3) C36—C37—C40—C42 −109.1 (4)
C12—C13—C18—C17 −174.99 (17) C38—C37—C40—C41 116.7 (3)
C16—C17—C18—C13 −3.4 (3) C36—C37—C40—C41 −59.5 (4)
C1—C17—C18—C13 172.93 (17) C42—C40—C41—C43 37.8 (4)
C15—C16—C19—C21 −31.6 (4) C37—C40—C41—C43 −56.7 (5)
C17—C16—C19—C21 143.6 (3) C37—C40—C42—C43 69.5 (6)
C15—C16—C19—C20 −92.8 (2) C41—C40—C42—C43 −37.3 (4)
C17—C16—C19—C20 82.4 (3) C40—C41—C43—C27 61.4 (5)
C21—C19—C20—C22 −30.3 (3) C40—C41—C43—C42 −31.4 (4)
C16—C19—C20—C22 96.1 (3) C28—C27—C43—C41 43.8 (4)
C16—C19—C21—C22 −60.6 (4) C26—C27—C43—C41 −133.9 (3)
C20—C19—C21—C22 23.4 (2) C28—C27—C43—C42 94.5 (4)
C19—C20—C22—C30 −63.5 (4) C26—C27—C43—C42 −83.3 (4)
C19—C20—C22—C21 23.7 (2) C40—C42—C43—C41 43.5 (5)
C19—C21—C22—C20 −29.9 (3) C40—C42—C43—C27 −67.9 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H9···N1i 0.95 2.43 3.373 (3) 173
C36—H50···N2ii 0.95 2.47 3.394 (3) 165

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z.

References

  1. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  2. Bottino, F., Di Grazia, M., Finocchiaro, P., Fronczek, F. R., Mamo, A. & Pappalardo, S. (1988). J. Org. Chem. 53, 3521–3529.
  3. Camalli, M., Carrozzini, B., Cascarano, G. L. & Giacovazzo, C. (2012). J. Appl. Cryst. 45, 351–356.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Fronczek, F. R., Mamo, A. & Pappalardo, S. (1989). Inorg. Chem. 28, 1419–1422.
  6. Isaji, H., Yasutake, M., Takemura, H., Sako, K., Tatemitsu, H., Inazu, T. & Shinmyozu, T. (2001). Eur. J. Org. Chem. pp. 2487–2499.
  7. Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.
  8. Krüger, H.-J. (1995). Chem. Ber. 128, 531–539.
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Muralidharan, S., Hojjatie, M., Firestone, M. & Freiser, H. (1989). J. Org. Chem. 54, 393–399.
  11. Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
  12. Satou, T. & Shinmyozu, T. (2002). J. Chem. Soc. Perkin Trans. 2, pp. 393–397.
  13. Semmelhack, M. F., Harrison, J. J., Young, D. C., Gutierrez, A., Rafii, S. & Clardy, J. (1985). J. Am. Chem. Soc. 107, 7508–7514.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Shibahara, M., Watanabe, M., Aso, K. & Shinmyozu, T. (2008). Synthesis, pp. 3749–3754.
  16. Shibahara, M., Watanabe, M., Goto, K. & Shinmyozu, T. (2014). Acta Cryst. E70, o625–o626. [DOI] [PMC free article] [PubMed]
  17. Shibahara, M., Watanabe, M., Iwanaga, T., Ideta, K. & Shinmyozu, T. (2007). J. Org. Chem. 72, 2865–2877. [DOI] [PubMed]
  18. Shibahara, M., Watanabe, M., Suenaga, M., Ideta, K., Matsumoto, T. & Shinmyozu, T. (2009). Tetrahedron Lett. 50, 1340–1344.
  19. Shibahara, M., Watanabe, M., Yuan, C. & Shinmyozu, T. (2011). Tetrahedron Lett. 52, 5012–5015.
  20. Shinmyozu, T., Hirai, Y. & Inazu, T. (1986). J. Org. Chem. 51, 1551–1555.
  21. Vögtle, F. & Schunder, L. (1969). Chem. Ber. 102, 2677–2683.
  22. Wakita, K. (2001). Yadokari-XG. http://www.hat.hi-ho.ne.jp/k-wakita/yadokari
  23. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814023691/hb7300sup1.cif

e-70-00447-sup1.cif (617.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023691/hb7300Isup2.hkl

e-70-00447-Isup2.hkl (295.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023691/hb7300Isup3.cml

CCDC reference: 1031274

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES