Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 29;70(Pt 11):o1199. doi: 10.1107/S1600536814023356

Crystal structure of (Z)-2-hy­droxy-4-methyl-N′-(4-oxo-1,3-thia­zolidin-2-yl­idene)benzohydrazide trihydrate

Peijuan Li a, Zizhen Kang a, Xin Fan a, Longfei Jin a,*
PMCID: PMC4257310  PMID: 25484827

Abstract

In the title compound, C11H11N3O3S·3H2O, the non-H atoms of the main mol­ecule are approximately planar, with an r.m.s. deviation of 0.030 Å. There is a bifurcated intra­molecular N—H⋯(O,S) hydrogen bond present forming S(6) and S(5) ring motifs. In the crystal, O—H⋯O and N—H⋯O hydrogen bonds link the molecules into a three-dimensional network.

Keywords: crystal structure; benzohydrazide; 1,3-thia­zol­idene; hydrogen bonding; biological activity

Related literature  

For the biological activities of thia­zolidin-4-one compounds, see: Jain et al. (2012); Verma & Saraf (2008); Singh et al. (1981). For the synthesis, see: Brown (1961).graphic file with name e-70-o1199-scheme1.jpg

Experimental  

Crystal data  

  • C11H11N3O3S·3H2O

  • M r = 319.33

  • Triclinic, Inline graphic

  • a = 7.3739 (12) Å

  • b = 8.5110 (13) Å

  • c = 12.493 (2) Å

  • α = 103.047 (2)°

  • β = 101.385 (2)°

  • γ = 92.532 (2)°

  • V = 745.5 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.21 × 0.20 × 0.18 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.950, T max = 0.957

  • 5460 measured reflections

  • 2731 independent reflections

  • 2266 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.154

  • S = 1.10

  • 2731 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814023356/lh5733sup1.cif

e-70-o1199-sup1.cif (256.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023356/lh5733Isup2.hkl

e-70-o1199-Isup2.hkl (150.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023356/lh5733Isup3.cml

. DOI: 10.1107/S1600536814023356/lh5733fig1.tif

The mol­ecular structure of (I), showing 30% probability displacement ellipsoids. The solvent water mol­ecules have been omitted for clarity. Dashed lines indicate hydrogen bonds.

. DOI: 10.1107/S1600536814023356/lh5733fig2.tif

Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.

CCDC reference: 1030606

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1OO5i 0.84 1.83 2.655(3) 167
N1H1AS1 0.86 2.51 2.941(2) 112
N1H1AO1 0.86 1.92 2.609(3) 137
N3H3BO4 0.86 1.89 2.739(4) 170
O4H4OAO3ii 0.84 2.10 2.813(4) 143
O4H4OBO6 0.81 1.81 2.587(4) 161
O5H5OAO2iii 0.84 2.02 2.864(3) 178
O5H5OBO4 0.84 2.40 3.239(6) 180
O6H6OAO2iv 0.84 2.11 2.947(4) 180
O6H6OBO2 0.84 2.02 2.862(3) 180

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This work was supported by the Key Project of the Natural Science Foundation of Hubei Province, China (grant No. 2008CDA067) and the Students Science and Technology Innovation Funds of the South-Central University for Nationalities.

supplementary crystallographic information

S1. Comment

4-Thiazolidinones are compounds which have a sulfur atom at position 1, a nitrogen atom at position 3 and a carbonyl group at position 4. Derivatives of 4-thiazolidinone exhibit prominent biological activites such as antibacterial, antifungal, antitubercular, anticancer, antiinflammtory, analgesic, anticonvulsant, antidepressant, antiviral/anti-HIV, antidiabetic, muscarinic receptor 1 agonist, FSH receptor agonist, trypanocidal (anti-epimastigote) and antiarrhythmic activity (Jain, et al., 2012; Verma & Saraf, 2008; Singh et al., 1981). Several hydrogen bond acceptor sites exist in these compounds, which could potentially lead to the formation of supermolecular structures. As part of our ongoing studies, the preparation and X-ray structure determination of the title compound, (I), was undertaken.

In the title molecule (Fig. 1) the bond lengths show normal ranges of values. The non-hydrogen atoms of the main molecule are approximately planar with an r.m.s. deviation of 0.030Å. There is a bifurcated intramolecular N—H···(O,S) hydrogen bond present forming S(6) and S(5) ring motifs. In the crystal, O—H···O and N—H···O hydrogen bonds form a three-dimensional network (Fig. 2).

S2. Experimental

The synthesis followed the prodecures of Brown (1961). 4-(4-Methyl salicyloyl) thiosemicarbazide (2.25 g, 0.01 mol), ethyl bromoacetate (3.34 g, 0.02 mol) and 50 ml of ethyl alcohol were added to a round-bottom flask. The mixture was stirred for 10 minutes, then slowly warmed to boiling and stirred for 8 h. After cooling to room temperature, 40 ml of water were added and the reaction mixture was left for 12 h. The resulting precipitate was filtered and recrystallized with ethyl alcohol to give 2.30 g of the title compound. Single crystals suitable for X-ray diffraction analysis were growned by slow evaporation of a solution of the title compound in methanol/water/ether (20:7:5) at room temperature.

S3. Refinement

H atoms bonded to C and N atoms were placed in calculated positions and included in a riding-model approximation with C—H = 0.93–0.97Å, N—H = 0.86Å and Uiso(H)=1.2Ueq(C,N) or 1.5Ueq(Cmethyl). The hydroxyl H atom was placed in an 'as found' position and refined as riding with Uiso(H)=1.5Ueq(O). The H atoms bonded to the solvent water molecules were included in positions which gave the most sensible and consistent hydrogen bond interactions and were refined as riding with Uiso(H)=1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids. The solvent water molecules have been omitted for clarity. Dashed lines indicate hydrogen bonds.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.

Crystal data

C11H11N3O3S·3H2O Z = 2
Mr = 319.33 F(000) = 336
Triclinic, P1 Dx = 1.423 Mg m3
a = 7.3739 (12) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.5110 (13) Å Cell parameters from 2596 reflections
c = 12.493 (2) Å θ = 2.5–31.1°
α = 103.047 (2)° µ = 0.25 mm1
β = 101.385 (2)° T = 296 K
γ = 92.532 (2)° Block, yellow
V = 745.5 (2) Å3 0.21 × 0.20 × 0.18 mm

Data collection

Bruker APEXII CCD diffractometer 2266 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.020
φ and ω scans θmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −8→8
Tmin = 0.950, Tmax = 0.957 k = −10→10
5460 measured reflections l = −14→15
2731 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.5146P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2731 reflections Δρmax = 0.53 e Å3
191 parameters Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.43631 (10) −0.07307 (8) 0.18232 (6) 0.0437 (2)
O1 0.2052 (3) −0.2057 (2) −0.11504 (16) 0.0516 (5)
H1O 0.2170 −0.3043 −0.1393 0.077*
O2 0.1220 (3) 0.2836 (2) −0.06337 (16) 0.0554 (6)
O3 0.6060 (3) 0.2112 (3) 0.47760 (17) 0.0650 (6)
N1 0.2365 (3) 0.0858 (3) 0.01408 (17) 0.0383 (5)
H1A 0.2525 −0.0154 0.0060 0.046*
N2 0.3037 (3) 0.1936 (2) 0.11730 (17) 0.0394 (5)
N3 0.4615 (3) 0.2237 (3) 0.30031 (18) 0.0424 (5)
H3B 0.4541 0.3266 0.3168 0.051*
C1 0.0805 (3) 0.0165 (3) −0.1811 (2) 0.0348 (5)
C2 0.1095 (4) −0.1485 (3) −0.2005 (2) 0.0385 (6)
C3 0.0424 (4) −0.2507 (3) −0.3061 (2) 0.0459 (7)
H3A 0.0628 −0.3597 −0.3176 0.055*
C4 −0.0540 (4) −0.1944 (3) −0.3946 (2) 0.0444 (6)
C5 −0.0822 (4) −0.0295 (3) −0.3762 (2) 0.0436 (6)
H5A −0.1456 0.0114 −0.4345 0.052*
C6 −0.0159 (4) 0.0715 (3) −0.2714 (2) 0.0394 (6)
H6A −0.0360 0.1806 −0.2603 0.047*
C7 −0.1260 (5) −0.3079 (4) −0.5088 (3) 0.0658 (9)
H7A −0.1713 −0.4104 −0.4996 0.099*
H7B −0.0272 −0.3230 −0.5489 0.099*
H7C −0.2251 −0.2622 −0.5504 0.099*
C8 0.1471 (4) 0.1390 (3) −0.0727 (2) 0.0365 (6)
C9 0.3903 (3) 0.1303 (3) 0.1930 (2) 0.0361 (6)
C10 0.5429 (4) 0.1475 (4) 0.3782 (2) 0.0450 (6)
C11 0.5482 (4) −0.0303 (4) 0.3291 (2) 0.0484 (7)
H11A 0.4837 −0.0940 0.3678 0.058*
H11B 0.6758 −0.0574 0.3373 0.058*
O4 0.4027 (6) 0.5448 (4) 0.3300 (3) 0.1451 (18)
H4OA 0.3560 0.5885 0.3846 0.218*
H4OB 0.3221 0.5540 0.2778 0.218*
O5 0.7047 (5) 0.5074 (3) 0.1718 (3) 0.1071 (12)
H5OA 0.7543 0.5677 0.1388 0.161*
H5OB 0.6264 0.5168 0.2128 0.161*
O6 0.1984 (7) 0.5417 (4) 0.1356 (3) 0.160 (2)
H6OA 0.1074 0.5918 0.1148 0.241*
H6OB 0.1766 0.4661 0.0771 0.241*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0523 (4) 0.0375 (4) 0.0412 (4) 0.0101 (3) 0.0083 (3) 0.0095 (3)
O1 0.0767 (14) 0.0345 (10) 0.0386 (10) 0.0106 (9) −0.0014 (9) 0.0093 (8)
O2 0.0862 (15) 0.0350 (10) 0.0397 (11) 0.0137 (10) 0.0006 (10) 0.0076 (8)
O3 0.0801 (15) 0.0747 (15) 0.0328 (11) 0.0121 (12) −0.0027 (10) 0.0094 (10)
N1 0.0508 (13) 0.0315 (10) 0.0296 (11) 0.0045 (9) 0.0029 (9) 0.0056 (8)
N2 0.0496 (13) 0.0344 (11) 0.0309 (11) 0.0037 (9) 0.0039 (9) 0.0050 (9)
N3 0.0535 (13) 0.0363 (11) 0.0323 (11) 0.0036 (10) 0.0002 (10) 0.0058 (9)
C1 0.0363 (13) 0.0376 (13) 0.0311 (12) 0.0036 (10) 0.0081 (10) 0.0083 (10)
C2 0.0431 (14) 0.0394 (14) 0.0330 (13) 0.0032 (11) 0.0072 (11) 0.0098 (10)
C3 0.0568 (17) 0.0372 (14) 0.0395 (15) 0.0060 (12) 0.0054 (12) 0.0046 (11)
C4 0.0447 (15) 0.0492 (15) 0.0341 (14) 0.0044 (12) 0.0026 (11) 0.0044 (12)
C5 0.0424 (14) 0.0534 (16) 0.0342 (13) 0.0114 (12) 0.0046 (11) 0.0105 (12)
C6 0.0419 (14) 0.0410 (14) 0.0356 (13) 0.0098 (11) 0.0074 (11) 0.0094 (11)
C7 0.080 (2) 0.059 (2) 0.0419 (17) 0.0092 (17) −0.0070 (15) −0.0042 (14)
C8 0.0416 (13) 0.0350 (13) 0.0330 (13) 0.0040 (10) 0.0073 (10) 0.0089 (10)
C9 0.0383 (13) 0.0352 (13) 0.0343 (13) 0.0014 (10) 0.0081 (10) 0.0079 (10)
C10 0.0467 (15) 0.0555 (16) 0.0342 (14) 0.0067 (12) 0.0068 (12) 0.0149 (12)
C11 0.0536 (17) 0.0538 (17) 0.0426 (15) 0.0139 (13) 0.0107 (13) 0.0194 (13)
O4 0.216 (4) 0.0616 (18) 0.097 (2) 0.052 (2) −0.072 (2) −0.0211 (16)
O5 0.162 (3) 0.0516 (15) 0.139 (3) 0.0217 (17) 0.088 (3) 0.0362 (17)
O6 0.285 (5) 0.0653 (19) 0.073 (2) 0.074 (3) −0.067 (3) −0.0197 (15)

Geometric parameters (Å, º)

S1—C9 1.759 (3) C3—H3A 0.9300
S1—C11 1.803 (3) C4—C5 1.401 (4)
O1—C2 1.357 (3) C4—C7 1.511 (4)
O1—H1O 0.8400 C5—C6 1.376 (4)
O2—C8 1.236 (3) C5—H5A 0.9300
O3—C10 1.224 (3) C6—H6A 0.9300
N1—C8 1.334 (3) C7—H7A 0.9600
N1—N2 1.387 (3) C7—H7B 0.9600
N1—H1A 0.8600 C7—H7C 0.9600
N2—C9 1.271 (3) C10—C11 1.504 (4)
N3—C10 1.349 (3) C11—H11A 0.9700
N3—C9 1.382 (3) C11—H11B 0.9700
N3—H3B 0.8600 O4—H4OA 0.8430
C1—C6 1.396 (4) O4—H4OB 0.8119
C1—C2 1.404 (4) O5—H5OA 0.8400
C1—C8 1.489 (3) O5—H5OB 0.8399
C2—C3 1.388 (4) O6—H6OA 0.8400
C3—C4 1.385 (4) O6—H6OB 0.8400
C9—S1—C11 91.62 (12) C1—C6—H6A 118.8
C2—O1—H1O 108.8 C4—C7—H7A 109.5
C8—N1—N2 120.0 (2) C4—C7—H7B 109.5
C8—N1—H1A 120.0 H7A—C7—H7B 109.5
N2—N1—H1A 120.0 C4—C7—H7C 109.5
C9—N2—N1 114.6 (2) H7A—C7—H7C 109.5
C10—N3—C9 117.5 (2) H7B—C7—H7C 109.5
C10—N3—H3B 121.2 O2—C8—N1 121.3 (2)
C9—N3—H3B 121.2 O2—C8—C1 121.7 (2)
C6—C1—C2 117.5 (2) N1—C8—C1 117.0 (2)
C6—C1—C8 117.0 (2) N2—C9—N3 120.5 (2)
C2—C1—C8 125.5 (2) N2—C9—S1 128.4 (2)
O1—C2—C3 120.8 (2) N3—C9—S1 111.13 (18)
O1—C2—C1 119.0 (2) O3—C10—N3 125.6 (3)
C3—C2—C1 120.1 (2) O3—C10—C11 122.5 (3)
C4—C3—C2 121.7 (3) N3—C10—C11 111.9 (2)
C4—C3—H3A 119.2 C10—C11—S1 107.76 (18)
C2—C3—H3A 119.2 C10—C11—H11A 110.2
C3—C4—C5 118.5 (2) S1—C11—H11A 110.2
C3—C4—C7 120.8 (3) C10—C11—H11B 110.2
C5—C4—C7 120.7 (3) S1—C11—H11B 110.2
C6—C5—C4 119.7 (2) H11A—C11—H11B 108.5
C6—C5—H5A 120.1 H4OA—O4—H4OB 100.2
C4—C5—H5A 120.1 H5OA—O5—H5OB 135.7
C5—C6—C1 122.5 (2) H6OA—O6—H6OB 95.3
C5—C6—H6A 118.8
C8—N1—N2—C9 −178.4 (2) C6—C1—C8—O2 −1.6 (4)
C6—C1—C2—O1 179.0 (2) C2—C1—C8—O2 177.2 (3)
C8—C1—C2—O1 0.2 (4) C6—C1—C8—N1 178.9 (2)
C6—C1—C2—C3 −0.4 (4) C2—C1—C8—N1 −2.3 (4)
C8—C1—C2—C3 −179.2 (2) N1—N2—C9—N3 −178.8 (2)
O1—C2—C3—C4 −179.4 (3) N1—N2—C9—S1 0.7 (4)
C1—C2—C3—C4 0.0 (4) C10—N3—C9—N2 176.4 (2)
C2—C3—C4—C5 0.5 (4) C10—N3—C9—S1 −3.1 (3)
C2—C3—C4—C7 −180.0 (3) C11—S1—C9—N2 −177.6 (3)
C3—C4—C5—C6 −0.6 (4) C11—S1—C9—N3 1.9 (2)
C7—C4—C5—C6 179.9 (3) C9—N3—C10—O3 −177.0 (3)
C4—C5—C6—C1 0.2 (4) C9—N3—C10—C11 2.8 (4)
C2—C1—C6—C5 0.3 (4) O3—C10—C11—S1 178.6 (2)
C8—C1—C6—C5 179.2 (2) N3—C10—C11—S1 −1.2 (3)
N2—N1—C8—O2 −0.1 (4) C9—S1—C11—C10 −0.4 (2)
N2—N1—C8—C1 179.4 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1O···O5i 0.84 1.83 2.655 (3) 167
N1—H1A···S1 0.86 2.51 2.941 (2) 112
N1—H1A···O1 0.86 1.92 2.609 (3) 137
N3—H3B···O4 0.86 1.89 2.739 (4) 170
O4—H4OA···O3ii 0.84 2.10 2.813 (4) 143
O4—H4OB···O6 0.81 1.81 2.587 (4) 161
O5—H5OA···O2iii 0.84 2.02 2.864 (3) 178
O5—H5OB···O4 0.84 2.40 3.239 (6) 180
O6—H6OA···O2iv 0.84 2.11 2.947 (4) 180
O6—H6OB···O2 0.84 2.02 2.862 (3) 180

Symmetry codes: (i) −x+1, −y, −z; (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+1, −z; (iv) −x, −y+1, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5733).

References

  1. Brown, F. C. (1961). Chem. Rev. 61, 463–521.
  2. Bruker (2001). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Jain, A. K., Vaidya, A., Ravichandran, V., Kashaw, S. K. & Agrawal, R. K. (2012). Bioorg. Med. Chem. 20, 3378–3395. [DOI] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Singh, S. P., Parmar, S. S., Raman, K. & Stenberg, V. I. (1981). Chem. Rev. 81, 175–203.
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Verma, A. & Saraf, S. K. (2008). Eur. J. Med. Chem. 43, 897–905. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814023356/lh5733sup1.cif

e-70-o1199-sup1.cif (256.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023356/lh5733Isup2.hkl

e-70-o1199-Isup2.hkl (150.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023356/lh5733Isup3.cml

. DOI: 10.1107/S1600536814023356/lh5733fig1.tif

The mol­ecular structure of (I), showing 30% probability displacement ellipsoids. The solvent water mol­ecules have been omitted for clarity. Dashed lines indicate hydrogen bonds.

. DOI: 10.1107/S1600536814023356/lh5733fig2.tif

Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.

CCDC reference: 1030606

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES