Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 24;70(Pt 11):382–384. doi: 10.1107/S1600536814022879

Crystal structure of 2,2-di­phenyl­hydrazinium chloride

Amit Kumal Paul a, Soma Mukherjee a, Helen Stoeckli-Evans b,*
PMCID: PMC4257322  PMID: 25484752

In the title mol­ecule, the phenyl rings are inclined to one another by 78.63 (17)°. In the crystal, mol­ecules are linked via N—H⋯Cl hydrogen bonds, forming chains along [10-1], which enclose two adjacent Inline graphic(6) ring motifs.

Keywords: crystal structure, di­phenyl­hydrazine, hydrazinium, hydrogen bonding

Abstract

In the title compound, C12H13N2 +·Cl, the chloride salt of 1,1′-di­phenyl­hydrazine, the phenyl rings are inclined to one another by 78.63 (17)°. The N—+NH3 bond lengths is 1.445 (3) Å, and the N—Cphen­yl bond lengths are 1.435 (3) and 1.447 (4) Å. In the crystal, mol­ecules are linked via N—H⋯Cl hydrogen bonds, forming chains along [10-1], which enclose two adjacent R 4 2(6) ring motifs. The chains are reinforced by C—H⋯Cl hydrogen bonds.

Chemical context  

1,1′-Di­phenyl­hydrazine is a ‘free’ hydrazine, viz with an NH2 group. It has been used as a starting reagent for the preparation of Schiff bases as fluorescent sensors for fluoride (Mukherjee et al., 2014), and metal complexes (Stender et al., 2003; Clulow et al., 2008). The title compound, (I), crystallized out of a reaction of 1,1′-di­phenyl­hydrazine with 2,6-di­acetyl­pyridine in an attempt to prepare the ligand 2,6-di­acetyl­pyridine bis­(N,N-di­phenyl­hydrazone). The latter compound is one of a series that has been used to prepare bis­(imino)­pyridyl iron and cobalt complexes to study the effect of nitro­gen substituents on ethyl­ene oligomerization and polymerization (Britovsek et al., 2001).graphic file with name e-70-00382-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title salt, (I), is illustrated in Fig. 1, and selected bond distances and bond angles are given in Table 1. The two phenyl rings (C1–C6 and C7–C12) are inclined to one another by 78.63 (17)°. The N1—N2 bond lengths is 1.445 (3) Å and the N1—C1 and N1—C7 bond lengths are 1.435 (3) and 1.447 (4) Å, respectively. Atom N1 is displaced from the plane of the three connected atoms, (N2/C1/C7), by 0.370 (2) Å, while the sum of the three angles involving atom N1 is 340.9 °. This illustrates clearly the pyramidal nature of the central N atom, N1.

Figure 1.

Figure 1

A view of the mol­ecular structure of the title compound with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Table 1. Selected geometric parameters (, ).

N1N2 1.445(3) N1C7 1.447(4)
N1C1 1.435(3)    
       
C1N1N2 113.4(2) N2N1C7 111.5(2)
C1N1C7 116.0(2)    

Supra­molecular features  

In the crystal of compound (I), mol­ecules are linked via N—H⋯Cl hydrogen bonds, forming chains along [10Inline graphic], which enclose two adjacent Inline graphic(6) ring motifs (Table 2 and Fig. 2). The chains are reinforced by C—H⋯Cl hydrogen bonds (Fig. 3 and Table 2).

Table 2. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N2H1NCl1i 0.92(3) 2.31(3) 3.208(3) 165(3)
N2H2NCl1ii 0.96(3) 2.23(3) 3.167(3) 167(3)
N2H3NCl1iii 0.86(4) 2.30(4) 3.154(3) 175(3)
C2H2Cl1i 0.95 2.96 3.696(3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A partial view normal to (10Inline graphic) of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 2 for details; C-bound H atoms have been omitted for clarity).

Figure 3.

Figure 3

A view along the b axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 2 for details; C-bound H atoms not involved in hydrogen bonding have been omitted for clarity).

Database survey  

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) yielded only two hits for the sub-structure 1,1′-di­phenyl­hydrazine: viz. 1,1′-di­phenyl­hydrazinium di­cyano­gold(I) monohydrate (II) (Stender et al., 2003) and 1,1′-di­phenyl­hydrazine (III) itself (Clulow et al., 2008).

The structure of salt (II) is very similar to that of the title compound, (I). The two phenyl rings are inclined to one another by 80.04 (19)° compared to 78.63 (17)° in (I). The bond lengths and angles involving the central N atom are also very similar to those in (I). The central N atom is displaced by 0.358 (3) Å from the plane of the three attached N and C atoms, and the sum of their bond angles is 342.0°, indicating clearly the pyramidal nature of the central N atom, as in (I).

In 1,1′-di­phenyl­hydrazine (III), which crystallized with two independent mol­ecules per asymmetric unit, the phenyl rings are inclined to one another by only 58.39 (2) and 52.30 (9)°, and the N—NH2 bond lengths are 1.418 (2) and 1.411 (3) Å. The central N atoms are displaced by 0.1199 (17) and 0.0828 (19) Å from the planes of the three attached N and C atoms, with the sums of their bond angles being 357.85 and 358.97°. This confirms the trigonal–planar conformation of the central N atom.

In the crystal of compound (II), mol­ecules are linked by N—H⋯N, N—H⋯O and O—H⋯N hydrogen bonds, forming two-dimensional networks parallel to (001). These sheets are linked via C—H⋯π inter­actions, forming a three-dimensional structure. In the crystal of compound (III), there are no hydrogen bonds present with only weak C—H⋯π inter­actions linking the mol­ecules to form chains along [100]. There are no π–π inter­actions present in the crystal structures of any of the three compounds.

Synthesis and crystallization  

Brown block-like crystals of the title compound were obtained during an attempt to prepare the ligand 2,6-di­acetyl­pyridine bis­(N,N-di­phenyl­hydrazone) by a condensation reaction involving 1,1′-di­phenyl­hydrazinium hydro­chloride and 2,6-di­acetyl­pyridine in methanol.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. The ammonium H atoms were located in a difference Fourier map and freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C—H = 0.95 Å with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula C12H13N2 +Cl
M r 220.69
Crystal system, space group Monoclinic, C2/c
Temperature (K) 173
a, b, c () 21.341(3), 5.3728(4), 19.940(3)
() 98.291(10)
V (3) 2262.4(5)
Z 8
Radiation type Mo K
(mm1) 0.31
Crystal size (mm) 0.45 0.35 0.25
 
Data collection
Diffractometer STOE IPDS 2
Absorption correction Multi-scan (MULscanABS in PLATON; Spek, 2009)
T min, T max 0.578, 1.000
No. of measured, independent and observed [I > 2(I)] reflections 7392, 2140, 1517
R int 0.120
(sin /)max (1) 0.609
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.057, 0.141, 0.93
No. of reflections 2140
No. of parameters 148
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.30, 0.47

Computer programs: X-AREA and X-RED32 (Stoe Cie, 2009), SHELXS2013 and SHELXL2013 (Sheldrick, 2008), PLATON (Spek, 2009), Mercury (Macrae et al., 2008), and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814022879/lh5735sup1.cif

e-70-00382-sup1.cif (243.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814022879/lh5735Isup2.hkl

e-70-00382-Isup2.hkl (117.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814022879/lh5735Isup3.cml

CCDC reference: 1029761

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the CSIR, UGC, DST–FIST and DST–PURSE, New Delhi, and the Indo Swiss Joint Research Program (ISJRP) for Joint Utilization of Advanced Facilities (JUAF) are gratefully acknowledged. We are also grateful to the University of Kalyani for providing infrastructural facilities, and to the XRD Application Laboratory, CSEM, Neuchâtel, Switzerland, for access to the X-ray diffraction equipment.

supplementary crystallographic information

Crystal data

C12H13N2+·Cl F(000) = 928
Mr = 220.69 Dx = 1.296 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 21.341 (3) Å Cell parameters from 5046 reflections
b = 5.3728 (4) Å θ = 1.9–26.0°
c = 19.940 (3) Å µ = 0.31 mm1
β = 98.291 (10)° T = 173 K
V = 2262.4 (5) Å3 Block, brown
Z = 8 0.45 × 0.35 × 0.25 mm

Data collection

STOE IPDS 2 diffractometer 2140 independent reflections
Radiation source: fine-focus sealed tube 1517 reflections with I > 2σ(I)
Plane graphite monochromator Rint = 0.120
φ + ω scans θmax = 25.6°, θmin = 1.9°
Absorption correction: multi-scan (MULscanABS in PLATON; Spek, 2009) h = −24→25
Tmin = 0.578, Tmax = 1.000 k = −6→5
7392 measured reflections l = −24→24

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: mixed
wR(F2) = 0.141 H atoms treated by a mixture of independent and constrained refinement
S = 0.93 w = 1/[σ2(Fo2) + (0.0794P)2] where P = (Fo2 + 2Fc2)/3
2140 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.14173 (10) 0.9765 (4) 0.38714 (11) 0.0284 (5)
N2 0.17735 (12) 0.9687 (5) 0.45449 (12) 0.0296 (5)
H1N 0.1692 (14) 0.834 (6) 0.4807 (14) 0.032 (8)*
H2N 0.1695 (15) 1.113 (6) 0.4803 (14) 0.034 (8)*
H3N 0.217 (2) 0.982 (7) 0.4537 (17) 0.046 (10)*
C1 0.15920 (13) 0.7846 (5) 0.34332 (13) 0.0282 (6)
C2 0.20210 (14) 0.5967 (5) 0.36467 (14) 0.0312 (6)
H2 0.2207 0.5880 0.4108 0.037*
C3 0.21793 (14) 0.4209 (5) 0.31865 (14) 0.0345 (7)
H3 0.2470 0.2917 0.3336 0.041*
C4 0.19146 (15) 0.4339 (6) 0.25115 (15) 0.0376 (7)
H4 0.2025 0.3151 0.2196 0.045*
C5 0.14855 (14) 0.6226 (6) 0.23008 (14) 0.0357 (7)
H5 0.1301 0.6317 0.1838 0.043*
C6 0.13236 (14) 0.7966 (5) 0.27525 (14) 0.0336 (6)
H6 0.1030 0.9246 0.2601 0.040*
C7 0.07462 (14) 1.0052 (5) 0.38918 (15) 0.0334 (7)
C8 0.04095 (15) 0.8348 (7) 0.42154 (16) 0.0438 (8)
H8 0.0617 0.6955 0.4442 0.053*
C9 −0.02370 (18) 0.8694 (9) 0.42060 (19) 0.0622 (11)
H9 −0.0474 0.7536 0.4427 0.075*
C10 −0.05343 (18) 1.0729 (10) 0.3874 (2) 0.0708 (14)
H10 −0.0976 1.0975 0.3870 0.085*
C11 −0.0194 (2) 1.2384 (9) 0.3551 (3) 0.0798 (15)
H11 −0.0405 1.3756 0.3317 0.096*
C12 0.04547 (17) 1.2096 (7) 0.3560 (2) 0.0561 (10)
H12 0.0691 1.3272 0.3344 0.067*
Cl1 0.17516 (3) 0.53583 (13) 0.04013 (3) 0.0316 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0175 (11) 0.0303 (12) 0.0360 (12) 0.0013 (9) −0.0004 (9) −0.0032 (9)
N2 0.0203 (13) 0.0317 (13) 0.0361 (13) −0.0011 (11) 0.0012 (10) −0.0047 (11)
C1 0.0192 (14) 0.0282 (14) 0.0376 (14) −0.0040 (11) 0.0052 (11) −0.0018 (11)
C2 0.0271 (15) 0.0305 (15) 0.0363 (14) −0.0017 (12) 0.0055 (12) 0.0028 (11)
C3 0.0308 (17) 0.0290 (15) 0.0460 (16) 0.0025 (12) 0.0128 (13) 0.0030 (12)
C4 0.0348 (18) 0.0366 (16) 0.0441 (16) −0.0056 (14) 0.0148 (13) −0.0082 (13)
C5 0.0291 (16) 0.0414 (16) 0.0363 (15) −0.0084 (13) 0.0039 (12) −0.0036 (12)
C6 0.0255 (15) 0.0348 (15) 0.0401 (15) −0.0010 (12) 0.0036 (12) 0.0034 (12)
C7 0.0203 (14) 0.0348 (16) 0.0433 (15) 0.0017 (12) −0.0013 (11) −0.0123 (12)
C8 0.0226 (16) 0.057 (2) 0.0510 (18) −0.0017 (15) 0.0043 (13) −0.0060 (15)
C9 0.031 (2) 0.096 (3) 0.062 (2) −0.008 (2) 0.0132 (17) −0.025 (2)
C10 0.0222 (19) 0.102 (4) 0.084 (3) 0.008 (2) −0.0050 (18) −0.050 (3)
C11 0.041 (2) 0.067 (3) 0.120 (4) 0.024 (2) −0.026 (2) −0.027 (3)
C12 0.036 (2) 0.045 (2) 0.082 (3) 0.0090 (16) −0.0091 (17) −0.0038 (18)
Cl1 0.0232 (4) 0.0334 (4) 0.0381 (4) 0.0010 (3) 0.0044 (3) 0.0008 (3)

Geometric parameters (Å, º)

N1—N2 1.445 (3) C5—C6 1.376 (4)
N1—C1 1.435 (3) C5—H5 0.9500
N1—C7 1.447 (4) C6—H6 0.9500
N2—H1N 0.92 (3) C7—C8 1.380 (5)
N2—H2N 0.96 (3) C7—C12 1.383 (4)
N2—H3N 0.86 (4) C8—C9 1.390 (5)
C1—C2 1.388 (4) C8—H8 0.9500
C1—C6 1.397 (4) C9—C10 1.384 (7)
C2—C3 1.392 (4) C9—H9 0.9500
C2—H2 0.9500 C10—C11 1.365 (7)
C3—C4 1.384 (4) C10—H10 0.9500
C3—H3 0.9500 C11—C12 1.392 (6)
C4—C5 1.390 (4) C11—H11 0.9500
C4—H4 0.9500 C12—H12 0.9500
C1—N1—N2 113.4 (2) C4—C5—H5 119.5
C1—N1—C7 116.0 (2) C5—C6—C1 119.9 (3)
N2—N1—C7 111.5 (2) C5—C6—H6 120.1
N1—N2—H1N 115.5 (19) C1—C6—H6 120.1
N1—N2—H2N 111.5 (18) C8—C7—C12 121.5 (3)
H1N—N2—H2N 106 (3) C8—C7—N1 121.8 (3)
N1—N2—H3N 112 (2) C12—C7—N1 116.8 (3)
H1N—N2—H3N 110 (3) C7—C8—C9 119.2 (4)
H2N—N2—H3N 101 (3) C7—C8—H8 120.4
C2—C1—C6 119.5 (3) C9—C8—H8 120.4
C2—C1—N1 123.6 (2) C10—C9—C8 119.9 (4)
C6—C1—N1 116.9 (2) C10—C9—H9 120.1
C1—C2—C3 120.2 (3) C8—C9—H9 120.1
C1—C2—H2 119.9 C11—C10—C9 120.1 (4)
C3—C2—H2 119.9 C11—C10—H10 119.9
C4—C3—C2 120.2 (3) C9—C10—H10 119.9
C4—C3—H3 119.9 C10—C11—C12 121.2 (4)
C2—C3—H3 119.9 C10—C11—H11 119.4
C3—C4—C5 119.3 (3) C12—C11—H11 119.4
C3—C4—H4 120.4 C7—C12—C11 118.2 (4)
C5—C4—H4 120.4 C7—C12—H12 120.9
C6—C5—C4 120.9 (3) C11—C12—H12 120.9
C6—C5—H5 119.5
N2—N1—C1—C2 5.2 (4) C1—N1—C7—C8 72.9 (3)
C7—N1—C1—C2 −125.8 (3) N2—N1—C7—C8 −59.0 (3)
N2—N1—C1—C6 −172.7 (2) C1—N1—C7—C12 −105.9 (3)
C7—N1—C1—C6 56.3 (3) N2—N1—C7—C12 122.2 (3)
C6—C1—C2—C3 −0.4 (4) C12—C7—C8—C9 0.1 (5)
N1—C1—C2—C3 −178.2 (2) N1—C7—C8—C9 −178.7 (3)
C1—C2—C3—C4 0.7 (4) C7—C8—C9—C10 0.1 (5)
C2—C3—C4—C5 −0.6 (4) C8—C9—C10—C11 0.5 (6)
C3—C4—C5—C6 0.3 (4) C9—C10—C11—C12 −1.3 (6)
C4—C5—C6—C1 0.0 (4) C8—C7—C12—C11 −0.8 (5)
C2—C1—C6—C5 0.1 (4) N1—C7—C12—C11 178.0 (3)
N1—C1—C6—C5 178.1 (2) C10—C11—C12—C7 1.4 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1N···Cl1i 0.92 (3) 2.31 (3) 3.208 (3) 165 (3)
N2—H2N···Cl1ii 0.96 (3) 2.23 (3) 3.167 (3) 167 (3)
N2—H3N···Cl1iii 0.86 (4) 2.30 (4) 3.154 (3) 175 (3)
C2—H2···Cl1i 0.95 2.96 3.696 (3) 135

Symmetry codes: (i) x, −y+1, z+1/2; (ii) x, −y+2, z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.

References

  1. Britovsek, G. J. P., Gibson, V. C., Kimberley, B. S., Mastroianni, S., Redshaw, C., Solan, G. A., White, A. J. P. & Williams, D. J. (2001). J. Chem. Soc. Dalton Trans. pp. 1639–1644.
  2. Clulow, A. J., Selby, J. D., Cushion, M. G., Schwarz, A. D. & Mountford, P. (2008). Inorg. Chem. 47, 12049–12062. [DOI] [PubMed]
  3. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  4. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  5. Mukherjee, S., Paul, A. K. & Stoeckli-Evans, H. (2014). Sens. Actuators B Chem. 202, 1190–1199.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Stender, M., Olmstead, M. M., Balch, A. L., Rios, D. & Attar, S. (2003). Dalton Trans. pp. 4282–4287.
  9. Stoe & Cie. (2009). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814022879/lh5735sup1.cif

e-70-00382-sup1.cif (243.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814022879/lh5735Isup2.hkl

e-70-00382-Isup2.hkl (117.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814022879/lh5735Isup3.cml

CCDC reference: 1029761

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES