Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 24;70(Pt 11):379–381. doi: 10.1107/S1600536814023009

Crystal structure of 3-amino-5,5-dimethyl-2-[(E)-2-nitro­ethen­yl]cyclo­hex-2-en-1-one

Brigita Vigante a, Dmitrijs Stepanovs a,*, Andrejs Pelss a, Anatoly Mishnev a
PMCID: PMC4257328  PMID: 25484751

The asymmetric unit of the title compound contains two independent mol­ecules with similar conformations, the cyclo­hexene rings adopting the same envelope conformation. In the crystal, adjacent mol­ecules are connected via N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming supra­molecular layers parallel to (Inline graphic01).

Keywords: nitro­dienamines, nitro­acetaldehyde, Knoevenagel-type condensation, crystal structure, hydrogen bonds

Abstract

The asymmetric unit of the title compound, C10H14N2O3, contains two independent mol­ecules with similar conformations. In the both mol­ecules, the cyclo­hexene rings adopt the same envelope conformation with the flap C atoms lying 0.658 (3) and 0.668 (3) Å from the mean planes formed by the remaining atoms. In the crystal, adjacent mol­ecules are connected via N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions, forming supra­molecular layers parallel to (-101).

Chemical context  

sec-Nitro­dienamines appear to be potentially useful synthons in organic synthesis due to the enaminic, dienic and ‘push–pull’ character of these mol­ecules (Koike et al., 2000). Several methods are available for the synthesis of nitro­dienamines, which include the reaction of acetaldehydes with 1-di­methyl­amino-2-nitro­ethylen followed by treatment with amines (Severin et al., 1971), the reaction of amino­acrolein with di­methyl­amine and subsequent treatment of the vinyl­amidinium salt with nitro­methane (Takeuchi et al., 1988) and nitro­alken­ylation reactions of 2-methyl­indolines with nitro­enam­ines (Attanasi et al., 2006).graphic file with name e-70-00379-scheme1.jpg

Previously, we found that alpha-nitro acetaldehyde undergoes an unusual condensation with aldehydes and ammonium acetate to afford 3,5-di­nitro-1,2-di­hydro­pyridines (Vigante et al., 1993). Afterwards, the synthesis of N-substituted 1,2-di­hydro­pyridines by heterocyclic annulation reaction of sec-nitro­dienamines with acetaldehyde was reported (Koike et al., 1999). As part of our studies of synthetic pathways to fused 1,2-di­hydro­pyridines, the title compound was synthesized and we report herein on its mol­ecular and crystal structure.

Structural commentary  

The asymmetric unit of the title compound (Fig. 1) contains two independent mol­ecules (A and B) having coincident geometry. The bond lengths in the mol­ecules are close to standard values. The cyclo­hexene rings adopt an envelope conformation, with flap atoms C3A and C3B lying 0.658 (3) and 0.668 (3) Å from the mean planes formed by the remaining atoms in mol­ecules A and B, respectively.

Figure 1.

Figure 1

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering

Supra­molecular features  

In the crystal, the mol­ecules form sheets parallel to (Inline graphic01) by means of N—H⋯O hydrogen bonds. The network consists of two hydrogen-bond motifs, Inline graphic(16) and Inline graphic(32) (Fig. 2). Weak C—H⋯O inter­actions are also observed in the supra­molecular networks (Table 1).

Figure 2.

Figure 2

The crystal packing of the title compound showing sheets parallel to (Inline graphic01).

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1AH1NAO1B i 0.84(2) 2.06(3) 2.873(2) 162(2)
N1AH2NAO3B ii 0.88(2) 2.10(3) 2.961(2) 167(2)
N1BH1NBO3A ii 0.92(2) 2.03(3) 2.942(2) 168(2)
N1BH2NBO1A iii 0.85(3) 2.04(2) 2.858(2) 162(2)
C2AH2A1O1B i 0.97 2.42 3.262(2) 145
C2BH2B1O1A iii 0.97 2.46 3.298(2) 144
C7AH7AO3B ii 0.93 2.54 3.469(2) 173
C7BH7BO3A ii 0.93 2.55 3.469(2) 171

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Database survey  

A search of the Cambridge Structural Database (Version 5.35; Groom & Allen, 2014) for 5,5-di­methyl­cyclo­hex-2-enones gave 609 hits. Only one of these is a 3-amino-5,5-di­methyl­cyclo­hex-2-enone, namely, 3-amino-5,5-dimethyl-2-phenyl­cyclo­hex-2-enone (Fun et al., 2007). The conformation of the cyclo­hexene ring is identical to that found in the title compound.

Synthesis and crystallization  

A mixture of 3-amino-5,5-di­methyl­cyclo­hex-2-enone (140 mg, 1 mmol) and potassium salt of alpha-nitro acetaldehyde (190 mg, 1.5 mmol) in methanol (2 mL) and acetic acid (2 mL) was stirred for 5 days at room temperature. The solvents were removed under reduced pressure and the residue was purified by flash chromatography on silica gel, eluent: chloro­form, hexane, acetone, methanol (9:7:1:1). The appropriate fraction was collected and crystallized from methanol, yielding 116 mg (55%) of bright-yellow crystals (m.p. 503 K).

MS (+ESI) m/z (relative intensity): 211.2 ([M+H]+, 100).1H NMR (400 MHz, DMSO-d 6): δ 0.96 (s, 6H), 2.20 (s, 2H), 2.53 (s, 2H), 8.12 (d, J = 12.4 Hz, 1H), 8.39 (d, J = 12.4 Hz, 1H), 8.48 (s, 1H), 8.74 (s, 1H).

13C NMR (100.56 MHz, DMSO-d6): δ 27.94, 31.41, 44.12, 51.46, 100.02, 131.82, 132.15, 172.30, 193.93. Analysis calculated for C10H14N2O3: C, 57.13; H, 6.71; N, 13.32; found: C, 56.98; H, 6.78; N, 13.16.

Refinement  

Hydrogens on the amino group were located in a difference Fourier map and freely refined. The C-bound hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 to 0.97 Å and refined as riding on their parent atoms with U iso(H) = 1.5U eq(C) for methyl groups and U iso(H) = 1.2U eq(C) for other H atoms. The reflection whose intensity was affected by the beamstop was removed from the final refinement. Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C10H14N2O3
M r 210.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 173
a, b, c () 11.3545(3), 18.1097(5), 10.4689(3)
() 100.119(2)
V (3) 2119.20(10)
Z 8
Radiation type Mo K
(mm1) 0.10
Crystal size (mm) 0.35 0.25 0.01
 
Data collection
Diffractometer Nonius KappaCCD
No. of measured, independent and observed [I > 2(I)] reflections 10741, 6174, 3235
R int 0.068
(sin /)max (1) 0.705
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.069, 0.158, 1.01
No. of reflections 6174
No. of parameters 287
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.28, 0.29

Computer programs: KappaCCD Server Software (Nonius, 1997), HKL DENZO SCALEPACK (Otwinowski Minor, 1997), SIR2011 (Burla et al., 2012), ORTEP-3 for Windows (Farrugia, 2012), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, globe. DOI: 10.1107/S1600536814023009/xu5825sup1.cif

e-70-00379-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023009/xu5825Isup2.hkl

e-70-00379-Isup2.hkl (302.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023009/xu5825Isup3.cml

CCDC reference: 1027341

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the European Social Fund (No. 1DP/1.1.1.2.0/13/APIA/VIAA/011).

supplementary crystallographic information

Crystal data

C10H14N2O3 F(000) = 896
Mr = 210.23 Dx = 1.318 Mg m3
Monoclinic, P21/c Melting point: 503 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 11.3545 (3) Å Cell parameters from 11852 reflections
b = 18.1097 (5) Å θ = 1.0–30.0°
c = 10.4689 (3) Å µ = 0.10 mm1
β = 100.119 (2)° T = 173 K
V = 2119.20 (10) Å3 Plate, yellow
Z = 8 0.35 × 0.25 × 0.01 mm

Data collection

Nonius KappaCCD diffractometer 3235 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.068
Graphite monochromator θmax = 30.1°, θmin = 2.7°
CCD scans h = −15→15
10741 measured reflections k = −25→23
6174 independent reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.158 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0554P)2 + 0.6139P] where P = (Fo2 + 2Fc2)/3
6174 reflections (Δ/σ)max < 0.001
287 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.44423 (12) 0.26776 (8) 0.25500 (13) 0.0295 (4)
O2A 0.55773 (14) 0.50926 (9) 0.20293 (17) 0.0471 (5)
O3A 0.38755 (15) 0.52829 (9) 0.07970 (17) 0.0470 (5)
N1A 0.09527 (15) 0.33969 (10) −0.03942 (16) 0.0254 (4)
H1NA 0.034 (2) 0.3223 (13) −0.087 (2) 0.030*
H2NA 0.1126 (19) 0.3869 (14) −0.043 (2) 0.030*
N2A 0.45967 (16) 0.48703 (10) 0.14688 (17) 0.0307 (4)
C1A 0.16406 (16) 0.29331 (11) 0.03826 (18) 0.0209 (4)
C2A 0.11184 (17) 0.21747 (11) 0.0458 (2) 0.0247 (5)
H2A1 0.0619 0.2062 −0.0369 0.030*
H2A2 0.0608 0.2179 0.1110 0.030*
C3A 0.20444 (16) 0.15635 (11) 0.07868 (19) 0.0229 (4)
C4A 0.28813 (18) 0.18035 (11) 0.20157 (19) 0.0271 (5)
H4A1 0.2440 0.1807 0.2729 0.032*
H4A2 0.3518 0.1442 0.2217 0.032*
C5A 0.34312 (16) 0.25560 (11) 0.19190 (17) 0.0215 (4)
C6A 0.27637 (16) 0.31205 (11) 0.11171 (17) 0.0207 (4)
C7A 0.32346 (17) 0.38535 (11) 0.10523 (18) 0.0232 (4)
H7A 0.2738 0.4188 0.0543 0.028*
C8A 0.42972 (18) 0.41153 (11) 0.16320 (19) 0.0259 (5)
H8A 0.4840 0.3805 0.2141 0.031*
C9A 0.27396 (19) 0.14516 (13) −0.0321 (2) 0.0329 (5)
H9A1 0.3107 0.1909 −0.0500 0.049*
H9A2 0.2202 0.1292 −0.1083 0.049*
H9A3 0.3347 0.1084 −0.0078 0.049*
C10A 0.14236 (19) 0.08427 (12) 0.1036 (2) 0.0356 (6)
H10A 0.2015 0.0475 0.1344 0.053*
H10B 0.0938 0.0676 0.0244 0.053*
H10C 0.0927 0.0924 0.1677 0.053*
O1B 0.92300 (13) 0.24275 (8) 0.28241 (13) 0.0322 (4)
O2B 1.04280 (14) 0.48418 (9) 0.22269 (17) 0.0487 (5)
O3B 0.88174 (16) 0.49987 (9) 0.08349 (18) 0.0521 (5)
N1B 0.59376 (15) 0.31138 (10) −0.04246 (17) 0.0263 (4)
H1NB 0.6104 (19) 0.3611 (14) −0.046 (2) 0.032*
H2NB 0.537 (2) 0.2930 (12) −0.097 (2) 0.032*
N2B 0.94809 (15) 0.46084 (10) 0.16108 (17) 0.0315 (4)
C1B 0.66003 (16) 0.26509 (11) 0.03703 (18) 0.0208 (4)
C2B 0.61249 (16) 0.18770 (11) 0.03415 (19) 0.0233 (4)
H2B1 0.5699 0.1773 −0.0526 0.028*
H2B2 0.5553 0.1847 0.0927 0.028*
C3B 0.70757 (16) 0.12831 (11) 0.07177 (19) 0.0227 (4)
C4B 0.77921 (18) 0.15161 (11) 0.20286 (19) 0.0258 (5)
H4B1 0.7281 0.1477 0.2677 0.031*
H4B2 0.8451 0.1174 0.2267 0.031*
C5B 0.82867 (17) 0.22863 (11) 0.20607 (18) 0.0224 (4)
C6B 0.76642 (16) 0.28498 (11) 0.12114 (18) 0.0213 (4)
C7B 0.81399 (17) 0.35818 (11) 0.11657 (18) 0.0236 (4)
H7B 0.7678 0.3906 0.0596 0.028*
C8B 0.91564 (18) 0.38621 (11) 0.18294 (19) 0.0258 (5)
H8B 0.9651 0.3572 0.2432 0.031*
C9B 0.78776 (19) 0.12275 (13) −0.0302 (2) 0.0341 (5)
H9B1 0.8237 0.1699 −0.0400 0.051*
H9B2 0.7408 0.1080 −0.1116 0.051*
H9B3 0.8493 0.0868 −0.0033 0.051*
C10B 0.6467 (2) 0.05431 (12) 0.0841 (2) 0.0357 (6)
H10D 0.7056 0.0184 0.1199 0.054*
H10E 0.6074 0.0383 0.0000 0.054*
H10F 0.5888 0.0596 0.1402 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0257 (8) 0.0261 (9) 0.0313 (8) 0.0026 (6) −0.0102 (6) 0.0006 (6)
O2A 0.0386 (9) 0.0392 (11) 0.0589 (11) −0.0172 (8) −0.0045 (8) −0.0057 (8)
O3A 0.0501 (10) 0.0252 (9) 0.0583 (11) −0.0029 (7) −0.0110 (9) 0.0062 (8)
N1A 0.0226 (9) 0.0198 (10) 0.0294 (9) −0.0021 (7) −0.0073 (7) 0.0016 (7)
N2A 0.0321 (10) 0.0267 (11) 0.0314 (10) −0.0052 (8) 0.0002 (8) −0.0035 (8)
C1A 0.0194 (9) 0.0242 (12) 0.0187 (9) 0.0018 (8) 0.0021 (8) −0.0004 (8)
C2A 0.0196 (10) 0.0243 (12) 0.0280 (10) −0.0023 (8) −0.0020 (8) 0.0045 (8)
C3A 0.0217 (10) 0.0193 (11) 0.0258 (10) −0.0003 (8) −0.0009 (8) 0.0010 (8)
C4A 0.0284 (11) 0.0238 (12) 0.0258 (10) −0.0005 (9) −0.0039 (9) 0.0059 (8)
C5A 0.0226 (10) 0.0244 (11) 0.0165 (9) 0.0035 (8) 0.0007 (8) −0.0021 (8)
C6A 0.0206 (9) 0.0195 (11) 0.0201 (9) 0.0007 (8) −0.0012 (8) −0.0009 (7)
C7A 0.0248 (10) 0.0226 (12) 0.0207 (10) 0.0033 (8) −0.0006 (8) −0.0005 (8)
C8A 0.0275 (10) 0.0198 (12) 0.0286 (11) −0.0003 (8) 0.0000 (9) 0.0000 (8)
C9A 0.0339 (11) 0.0270 (13) 0.0376 (12) −0.0004 (9) 0.0061 (10) −0.0051 (10)
C10A 0.0330 (12) 0.0248 (13) 0.0458 (14) −0.0049 (9) −0.0016 (11) 0.0055 (10)
O1B 0.0286 (8) 0.0280 (9) 0.0332 (8) 0.0016 (6) −0.0131 (7) −0.0021 (6)
O2B 0.0387 (9) 0.0368 (11) 0.0635 (12) −0.0169 (8) −0.0108 (9) −0.0058 (8)
O3B 0.0520 (11) 0.0271 (10) 0.0665 (12) −0.0061 (8) −0.0193 (9) 0.0124 (8)
N1B 0.0229 (9) 0.0220 (10) 0.0292 (9) −0.0008 (7) −0.0090 (7) 0.0009 (7)
N2B 0.0302 (10) 0.0253 (11) 0.0361 (10) −0.0038 (8) −0.0018 (8) −0.0039 (8)
C1B 0.0203 (10) 0.0211 (11) 0.0204 (9) 0.0023 (8) 0.0015 (8) −0.0028 (8)
C2B 0.0189 (9) 0.0215 (11) 0.0276 (10) −0.0024 (8) −0.0013 (8) 0.0024 (8)
C3B 0.0216 (10) 0.0183 (11) 0.0269 (10) −0.0013 (8) 0.0006 (8) −0.0006 (8)
C4B 0.0274 (10) 0.0204 (11) 0.0271 (11) 0.0003 (8) −0.0022 (9) 0.0051 (8)
C5B 0.0227 (10) 0.0226 (12) 0.0209 (10) 0.0027 (8) 0.0011 (8) −0.0031 (8)
C6B 0.0203 (10) 0.0209 (11) 0.0207 (10) −0.0003 (8) −0.0017 (8) −0.0010 (8)
C7B 0.0242 (10) 0.0206 (12) 0.0242 (10) 0.0024 (8) −0.0007 (8) −0.0019 (8)
C8B 0.0274 (10) 0.0230 (12) 0.0257 (10) 0.0013 (8) 0.0007 (9) −0.0022 (8)
C9B 0.0329 (12) 0.0297 (14) 0.0405 (13) −0.0033 (9) 0.0091 (10) −0.0092 (10)
C10B 0.0378 (12) 0.0243 (13) 0.0419 (13) −0.0072 (10) −0.0017 (11) 0.0036 (10)

Geometric parameters (Å, º)

O1A—C5A 1.240 (2) O1B—C5B 1.245 (2)
O2A—N2A 1.231 (2) O2B—N2B 1.228 (2)
O3A—N2A 1.233 (2) O3B—N2B 1.230 (2)
N1A—C1A 1.324 (2) N1B—C1B 1.320 (2)
N1A—H1NA 0.84 (2) N1B—H1NB 0.92 (2)
N1A—H2NA 0.88 (2) N1B—H2NB 0.86 (2)
N2A—C8A 1.426 (3) N2B—C8B 1.430 (3)
C1A—C6A 1.410 (2) C1B—C6B 1.411 (2)
C1A—C2A 1.504 (3) C1B—C2B 1.500 (3)
C2A—C3A 1.524 (3) C2B—C3B 1.526 (3)
C2A—H2A1 0.9700 C2B—H2B1 0.9700
C2A—H2A2 0.9700 C2B—H2B2 0.9700
C3A—C4A 1.522 (3) C3B—C9B 1.523 (3)
C3A—C9A 1.527 (3) C3B—C10B 1.524 (3)
C3A—C10A 1.528 (3) C3B—C4B 1.527 (3)
C4A—C5A 1.510 (3) C4B—C5B 1.502 (3)
C4A—H4A1 0.9700 C4B—H4B1 0.9700
C4A—H4A2 0.9700 C4B—H4B2 0.9700
C5A—C6A 1.449 (3) C5B—C6B 1.453 (3)
C6A—C7A 1.437 (3) C6B—C7B 1.435 (3)
C7A—C8A 1.338 (3) C7B—C8B 1.338 (3)
C7A—H7A 0.9300 C7B—H7B 0.9300
C8A—H8A 0.9300 C8B—H8B 0.9300
C9A—H9A1 0.9600 C9B—H9B1 0.9600
C9A—H9A2 0.9600 C9B—H9B2 0.9600
C9A—H9A3 0.9600 C9B—H9B3 0.9600
C10A—H10A 0.9600 C10B—H10D 0.9600
C10A—H10B 0.9600 C10B—H10E 0.9600
C10A—H10C 0.9600 C10B—H10F 0.9600
C1A—N1A—H1NA 117.6 (15) C1B—N1B—H1NB 123.2 (12)
C1A—N1A—H2NA 122.0 (13) C1B—N1B—H2NB 117.2 (15)
H1NA—N1A—H2NA 120 (2) H1NB—N1B—H2NB 119.4 (19)
O2A—N2A—O3A 121.86 (19) O2B—N2B—O3B 121.85 (19)
O2A—N2A—C8A 118.09 (17) O2B—N2B—C8B 117.90 (17)
O3A—N2A—C8A 120.05 (16) O3B—N2B—C8B 120.26 (16)
N1A—C1A—C6A 124.16 (19) N1B—C1B—C6B 124.21 (19)
N1A—C1A—C2A 114.59 (16) N1B—C1B—C2B 114.67 (16)
C6A—C1A—C2A 121.23 (16) C6B—C1B—C2B 121.11 (16)
C1A—C2A—C3A 114.37 (16) C1B—C2B—C3B 114.68 (15)
C1A—C2A—H2A1 108.7 C1B—C2B—H2B1 108.6
C3A—C2A—H2A1 108.7 C3B—C2B—H2B1 108.6
C1A—C2A—H2A2 108.7 C1B—C2B—H2B2 108.6
C3A—C2A—H2A2 108.7 C3B—C2B—H2B2 108.6
H2A1—C2A—H2A2 107.6 H2B1—C2B—H2B2 107.6
C4A—C3A—C2A 106.68 (16) C9B—C3B—C10B 109.70 (18)
C4A—C3A—C9A 110.52 (16) C9B—C3B—C2B 110.40 (17)
C2A—C3A—C9A 110.67 (17) C10B—C3B—C2B 109.33 (16)
C4A—C3A—C10A 109.75 (16) C9B—C3B—C4B 111.01 (16)
C2A—C3A—C10A 109.79 (16) C10B—C3B—C4B 110.17 (17)
C9A—C3A—C10A 109.39 (18) C2B—C3B—C4B 106.16 (16)
C5A—C4A—C3A 113.90 (16) C5B—C4B—C3B 114.51 (16)
C5A—C4A—H4A1 108.8 C5B—C4B—H4B1 108.6
C3A—C4A—H4A1 108.8 C3B—C4B—H4B1 108.6
C5A—C4A—H4A2 108.8 C5B—C4B—H4B2 108.6
C3A—C4A—H4A2 108.8 C3B—C4B—H4B2 108.6
H4A1—C4A—H4A2 107.7 H4B1—C4B—H4B2 107.6
O1A—C5A—C6A 121.64 (18) O1B—C5B—C6B 121.31 (18)
O1A—C5A—C4A 118.67 (16) O1B—C5B—C4B 118.76 (17)
C6A—C5A—C4A 119.68 (16) C6B—C5B—C4B 119.93 (16)
C1A—C6A—C7A 120.33 (17) C1B—C6B—C7B 120.06 (17)
C1A—C6A—C5A 118.48 (17) C1B—C6B—C5B 118.28 (17)
C7A—C6A—C5A 121.18 (16) C7B—C6B—C5B 121.58 (16)
C8A—C7A—C6A 128.25 (18) C8B—C7B—C6B 128.93 (18)
C8A—C7A—H7A 115.9 C8B—C7B—H7B 115.5
C6A—C7A—H7A 115.9 C6B—C7B—H7B 115.5
C7A—C8A—N2A 120.01 (18) C7B—C8B—N2B 119.90 (18)
C7A—C8A—H8A 120.0 C7B—C8B—H8B 120.0
N2A—C8A—H8A 120.0 N2B—C8B—H8B 120.0
C3A—C9A—H9A1 109.5 C3B—C9B—H9B1 109.5
C3A—C9A—H9A2 109.5 C3B—C9B—H9B2 109.5
H9A1—C9A—H9A2 109.5 H9B1—C9B—H9B2 109.5
C3A—C9A—H9A3 109.5 C3B—C9B—H9B3 109.5
H9A1—C9A—H9A3 109.5 H9B1—C9B—H9B3 109.5
H9A2—C9A—H9A3 109.5 H9B2—C9B—H9B3 109.5
C3A—C10A—H10A 109.5 C3B—C10B—H10D 109.5
C3A—C10A—H10B 109.5 C3B—C10B—H10E 109.5
H10A—C10A—H10B 109.5 H10D—C10B—H10E 109.5
C3A—C10A—H10C 109.5 C3B—C10B—H10F 109.5
H10A—C10A—H10C 109.5 H10D—C10B—H10F 109.5
H10B—C10A—H10C 109.5 H10E—C10B—H10F 109.5
N1A—C1A—C2A—C3A 152.82 (18) N1B—C1B—C2B—C3B 152.97 (18)
C6A—C1A—C2A—C3A −28.5 (3) C6B—C1B—C2B—C3B −28.1 (3)
C1A—C2A—C3A—C4A 52.7 (2) C1B—C2B—C3B—C9B −67.4 (2)
C1A—C2A—C3A—C9A −67.5 (2) C1B—C2B—C3B—C10B 171.80 (17)
C1A—C2A—C3A—C10A 171.61 (17) C1B—C2B—C3B—C4B 53.0 (2)
C2A—C3A—C4A—C5A −54.4 (2) C9B—C3B—C4B—C5B 66.5 (2)
C9A—C3A—C4A—C5A 66.0 (2) C10B—C3B—C4B—C5B −171.79 (18)
C10A—C3A—C4A—C5A −173.26 (18) C2B—C3B—C4B—C5B −53.5 (2)
C3A—C4A—C5A—O1A −149.19 (18) C3B—C4B—C5B—O1B −150.83 (19)
C3A—C4A—C5A—C6A 31.9 (3) C3B—C4B—C5B—C6B 29.2 (3)
N1A—C1A—C6A—C7A −0.1 (3) N1B—C1B—C6B—C7B −5.0 (3)
C2A—C1A—C6A—C7A −178.63 (19) C2B—C1B—C6B—C7B 176.23 (19)
N1A—C1A—C6A—C5A −179.33 (19) N1B—C1B—C6B—C5B 178.3 (2)
C2A—C1A—C6A—C5A 2.2 (3) C2B—C1B—C6B—C5B −0.5 (3)
O1A—C5A—C6A—C1A 177.29 (19) O1B—C5B—C6B—C1B 179.96 (19)
C4A—C5A—C6A—C1A −3.9 (3) C4B—C5B—C6B—C1B −0.1 (3)
O1A—C5A—C6A—C7A −1.9 (3) O1B—C5B—C6B—C7B 3.3 (3)
C4A—C5A—C6A—C7A 176.91 (19) C4B—C5B—C6B—C7B −176.77 (19)
C1A—C6A—C7A—C8A −176.7 (2) C1B—C6B—C7B—C8B −176.3 (2)
C5A—C6A—C7A—C8A 2.5 (3) C5B—C6B—C7B—C8B 0.3 (3)
C6A—C7A—C8A—N2A −178.8 (2) C6B—C7B—C8B—N2B 178.4 (2)
O2A—N2A—C8A—C7A 179.2 (2) O2B—N2B—C8B—C7B −179.1 (2)
O3A—N2A—C8A—C7A 0.2 (3) O3B—N2B—C8B—C7B 1.5 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1A—H1NA···O1Bi 0.84 (2) 2.06 (3) 2.873 (2) 162 (2)
N1A—H2NA···O3Bii 0.88 (2) 2.10 (3) 2.961 (2) 167 (2)
N1B—H1NB···O3Aii 0.92 (2) 2.03 (3) 2.942 (2) 168 (2)
N1B—H2NB···O1Aiii 0.85 (3) 2.04 (2) 2.858 (2) 162 (2)
C2A—H2A1···O1Bi 0.97 2.42 3.262 (2) 145
C2B—H2B1···O1Aiii 0.97 2.46 3.298 (2) 144
C7A—H7A···O3Bii 0.93 2.54 3.469 (2) 173
C7B—H7B···O3Aii 0.93 2.55 3.469 (2) 171

Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z; (iii) x, −y+1/2, z−1/2.

References

  1. Attanasi, O. A., Favi, G., Filippone, P., Forzato, C., Giorgi, G., Morganti, S., Nitti, P., Pitacco, G., Rizzato, E., Spinelli, D. & Valentin, E. (2006). Tetrahedron, 62, 6420–6434.
  2. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357–361.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Fun, H.-K., Shen, Y.-M., Xu, J.-H. & Chantrapromma, S. (2007). Acta Cryst. E63, o462–o464.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Koike, T., Shinohara, Y., Tanabe, M., Takeuchi, N. & Tobinaga, S. (1999). Chem. Pharm. Bull. 47, 1246–1248.
  7. Koike, T., Shinohara, Y., Tobinaga, S. & Takeuchi, N. (2000). Chem. Pharm. Bull. 48, 1898–1902. [DOI] [PubMed]
  8. Nonius (1997). KappaCCD Server Software. Nonius BV, Delft, The Netherlands.
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Severin, T., Adhikary, P., Dehmel, E. & Eberhard, I. (1971). Chem. Ber. 104, 2856–2863.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Takeuchi, N., Ohki, J., & Tobinaga, S. (1988). Chem. Pharm. Bull. 36, 481–487.
  14. Vigante, B., Ozols, Ya. & Dubur, G. (1993). Chem. Heterocycl. Compd, 29, 55–60.
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, globe. DOI: 10.1107/S1600536814023009/xu5825sup1.cif

e-70-00379-sup1.cif (30.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023009/xu5825Isup2.hkl

e-70-00379-Isup2.hkl (302.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023009/xu5825Isup3.cml

CCDC reference: 1027341

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES