Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Oct 24;70(Pt 11):392–395. doi: 10.1107/S1600536814023095

Comparison of crystal structures of 4-(benzo[b]thio­phen-2-yl)-5-(3,4,5-tri­meth­oxy­phen­yl)-2H-1,2,3-triazole and 4-(benzo[b]thio­phen-2-yl)-2-methyl-5-(3,4,5-tri­meth­oxy­phen­yl)-2H-1,2,3-triazole

Narsimha Reddy Penthala a, Nikhil Reddy Madadi a, Shobanbabu Bommagani a, Sean Parkin b, Peter A Crooks a,*
PMCID: PMC4257340  PMID: 25484755

In the crystal structure of (I), the mol­ecules are linked into chains by N—H⋯O hydrogen bonds with Inline graphic(5) ring motifs. After the N-methyl­ation of structure (I), no hydrogen-bonding inter­actions were observed for structure (II).

Keywords: combretastatin A-4 analog, anti-cancer agent, triazole ring, hydrogen bonding, crystal structure

Abstract

The title compound, C19H17N3O3S (I), was prepared by a [3 + 2]cyclo­addition azide condensation reaction using sodium azide and l-proline as a Lewis base catalyst. N-Methyl­ation of compound (I) using CH3I gave compound (II), C20H19N3O3S. The benzo­thio­phene ring systems in (I) and (II) are almost planar, with r.m.s deviations from the mean plane = 0.0205 (14) in (I) and 0.016 (2) Å in (II). In (I) and (II), the triazole rings make dihedral angles of 32.68 (5) and 10.43 (8)°, respectively, with the mean planes of the benzo­thio­phene ring systems. The trimeth­oxy phenyl rings make dihedral angles with the benzo­thio­phene rings of 38.48 (4) in (I) and 60.43 (5)° in (II). In the crystal of (I), the mol­ecules are linked into chains by N—H⋯O hydrogen bonds with R 2 1(5) ring motifs. After the N-methyl­ation of structure (I), no hydrogen-bonding inter­actions were observed for structure (II). The crystal structure of (II) has a minor component of disorder that corresponds to a 180° flip of the benzo­thio­phene ring system [occupancy ratio 0.9363 (14):0.0637 (14)].

Chemical context  

In continuation of our work on the development of benzo­thio­phene cyano combretastatin A-4 analogs as anti-cancer agents (Penthala et al., 2013), we have synthesized a series of novel CA-4 analogs by constructing a triazole ring structure (I) by chemical modification of the cyano group on the stilbene unit of cyano-CA-4 analogs utilizing a [3 + 2]cyclo­addition azide condensation reaction with sodium azide in the presence of l-proline Lewis base as catalyst. This chemical modification is essential to restrict the tendency toward cis–trans isomerization of the cyano-stilbene moiety in cyano-CA-4 analogs (Penthala et al., 2013). To further check the position of the hydrogen atom in the triazole ring system in (I), an N-methyl­ation reaction was carried out on (I) using CH3I, resulting in compound (II).graphic file with name e-70-00392-scheme1.jpg

Structural commentary  

In order to obtain detailed information on the structural conformations of (I) and (II) for analysis of structure–activity relationships (SAR), including the position of the hydrogen atom in the triazole ring system of (I) and the position of methyl­ation on the triazole ring system in (II), we determined the X-ray crystal structures of (I) and (II); see Figs. 1 and 2, respectively.

Figure 1.

Figure 1

The mol­ecular structure of (I), with displacement ellipsoids drawn at the 50% probability level.

Figure 2.

Figure 2

The mol­ecular structure of (II), with displacement ellipsoids drawn at the 50% probability level.

Selected geometric parameters are given in Tables 1 and 2 for (I) and (II), respectively. The benzo­thio­phene rings are almost planar with r.m.s deviations from the mean plane of 0.0205 (14) in (I) and 0.016 (2) Å in (II), with bond distances and angles comparable with those reported for other benzo­thio­phene derivatives (Sonar et al., 2007) and triazole analogs (Madadi et al., 2014). The triazole rings make dihedral angles of 32.68 (5)° and 10.43 (8)°, respectively, in (I) and (II) with the mean plane of the benzo­thio­phene ring systems. The tri­meth­oxy­phenyl rings make dihedral angles of 38.48 (4) in (I) and 60.43 (5)° in (II) with the benzo­thio­phene ring systems. In both compounds (I) and (II), deviations from ideal geometry are observed in the bond angles C1—S1—C8, N2—N1—C9, N2—N3—C10, which are compressed, and C1—C9—C10, C9—C10—C11, C2—C3—C4, which are expanded (see Tables 1 and 2). After N-methyl­ation, no significant difference is observed for the N1—N2—N3 bond angle [116.2 (1) and 115.9 (1)°, respectively, for (I) and (II)]. The crystal structure of (II) has a minor component of disorder that corresponds to a 180° flip of the benzo­thio­phene ring system [occupancy ratio 0.9363 (14):0.0637 (14)].

Table 1. Selected geometric parameters (, ) for (I) .

N1N2 1.324(2) N2H2N 0.87(2)
N1C9 1.343(2) N3C10 1.345(2)
N2N3 1.330(2)    
       
C8S1C1 91.50(8) C10C9C1 131.64(14)
N2N1C9 103.74(13) C9C10C11 131.16(14)
N2N3C10 103.74(13) O1C13C14 114.89(14)
C4C3C2 129.50(16)    

Table 2. Selected geometric parameters (, ) for (II) .

N1N2 1.3266(15) N2C20 1.4527(16)
N1C9 1.3477(16) N3C10 1.3450(16)
N2N3 1.3279(15)    
       
N1N2N3 115.92(10) C4C3C2 132(2)
C2C1C9 129.94(17) C7C8S1 129(2)
C8S1C1 91.33(8) C1C9C10 127.3(11)
C4C3C2 129.79(17) C10C9C1 132.41(13)
C9C1S1 128.0(18) C9C10C11 132.90(12)
C8S1C1 95.8(12)    

Supra­molecular features  

Hydrogen bonding and the mode of packing of (I) is illus­trated in Fig. 3, and the mode of packing of (II) is illustrated in Fig. 4. In the structure of (I), the mol­ecules are linked by inter­molecular hydrogen bonds (N2—H2N⋯O2 and N2—H2N⋯O3), forming Inline graphic(5) ring motifs (Table 3), which propagate as chains along the [101] direction. Contacts between adjacent chains form two-dimensional pleated-sheet networks in the ac plane. No significant hydrogen-bonding inter­actions were found in the structure of (II).

Figure 3.

Figure 3

Hydrogen bonding in the crystal structure of (I), viewed along the b axis. Dashed lines represent hydrogen bonds, which join mol­ecules into chains along the [101] direction.

Figure 4.

Figure 4

Crystal packing of (II), as viewed along the b axis.

Table 3. Hydrogen-bond geometry (, ) for (I) .

DHA DH HA D A DHA
N2H2NO2i 0.87(2) 2.16(2) 2.9381(18) 147.6(18)
N2H2NO3i 0.87(2) 2.20(2) 2.8503(18) 130.8(17)

Symmetry code: (i) Inline graphic.

Database survey  

A search of the 2014 release of the Cambridge Structural Database on unit-cell dimensions for (I) and (II) revealed four triazole structures (HOZZAY, UPEWAO, SAFZEG & VUSNEC), although none bore any particular relation to compounds (I) or (II). A search on the triazole ring fragment with either H or methyl attached to the middle N atom revealed 48 and 17 hits, respectively, none of which contained either benzo­thio­phene or tri­meth­oxy­benzene functional groups.

Synthesis and crystallization  

The title compounds were prepared according to a previously reported procedure (Penthala et al., 2014). Recrystallization from methanol afforded (I) and (II) as yellow and pale-yellow crystalline products, respectively, which were suitable for X-ray analysis.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 4. H atoms were found in difference Fourier maps. Carbon-bound hydrogens were subsequently placed at idealized positions with constrained distances of 0.98 (RCH3) and 0.95 Å (Csp 2H). Coordinates of the N-bound hydrogen were refined freely. U iso(H) values were set to either 1.2U eq or 1.5U eq (RCH3) of the attached atom.

Table 4. Experimental details.

  (I) (II)
Crystal data
Chemical formula C19H17N3O3S C20H19N3O3S
M r 367.41 381.44
Crystal system, space group Monoclinic, P21/n Triclinic, P Inline graphic
Temperature (K) 90 90
a, b, c () 11.8983(2), 8.1860(1), 18.4582(3) 8.8579(1), 11.0761(1), 11.2626(1)
, , () 90, 105.5046(7), 90 106.859(4), 111.668(5), 105.498(4)
V (3) 1732.39(5) 891.51(4)
Z 4 2
Radiation type Mo K Mo K
(mm1) 0.21 0.21
Crystal size (mm) 0.30 0.30 0.05 0.22 0.20 0.15
 
Data collection
Diffractometer Nonius KappaCCD Nonius KappaCCD
Absorption correction Multi-scan (SADABS; Sheldrick, 2008a ) Multi-scan (SADABS; Sheldrick, 2008a )
T min, T max 0.816, 0.966 0.858, 0.962
No. of measured, independent and observed [I > 2(I)] reflections 28105, 3984, 3093 36591, 4097, 3572
R int 0.045 0.045
(sin /)max (1) 0.650 0.651
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.044, 0.124, 1.07 0.037, 0.096, 1.08
No. of reflections 3984 4097
No. of parameters 241 276
No. of restraints 0 161
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained
max, min (e 3) 0.55, 0.29 0.31, 0.28

Computer programs: COLLECT (Nonius, 1998), SCALEPACK and DENZO-SMN (Otwinowski Minor, 2006), SHELXS97, SHELXL2013, SHELXL2014 and XP in SHELXTL (Sheldrick, 2008b ) and CIFFIX (Parkin, 2013).

Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). To ensure satisfactory refinement of disordered groups in the structure, a combination of constraints and restraints was employed. The constraints (SHELXL command EADP) were used to fix overlapping fragments. Restraints were used to maintain the integrity of ill-defined or disordered groups (SHELXL commands SAME and RIGU).

In structure (II), there was a small amount of a second conformation for the benzo­thio­phene ring systems, with major and minor component fractions of 93.63 (14) and 6.37 (14)%, respectively.

Supplementary Material

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S1600536814023095/hg5414sup1.cif

e-70-00392-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023095/hg5414Isup2.hkl

e-70-00392-Isup2.hkl (218.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S1600536814023095/hg5414IIsup3.hkl

e-70-00392-IIsup3.hkl (224.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023095/hg5414Isup4.cml

Supporting information file. DOI: 10.1107/S1600536814023095/hg5414IIsup5.cml

CCDC references: 1030172, 1030173

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This investigation was supported by NIH/National Cancer Institute grant R01 CA140409.

supplementary crystallographic information

Crystal data

C20H19N3O3S Z = 2
Mr = 381.44 F(000) = 400
Triclinic, P1 Dx = 1.421 Mg m3
a = 8.8579 (1) Å Mo Kα radiation, λ = 0.71073 Å
b = 11.0761 (1) Å Cell parameters from 4076 reflections
c = 11.2626 (1) Å θ = 1.0–27.5°
α = 106.859 (4)° µ = 0.21 mm1
β = 111.668 (5)° T = 90 K
γ = 105.498 (4)° Cut block, pale yellow
V = 891.51 (4) Å3 0.22 × 0.20 × 0.15 mm

Data collection

Nonius KappaCCD diffractometer 4097 independent reflections
Radiation source: fine-focus sealed-tube 3572 reflections with I > 2σ(I)
Detector resolution: 9.1 pixels mm-1 Rint = 0.045
φ and ω scans at fixed χ = 55° θmax = 27.6°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2008a) h = −11→11
Tmin = 0.858, Tmax = 0.962 k = −14→14
36591 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: difference Fourier map
wR(F2) = 0.096 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0472P)2 + 0.4023P] where P = (Fo2 + 2Fc2)/3
4097 reflections (Δ/σ)max = 0.001
276 parameters Δρmax = 0.31 e Å3
161 restraints Δρmin = −0.28 e Å3

Special details

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, which was fastened in a copper mounting pin with electrical solder. It was placed directly into the cold gas stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.41837 (14) 0.62237 (11) 0.61716 (11) 0.0160 (2)
N2 0.56418 (15) 0.73837 (11) 0.71234 (11) 0.0158 (2)
N3 0.65185 (15) 0.80574 (11) 0.66113 (11) 0.0163 (2)
O1 0.75768 (14) 1.08896 (10) 0.37490 (10) 0.0234 (2)
O2 0.77188 (12) 0.90655 (10) 0.16639 (9) 0.0178 (2)
O3 0.72458 (13) 0.64975 (10) 0.14267 (10) 0.0197 (2)
C1 0.2506 (5) 0.5036 (4) 0.36036 (19) 0.0145 (4) 0.9363 (14)
S1 0.08551 (5) 0.39081 (4) 0.37446 (4) 0.01741 (12) 0.9363 (14)
C2 0.2034 (2) 0.48053 (18) 0.22483 (17) 0.0176 (3) 0.9363 (14)
H2 0.2776 0.5336 0.1986 0.021* 0.9363 (14)
C3 0.0313 (3) 0.3687 (3) 0.1242 (2) 0.0164 (4) 0.9363 (14)
C4 −0.0638 (3) 0.31782 (16) −0.0245 (2) 0.0203 (4) 0.9363 (14)
H4 −0.0117 0.3565 −0.0725 0.024* 0.9363 (14)
C5 −0.2341 (3) 0.21078 (18) −0.09952 (19) 0.0210 (4) 0.9363 (14)
H5 −0.2990 0.1766 −0.1996 0.025* 0.9363 (14)
C6 −0.3125 (2) 0.1519 (2) −0.03024 (16) 0.0195 (4) 0.9363 (14)
H6 −0.4295 0.0784 −0.0841 0.023* 0.9363 (14)
C7 −0.2218 (2) 0.19944 (19) 0.11543 (18) 0.0186 (4) 0.9363 (14)
H7 −0.2742 0.1591 0.1624 0.022* 0.9363 (14)
C8 −0.0508 (2) 0.3086 (2) 0.19147 (18) 0.0161 (3) 0.9363 (14)
C1' 0.269 (8) 0.522 (7) 0.368 (2) 0.0145 (4) 0.0637 (14)
S1' 0.2341 (9) 0.5088 (7) 0.2013 (7) 0.0176 (3) 0.0637 (14)
C2' 0.134 (3) 0.418 (2) 0.3485 (19) 0.01741 (12) 0.0637 (14)
H2' 0.1347 0.3980 0.4251 0.021* 0.0637 (14)
C3' −0.013 (4) 0.335 (4) 0.207 (2) 0.0161 (3) 0.0637 (14)
C4' −0.173 (3) 0.221 (3) 0.150 (3) 0.0186 (4) 0.0637 (14)
H4' −0.1949 0.1828 0.2106 0.022* 0.0637 (14)
C5' −0.297 (4) 0.162 (3) 0.013 (3) 0.0195 (4) 0.0637 (14)
H5' −0.4184 0.1070 −0.0167 0.023* 0.0637 (14)
C6' −0.248 (4) 0.183 (3) −0.086 (3) 0.0210 (4) 0.0637 (14)
H6' −0.3283 0.1303 −0.1851 0.025* 0.0637 (14)
C7' −0.079 (4) 0.284 (3) −0.036 (3) 0.0203 (4) 0.0637 (14)
H7' −0.0314 0.2892 −0.0985 0.024* 0.0637 (14)
C8' 0.020 (4) 0.377 (5) 0.108 (2) 0.0164 (4) 0.0637 (14)
C9 0.40890 (17) 0.61277 (13) 0.49233 (13) 0.0147 (2)
C10 0.55623 (17) 0.72729 (13) 0.52005 (13) 0.0146 (2)
C11 0.61431 (17) 0.77268 (13) 0.42743 (13) 0.0152 (3)
C12 0.65731 (17) 0.91063 (13) 0.44855 (13) 0.0166 (3)
H12 0.6472 0.9730 0.5204 0.020*
C13 0.71519 (17) 0.95607 (13) 0.36342 (14) 0.0168 (3)
C14 0.72907 (16) 0.86471 (13) 0.25757 (13) 0.0152 (3)
C15 0.69315 (17) 0.72810 (13) 0.24151 (13) 0.0157 (3)
C16 0.63395 (17) 0.68128 (13) 0.32534 (13) 0.0158 (3)
H16 0.6073 0.5881 0.3131 0.019*
C17 0.8251 (2) 1.19553 (14) 0.51199 (15) 0.0231 (3)
H17A 0.7287 1.1871 0.5366 0.035*
H17B 0.8707 1.2866 0.5122 0.035*
H17C 0.9222 1.1864 0.5817 0.035*
C18 0.96108 (18) 0.98269 (14) 0.22249 (14) 0.0202 (3)
H18A 1.0093 1.0624 0.3134 0.030*
H18B 0.9813 1.0158 0.1555 0.030*
H18C 1.0214 0.9217 0.2368 0.030*
C19 0.7008 (2) 0.51278 (14) 0.13104 (16) 0.0231 (3)
H19A 0.7781 0.5191 0.2233 0.035*
H19B 0.7324 0.4680 0.0608 0.035*
H19C 0.5754 0.4577 0.1010 0.035*
C20 0.63205 (18) 0.78558 (14) 0.86407 (13) 0.0185 (3)
H20A 0.7016 0.7356 0.8977 0.028*
H20B 0.5314 0.7673 0.8838 0.028*
H20C 0.7089 0.8856 0.9131 0.028*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0151 (5) 0.0152 (5) 0.0154 (5) 0.0047 (4) 0.0069 (4) 0.0059 (4)
N2 0.0165 (5) 0.0154 (5) 0.0138 (5) 0.0042 (4) 0.0078 (4) 0.0059 (4)
N3 0.0167 (5) 0.0171 (5) 0.0156 (5) 0.0054 (4) 0.0087 (4) 0.0080 (4)
O1 0.0339 (6) 0.0148 (5) 0.0214 (5) 0.0074 (4) 0.0139 (4) 0.0095 (4)
O2 0.0152 (5) 0.0207 (5) 0.0139 (4) 0.0021 (4) 0.0061 (4) 0.0093 (4)
O3 0.0235 (5) 0.0176 (5) 0.0206 (5) 0.0070 (4) 0.0147 (4) 0.0077 (4)
C1 0.0134 (11) 0.0112 (15) 0.0170 (6) 0.0034 (6) 0.0072 (6) 0.0057 (6)
S1 0.01419 (19) 0.01807 (19) 0.01687 (18) 0.00243 (14) 0.00642 (14) 0.00913 (14)
C2 0.0158 (7) 0.0180 (8) 0.0178 (7) 0.0032 (6) 0.0091 (6) 0.0086 (6)
C3 0.0152 (7) 0.0161 (7) 0.0178 (7) 0.0070 (6) 0.0078 (6) 0.0069 (6)
C4 0.0197 (8) 0.0183 (10) 0.0186 (7) 0.0045 (8) 0.0098 (6) 0.0051 (7)
C5 0.0192 (7) 0.0194 (9) 0.0169 (7) 0.0056 (7) 0.0054 (6) 0.0051 (6)
C6 0.0139 (7) 0.0159 (7) 0.0197 (9) 0.0032 (5) 0.0030 (7) 0.0059 (8)
C7 0.0123 (8) 0.0167 (8) 0.0219 (10) 0.0039 (7) 0.0043 (7) 0.0096 (8)
C8 0.0138 (10) 0.0135 (11) 0.0179 (7) 0.0048 (7) 0.0057 (6) 0.0062 (7)
C1' 0.0134 (11) 0.0112 (15) 0.0170 (6) 0.0034 (6) 0.0072 (6) 0.0057 (6)
S1' 0.0158 (7) 0.0180 (8) 0.0178 (7) 0.0032 (6) 0.0091 (6) 0.0086 (6)
C2' 0.01419 (19) 0.01807 (19) 0.01687 (18) 0.00243 (14) 0.00642 (14) 0.00913 (14)
C3' 0.0138 (10) 0.0135 (11) 0.0179 (7) 0.0048 (7) 0.0057 (6) 0.0062 (7)
C4' 0.0123 (8) 0.0167 (8) 0.0219 (10) 0.0039 (7) 0.0043 (7) 0.0096 (8)
C5' 0.0139 (7) 0.0159 (7) 0.0197 (9) 0.0032 (5) 0.0030 (7) 0.0059 (8)
C6' 0.0192 (7) 0.0194 (9) 0.0169 (7) 0.0056 (7) 0.0054 (6) 0.0051 (6)
C7' 0.0197 (8) 0.0183 (10) 0.0186 (7) 0.0045 (8) 0.0098 (6) 0.0051 (7)
C8' 0.0152 (7) 0.0161 (7) 0.0178 (7) 0.0070 (6) 0.0078 (6) 0.0069 (6)
C9 0.0155 (6) 0.0149 (6) 0.0143 (6) 0.0065 (5) 0.0072 (5) 0.0073 (5)
C10 0.0139 (6) 0.0148 (6) 0.0145 (6) 0.0059 (5) 0.0067 (5) 0.0062 (5)
C11 0.0129 (6) 0.0168 (6) 0.0139 (6) 0.0042 (5) 0.0055 (5) 0.0074 (5)
C12 0.0168 (6) 0.0161 (6) 0.0143 (6) 0.0053 (5) 0.0070 (5) 0.0057 (5)
C13 0.0161 (6) 0.0145 (6) 0.0161 (6) 0.0038 (5) 0.0055 (5) 0.0075 (5)
C14 0.0122 (6) 0.0179 (6) 0.0123 (6) 0.0027 (5) 0.0045 (5) 0.0076 (5)
C15 0.0126 (6) 0.0171 (6) 0.0129 (6) 0.0039 (5) 0.0049 (5) 0.0048 (5)
C16 0.0144 (6) 0.0149 (6) 0.0162 (6) 0.0040 (5) 0.0068 (5) 0.0070 (5)
C17 0.0271 (7) 0.0144 (6) 0.0252 (7) 0.0079 (6) 0.0121 (6) 0.0066 (6)
C18 0.0161 (6) 0.0214 (7) 0.0201 (7) 0.0034 (5) 0.0086 (5) 0.0094 (6)
C19 0.0295 (8) 0.0184 (7) 0.0257 (7) 0.0106 (6) 0.0178 (6) 0.0085 (6)
C20 0.0225 (7) 0.0193 (6) 0.0126 (6) 0.0070 (5) 0.0089 (5) 0.0063 (5)

Geometric parameters (Å, º)

N1—N2 1.3266 (15) C3'—C4' 1.383 (17)
N1—C9 1.3477 (16) C3'—C8' 1.413 (17)
N2—N3 1.3279 (15) C4'—C5' 1.346 (17)
N2—C20 1.4527 (16) C4'—H4' 0.9500
N3—C10 1.3450 (16) C5'—C6' 1.393 (18)
O1—C13 1.3720 (15) C5'—H5' 0.9500
O1—C17 1.4210 (17) C6'—C7' 1.385 (18)
O2—C14 1.3721 (14) C6'—H6' 0.9500
O2—C18 1.4398 (16) C7'—C8' 1.405 (18)
O3—C15 1.3666 (15) C7'—H7' 0.9500
O3—C19 1.4340 (16) C9—C10 1.4122 (17)
C1—C2 1.347 (3) C10—C11 1.4723 (17)
C1—C9 1.466 (2) C11—C16 1.3943 (18)
C1—S1 1.742 (2) C11—C12 1.3956 (18)
S1—C8 1.7380 (17) C12—C13 1.3930 (18)
C2—C3 1.429 (2) C12—H12 0.9500
C2—H2 0.9500 C13—C14 1.3911 (18)
C3—C8 1.409 (2) C14—C15 1.4018 (18)
C3—C4 1.410 (2) C15—C16 1.3926 (17)
C4—C5 1.384 (2) C16—H16 0.9500
C4—H4 0.9500 C17—H17A 0.9800
C5—C6 1.404 (2) C17—H17B 0.9800
C5—H5 0.9500 C17—H17C 0.9800
C6—C7 1.383 (2) C18—H18A 0.9800
C6—H6 0.9500 C18—H18B 0.9800
C7—C8 1.397 (2) C18—H18C 0.9800
C7—H7 0.9500 C19—H19A 0.9800
C1'—C2' 1.318 (19) C19—H19B 0.9800
C1'—C9 1.32 (2) C19—H19C 0.9800
C1'—S1' 1.74 (2) C20—H20A 0.9800
S1'—C8' 1.731 (18) C20—H20B 0.9800
C2'—C3' 1.439 (17) C20—H20C 0.9800
C2'—H2' 0.9500
N2—N1—C9 103.78 (10) C8'—C7'—H7' 120.8
N1—N2—N3 115.92 (10) C7'—C8'—C3' 119 (2)
N1—N2—C20 122.69 (11) C7'—C8'—S1' 129 (2)
N3—N2—C20 121.27 (11) C3'—C8'—S1' 106.9 (14)
N2—N3—C10 104.04 (10) C1'—C9—N1 123.7 (13)
C13—O1—C17 116.24 (10) C1'—C9—C10 127.3 (11)
C14—O2—C18 113.82 (10) N1—C9—C10 108.26 (11)
C15—O3—C19 116.41 (10) N1—C9—C1 118.94 (13)
C2—C1—C9 129.94 (17) C10—C9—C1 132.41 (13)
C2—C1—S1 112.33 (14) N3—C10—C9 108.00 (11)
C9—C1—S1 117.55 (13) N3—C10—C11 119.08 (11)
C8—S1—C1 91.33 (8) C9—C10—C11 132.90 (12)
C1—C2—C3 113.73 (19) C16—C11—C12 120.79 (11)
C1—C2—H2 123.1 C16—C11—C10 120.52 (11)
C3—C2—H2 123.1 C12—C11—C10 118.61 (11)
C8—C3—C4 118.66 (16) C13—C12—C11 119.45 (12)
C8—C3—C2 111.50 (15) C13—C12—H12 120.3
C4—C3—C2 129.79 (17) C11—C12—H12 120.3
C5—C4—C3 119.15 (16) O1—C13—C14 116.02 (11)
C5—C4—H4 120.4 O1—C13—C12 123.56 (12)
C3—C4—H4 120.4 C14—C13—C12 120.40 (12)
C4—C5—C6 121.14 (16) O2—C14—C13 120.25 (11)
C4—C5—H5 119.4 O2—C14—C15 120.12 (11)
C6—C5—H5 119.4 C13—C14—C15 119.60 (11)
C7—C6—C5 120.88 (16) O3—C15—C16 124.29 (12)
C7—C6—H6 119.6 O3—C15—C14 115.29 (11)
C5—C6—H6 119.6 C16—C15—C14 120.40 (12)
C6—C7—C8 118.04 (16) C15—C16—C11 119.24 (12)
C6—C7—H7 121.0 C15—C16—H16 120.4
C8—C7—H7 121.0 C11—C16—H16 120.4
C7—C8—C3 122.13 (15) O1—C17—H17A 109.5
C7—C8—S1 126.75 (13) O1—C17—H17B 109.5
C3—C8—S1 111.11 (11) H17A—C17—H17B 109.5
C2'—C1'—C9 124.6 (18) O1—C17—H17C 109.5
C2'—C1'—S1' 107.3 (15) H17A—C17—H17C 109.5
C9—C1'—S1' 128.0 (18) H17B—C17—H17C 109.5
C8'—S1'—C1' 95.8 (12) O2—C18—H18A 109.5
C1'—C2'—C3' 117.3 (18) O2—C18—H18B 109.5
C1'—C2'—H2' 121.4 H18A—C18—H18B 109.5
C3'—C2'—H2' 121.4 O2—C18—H18C 109.5
C4'—C3'—C8' 115.8 (17) H18A—C18—H18C 109.5
C4'—C3'—C2' 132 (2) H18B—C18—H18C 109.5
C8'—C3'—C2' 111.8 (16) O3—C19—H19A 109.5
C5'—C4'—C3' 122 (2) O3—C19—H19B 109.5
C5'—C4'—H4' 118.9 H19A—C19—H19B 109.5
C3'—C4'—H4' 118.9 O3—C19—H19C 109.5
C4'—C5'—C6' 120 (2) H19A—C19—H19C 109.5
C4'—C5'—H5' 120.2 H19B—C19—H19C 109.5
C6'—C5'—H5' 120.2 N2—C20—H20A 109.5
C7'—C6'—C5' 118 (2) N2—C20—H20B 109.5
C7'—C6'—H6' 121.0 H20A—C20—H20B 109.5
C5'—C6'—H6' 121.0 N2—C20—H20C 109.5
C6'—C7'—C8' 118 (2) H20A—C20—H20C 109.5
C6'—C7'—H7' 120.8 H20B—C20—H20C 109.5
C9—N1—N2—N3 −0.21 (14) S1'—C1'—C9—C10 6 (12)
C9—N1—N2—C20 −176.39 (11) S1'—C1'—C9—C1 −157 (59)
N1—N2—N3—C10 −0.26 (14) N2—N1—C9—C1' −170 (6)
C20—N2—N3—C10 175.99 (11) N2—N1—C9—C10 0.57 (13)
C2—C1—S1—C8 0.6 (4) N2—N1—C9—C1 −173.1 (3)
C9—C1—S1—C8 176.2 (4) S1—C1—C9—C1' −154 (51)
C9—C1—C2—C3 −175.7 (5) C2—C1—C9—N1 173.7 (5)
S1—C1—C2—C3 −0.7 (5) S1—C1—C9—N1 −1.1 (5)
C1—C2—C3—C8 0.5 (4) C2—C1—C9—C10 1.8 (8)
C1—C2—C3—C4 177.8 (4) S1—C1—C9—C10 −172.95 (18)
C8—C3—C4—C5 0.0 (4) N2—N3—C10—C9 0.60 (13)
C2—C3—C4—C5 −177.2 (3) N2—N3—C10—C11 179.11 (11)
C3—C4—C5—C6 −0.4 (3) C1'—C9—C10—N3 170 (6)
C4—C5—C6—C7 0.1 (3) N1—C9—C10—N3 −0.76 (14)
C5—C6—C7—C8 0.6 (3) C1—C9—C10—N3 171.7 (4)
C6—C7—C8—C3 −1.1 (4) C1'—C9—C10—C11 −9 (6)
C6—C7—C8—S1 177.16 (19) N1—C9—C10—C11 −178.99 (13)
C4—C3—C8—C7 0.8 (4) C1—C9—C10—C11 −6.5 (4)
C2—C3—C8—C7 178.4 (2) N3—C10—C11—C16 129.29 (13)
C4—C3—C8—S1 −177.7 (2) C9—C10—C11—C16 −52.6 (2)
C2—C3—C8—S1 −0.1 (3) N3—C10—C11—C12 −47.72 (17)
C1—S1—C8—C7 −178.7 (3) C9—C10—C11—C12 130.36 (15)
C1—S1—C8—C3 −0.3 (3) C16—C11—C12—C13 2.02 (19)
C2'—C1'—S1'—C8' 9 (7) C10—C11—C12—C13 179.01 (12)
C9—C1'—S1'—C8' −176 (9) C17—O1—C13—C14 −151.61 (12)
C9—C1'—C2'—C3' 175 (7) C17—O1—C13—C12 29.78 (18)
S1'—C1'—C2'—C3' −8 (8) C11—C12—C13—O1 178.95 (12)
C1'—C2'—C3'—C4' −180 (7) C11—C12—C13—C14 0.40 (19)
C1'—C2'—C3'—C8' 4 (8) C18—O2—C14—C13 82.87 (15)
C8'—C3'—C4'—C5' −7 (7) C18—O2—C14—C15 −99.29 (14)
C2'—C3'—C4'—C5' 177 (4) O1—C13—C14—O2 −4.02 (18)
C3'—C4'—C5'—C6' 21 (6) C12—C13—C14—O2 174.63 (11)
C4'—C5'—C6'—C7' −11 (6) O1—C13—C14—C15 178.13 (11)
C5'—C6'—C7'—C8' −12 (7) C12—C13—C14—C15 −3.22 (19)
C6'—C7'—C8'—C3' 27 (8) C19—O3—C15—C16 −2.60 (18)
C6'—C7'—C8'—S1' 178 (4) C19—O3—C15—C14 175.84 (11)
C4'—C3'—C8'—C7' −17 (8) O2—C14—C15—O3 7.32 (17)
C2'—C3'—C8'—C7' 160 (5) C13—C14—C15—O3 −174.83 (11)
C4'—C3'—C8'—S1' −174 (4) O2—C14—C15—C16 −174.18 (11)
C2'—C3'—C8'—S1' 3 (6) C13—C14—C15—C16 3.68 (19)
C1'—S1'—C8'—C7' −160 (6) O3—C15—C16—C11 177.06 (12)
C1'—S1'—C8'—C3' −6 (6) C14—C15—C16—C11 −1.30 (19)
C2'—C1'—C9—N1 −10 (12) C12—C11—C16—C15 −1.56 (19)
S1'—C1'—C9—N1 174 (5) C10—C11—C16—C15 −178.49 (12)
C2'—C1'—C9—C10 −179 (6)

References

  1. Madadi, N. R., Penthala, N. R., Bommagani, S., Parkin, S. & Crooks, P. A. (2014). Acta Cryst. E70, o1128–o1129. [DOI] [PMC free article] [PubMed]
  2. Nonius (1998). Collect Nonius BV, Delft, The Netherlands.
  3. Otwinowski, Z. & Minor, W. (2006). International Tables for Crystallography, Vol. F, ch. 11.4, pp. 226–235. Dordrecht: Kluwer Academic Publishers.
  4. Parkin, S. (2000). Acta Cryst. A56, 157–162. [DOI] [PubMed]
  5. Parkin, S. (2013). CIFFIX. http://xray.uky.edu/people/parkin/programs/ciffix
  6. Penthala, N. R., Madadi, N. R., Janganati, V. & Crooks, P. A. (2014). Tetrahedron Lett. 55, 5562–5565. [DOI] [PMC free article] [PubMed]
  7. Penthala, N. R., Sonar, V. N., Horn, J., Leggas, M., Yadlapalli, K. B. J. S. & Crooks, P. A. (2013). Med. Chem. Commun. 4, 1073–1078. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008b). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sonar, V. N., Parkin, S. & Crooks, P. A. (2007). Acta Cryst. C63, o743–o745. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I, II. DOI: 10.1107/S1600536814023095/hg5414sup1.cif

e-70-00392-sup1.cif (1.9MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814023095/hg5414Isup2.hkl

e-70-00392-Isup2.hkl (218.6KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S1600536814023095/hg5414IIsup3.hkl

e-70-00392-IIsup3.hkl (224.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814023095/hg5414Isup4.cml

Supporting information file. DOI: 10.1107/S1600536814023095/hg5414IIsup5.cml

CCDC references: 1030172, 1030173

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES