Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 5;70(Pt 12):o1235–o1236. doi: 10.1107/S160053681402340X

Crystal structure of (±)-3-[(benzo[d][1,3]dioxol-5-yl)meth­yl]-2-(3,4,5-tri­meth­oxy­phen­yl)-1,3-thia­zolidin-4-one

Rodolfo Moreno-Fuquen a,*, Juan C Castillo a, Rodrigo Abonia a, Javier Ellena b, Carlos A De Simone b
PMCID: PMC4257375  PMID: 25553018

Abstract

In the title thia­zolidine-4-one derivative, C20H21NO6S, the central thia­zolidine ring is essentially planar (r.m.s. deviation for all non-H atoms = 0.0287 Å) and forms a dihedral angle of 88.25 (5)° with the meth­oxy-substituted benzene ring and 74.21 (4)° with the 1,3-benzodioxole ring. The heterocyclic ring (with two O atoms) fused to benzene ring adopts an envelope conformation with the non-ring-junction C atom as the flap. In the crystal, the mol­ecules are linked into chains along [001] through weak C—H⋯O inter­actions, forming R 4 4(28) edge-fused rings.

Keywords: crystal structure; benzo[d][1,3]dioxole; 1,3-thia­zolidin-4-one; biological properties; pharmacological properties; hydrogen bonding

Related literature  

For biological and pharmacological properties of thia­zolidin-4-one systems, see: Rojas et al. (2011); Jackson et al. (2007); Gududuru et al. (2004); Kunzler et al. (2013); Rawal et al. (2008); Barreca et al. (2002); Rawal et al. (2007); Cunico et al. (2007). For similar structures, see: Fun et al. (2011); Cunico et al. (2007). For the synthesis of heterocycles of synthetic and biological inter­est, see: Abonia et al. (2010); Abonia (2014); Moreno-Fuquen et al. (2014). For hydrogen bonding, see: Nardelli (1995). For hydrogen-bond graph-set motifs, see: Etter (1990).graphic file with name e-70-o1235-scheme1.jpg

Experimental  

Crystal data  

  • C20H21NO6S

  • M r = 403.44

  • Monoclinic, Inline graphic

  • a = 15.3098 (11) Å

  • b = 14.3677 (12) Å

  • c = 8.6546 (3) Å

  • β = 97.429 (4)°

  • V = 1887.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 295 K

  • 0.25 × 0.24 × 0.12 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • 6325 measured reflections

  • 3845 independent reflections

  • 2922 reflections with I > 2σ(I)

  • R int = 0.018

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.150

  • S = 1.03

  • 3845 reflections

  • 258 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681402340X/gg2142sup1.cif

e-70-o1235-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681402340X/gg2142Isup2.hkl

e-70-o1235-Isup2.hkl (188.5KB, hkl)

. DOI: 10.1107/S160053681402340X/gg2142fig1.tif

Mol­ecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

. DOI: 10.1107/S160053681402340X/gg2142fig2.tif

Part of the crystal structure of (I), forming one-dimensional chain, along [001]. Symmetry code: (i) −x+1,-y,-z+1; (ii) x,+y,+z-1.

. DOI: 10.1107/S160053681402340X/gg2142fig3.tif

The formation of the title compound.

CCDC reference: 1030709

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C18H18AO1i 0.96 2.45 3.350(3) 155
C8H8BO6ii 0.97 2.60 3.529(2) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

RMF and RA are grateful to the Universidad del Valle, Colombia, for partial financial support. JCC acknowledges his doctoral fellowship granted by COLCIENCIAS.

supplementary crystallographic information

S1. Comment

The title thiazolidin-4-one compound, C20H21NO6S belongs to a class of important heterocycles that have attracted considerable attention because of their biological and pharmacological properties. Their structures are present in a well-known group of patented drugs and substances which possess antimalarial (Rojas et al., 2011), anti-arrhythmic (Jackson et al., 2007), antitumor (Gududuru et al., 2004), antifungal (Kunzler et al., 2013), antihepatitic (Rawal et al., 2008) and antiviral (Barreca et al., 2002) among other activities. There is an interest in developing biologically active molecules, with 5-membered rings containing two heteroatoms. Among them, the thiazolidin-4-ones are one of the most investigated classes of compounds (Rawal et al., 2007). Continuing with our current studies on the use of imines and imminium ions for the synthesis of heterocycles of synthetic and biological interest (Abonia et al., 2010, Abonia, 2014, Moreno-Fuquen et al., 2014), the 1,3-thiazolidin-4-one (I) was obtained from a solvent-free three-component reaction involving 3,4-(methylenedioxy)benzylamine, mercaptoacetic acid and 3,4,5-trimethoxybenzaldehyde. The reaction proceeded with the initial formation of an imine, which underwent a nucleophilic attack by the sulfur atom of the mercaptoacetic acid, followed by an intramolecular cyclization with the releasing of a molecule of water to afford the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The central thiazolidine (C9/C10/S1/C11/N1) ring is essentially planar [r.m.s. deviation for all non-H atoms = 0.0287 Å] and it forms dihedral angles of 88.25 (5)° with the methoxy-substituted benzene ring and 74.21 (4)° with the 1,3-benzodioxole ring. The 1,3-benzodioxole ring is essentially planar [r.m.s. deviation for all non-H atoms = 0.0439 Å]. The dihedral angle between the benzene and benzodioxole rings is 25.12 (8)°. Two methoxy groups attached to the benzene ring are approximately parallel to the plane of the ring and the third methoxy group forms a nearly perpendicular angle with this ring. Methoxy groups on the benzene ring, have the following values of torsion angles: -3.9 (3)°, 81.9 (2)° and -1.4 (3)°. Bond lengths and bond angles in the central thiazolidine ring are very close to those reported in similar structures (Fun et al., 2011; Cunico et al., 2007). The molecules form a one dimensional chain, through C—H···O weak interactions, (see Table 1; Nardelli, 1995). Weak C18-H18···O1 and C8-H8···O6 contacts which reinforced each other, allow the molecules to propagate, forming R44(28) edge-fused rings, along [001] (Etter, 1990), (see Fig. 2).

S2. Experimental

Reagents and solvents for the synthesis were obtained from the Aldrich Chemical Co., and were used without additional purification. A 5 mL pyrex test tube was charged with a mixture of 3,4,5-trimethoxybenzaldehyde (145 mg, 0.74 mmol), mercaptoacetic acid (75 mg, 0.82 mmol) and 3,4-(methylenedioxy)benzylamine (111 mg, 0.74 mmol) in absence of solvent. The mixture was heated in an oil bath at 120° C for 20 min until the starting materials were no longer detected by thin-layer chromatography. Then, the obtained oily material was purified by column chromatography on silica gel using a mixture of CH2Cl2/EtOAc (10:1) as eluent. White crystals of (I) suitable for single-crystal X-ray diffraction were grown by slow evaporation, at ambient temperature and in air, from a solution in ethanol [66% yield, m.p. 395 (1) K].

S3. Refinement

All H-atoms were positioned at geometrically idealized positions [C—H = 0.93 Å for aromatic, C—H = 0.97 Å for methylene and C-H = 0.96 Å for methyl group] and refined using a riding model approximation with Uiso(H) = 1.2 Ueq(C), (C—H methylene and aromatic) and to 1.5 (methyl) times Ueq of the respective parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), forming one-dimensional chain, along [001]. Symmetry code: (i) -x+1,-y,-z+1; (ii) x,+y,+z-1.

Fig. 3.

Fig. 3.

The formation of the title compound.

Crystal data

C20H21NO6S F(000) = 848
Mr = 403.44 Dx = 1.420 Mg m3
Monoclinic, P21/c Melting point: 395(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 15.3098 (11) Å Cell parameters from 4353 reflections
b = 14.3677 (12) Å θ = 2.9–26.4°
c = 8.6546 (3) Å µ = 0.21 mm1
β = 97.429 (4)° T = 295 K
V = 1887.7 (2) Å3 Block, white
Z = 4 0.25 × 0.24 × 0.12 mm

Data collection

Nonius KappaCCD diffractometer 2922 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.018
Graphite monochromator θmax = 26.4°, θmin = 2.9°
CCD rotation images, thick slices scans h = −19→19
6325 measured reflections k = −17→14
3845 independent reflections l = −10→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.150 w = 1/[σ2(Fo2) + (0.0917P)2 + 0.3214P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3845 reflections Δρmax = 0.34 e Å3
258 parameters Δρmin = −0.34 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.031 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.05694 (4) 0.24960 (4) 0.17750 (7) 0.0661 (2)
N1 0.14541 (10) 0.12826 (11) 0.03330 (17) 0.0446 (4)
O1 0.33492 (13) −0.23628 (12) 0.3230 (2) 0.0820 (5)
O2 0.18594 (11) −0.21212 (12) 0.26924 (19) 0.0699 (5)
O3 0.03899 (10) 0.05317 (10) −0.12885 (15) 0.0544 (4)
O4 0.43425 (9) 0.18093 (12) 0.53026 (18) 0.0665 (4)
O5 0.36360 (10) 0.04832 (11) 0.69166 (16) 0.0633 (4)
O6 0.20130 (10) −0.01846 (11) 0.59983 (16) 0.0611 (4)
C1 0.25404 (13) −0.00145 (13) 0.0739 (2) 0.0465 (4)
C2 0.19505 (13) −0.06376 (13) 0.1275 (2) 0.0471 (4)
H2 0.1345 −0.0546 0.1076 0.056*
C3 0.23005 (13) −0.13912 (14) 0.2109 (2) 0.0496 (5)
C4 0.31919 (15) −0.15342 (14) 0.2424 (2) 0.0569 (5)
C5 0.37858 (15) −0.09274 (17) 0.1948 (3) 0.0681 (6)
H5 0.4390 −0.1018 0.2186 0.082*
C6 0.34390 (14) −0.01630 (15) 0.1082 (3) 0.0597 (5)
H6 0.3824 0.0262 0.0723 0.072*
C7 0.2520 (2) −0.2654 (2) 0.3556 (4) 0.0985 (10)
H7A 0.2483 −0.2583 0.4660 0.118*
H7B 0.2436 −0.3307 0.3291 0.118*
C8 0.21892 (14) 0.08075 (14) −0.0244 (2) 0.0517 (5)
H8A 0.2663 0.1250 −0.0290 0.062*
H8B 0.2001 0.0593 −0.1297 0.062*
C9 0.06129 (12) 0.11079 (12) −0.02699 (19) 0.0440 (4)
C10 −0.00378 (13) 0.16964 (15) 0.0466 (2) 0.0531 (5)
H10A −0.0405 0.1304 0.1028 0.064*
H10B −0.0415 0.2033 −0.0332 0.064*
C11 0.16404 (13) 0.19973 (13) 0.1526 (2) 0.0487 (4)
H11 0.1991 (14) 0.2490 (14) 0.116 (2) 0.047 (5)*
C12 0.21490 (13) 0.16198 (13) 0.3015 (2) 0.0455 (4)
C13 0.17821 (13) 0.09318 (14) 0.3864 (2) 0.0485 (4)
H13 0.1202 0.0744 0.3582 0.058*
C14 0.22882 (13) 0.05301 (14) 0.5134 (2) 0.0480 (4)
C15 0.31476 (13) 0.08397 (14) 0.5598 (2) 0.0494 (5)
C16 0.35014 (13) 0.15420 (14) 0.4761 (2) 0.0495 (5)
C17 0.30002 (13) 0.19268 (14) 0.3455 (2) 0.0485 (4)
H17 0.3238 0.2388 0.2882 0.058*
C18 0.47265 (17) 0.2509 (2) 0.4451 (4) 0.0809 (8)
H18A 0.5313 0.2637 0.4940 0.121*
H18B 0.4747 0.2298 0.3404 0.121*
H18C 0.4379 0.3066 0.4432 0.121*
C19 0.40464 (18) −0.03832 (19) 0.6684 (3) 0.0789 (7)
H19A 0.4372 −0.0586 0.7648 0.118*
H19B 0.3604 −0.0837 0.6335 0.118*
H19C 0.4440 −0.0312 0.5914 0.118*
C20 0.11256 (16) −0.0499 (2) 0.5620 (3) 0.0705 (6)
H20A 0.1015 −0.0999 0.6305 0.106*
H20B 0.0728 0.0005 0.5738 0.106*
H20C 0.1037 −0.0715 0.4561 0.106*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0659 (4) 0.0607 (4) 0.0668 (4) 0.0178 (3) −0.0108 (3) −0.0235 (3)
N1 0.0525 (9) 0.0384 (8) 0.0411 (7) 0.0034 (7) −0.0006 (6) −0.0032 (6)
O1 0.0796 (12) 0.0583 (10) 0.0997 (13) 0.0094 (9) −0.0203 (10) 0.0197 (9)
O2 0.0717 (10) 0.0571 (9) 0.0785 (10) −0.0042 (8) 0.0007 (8) 0.0229 (8)
O3 0.0715 (9) 0.0474 (8) 0.0423 (7) −0.0078 (7) −0.0001 (6) −0.0040 (6)
O4 0.0510 (8) 0.0731 (11) 0.0703 (9) −0.0093 (7) −0.0115 (7) 0.0114 (8)
O5 0.0688 (10) 0.0676 (10) 0.0492 (8) 0.0066 (8) −0.0093 (7) 0.0052 (7)
O6 0.0635 (9) 0.0663 (10) 0.0527 (8) −0.0078 (7) 0.0049 (6) 0.0109 (7)
C1 0.0514 (10) 0.0423 (10) 0.0461 (9) 0.0034 (8) 0.0072 (8) −0.0041 (8)
C2 0.0463 (10) 0.0450 (10) 0.0487 (10) 0.0017 (8) 0.0011 (8) −0.0004 (8)
C3 0.0566 (11) 0.0443 (10) 0.0467 (10) −0.0019 (8) 0.0017 (8) −0.0024 (8)
C4 0.0622 (12) 0.0446 (11) 0.0594 (12) 0.0071 (10) −0.0093 (9) −0.0018 (9)
C5 0.0483 (11) 0.0590 (13) 0.0941 (17) 0.0082 (10) −0.0015 (11) −0.0036 (12)
C6 0.0500 (11) 0.0495 (12) 0.0808 (14) −0.0006 (9) 0.0137 (10) −0.0004 (10)
C7 0.095 (2) 0.087 (2) 0.108 (2) −0.0009 (17) −0.0095 (18) 0.0476 (18)
C8 0.0570 (11) 0.0478 (11) 0.0518 (10) 0.0038 (9) 0.0122 (9) 0.0026 (8)
C9 0.0565 (11) 0.0366 (9) 0.0374 (8) −0.0016 (8) 0.0007 (7) 0.0038 (7)
C10 0.0548 (11) 0.0517 (12) 0.0510 (10) 0.0031 (9) 0.0003 (8) −0.0020 (9)
C11 0.0564 (11) 0.0395 (10) 0.0473 (10) −0.0005 (8) −0.0039 (8) −0.0045 (8)
C12 0.0525 (10) 0.0391 (9) 0.0429 (9) 0.0016 (8) −0.0015 (7) −0.0054 (7)
C13 0.0488 (10) 0.0489 (11) 0.0462 (10) −0.0018 (9) 0.0002 (8) −0.0050 (8)
C14 0.0567 (11) 0.0456 (10) 0.0415 (9) −0.0009 (9) 0.0060 (8) −0.0035 (8)
C15 0.0536 (11) 0.0511 (11) 0.0414 (9) 0.0053 (9) −0.0019 (8) −0.0024 (8)
C16 0.0472 (10) 0.0497 (11) 0.0495 (10) 0.0007 (8) −0.0018 (8) −0.0062 (8)
C17 0.0524 (10) 0.0452 (10) 0.0465 (10) 0.0003 (8) 0.0009 (8) −0.0010 (8)
C18 0.0523 (13) 0.089 (2) 0.0960 (19) −0.0172 (12) −0.0103 (12) 0.0222 (15)
C19 0.0738 (16) 0.0671 (16) 0.0913 (18) 0.0130 (13) −0.0061 (13) 0.0130 (14)
C20 0.0702 (14) 0.0772 (16) 0.0645 (13) −0.0188 (13) 0.0107 (11) 0.0061 (12)

Geometric parameters (Å, º)

S1—C10 1.788 (2) C7—H7A 0.9700
S1—C11 1.828 (2) C7—H7B 0.9700
N1—C9 1.349 (2) C8—H8A 0.9700
N1—C11 1.458 (2) C8—H8B 0.9700
N1—C8 1.459 (2) C9—C10 1.509 (3)
O1—C4 1.385 (3) C10—H10A 0.9700
O1—C7 1.399 (4) C10—H10B 0.9700
O2—C3 1.378 (2) C11—C12 1.517 (3)
O2—C7 1.405 (3) C11—H11 0.97 (2)
O3—C9 1.225 (2) C12—C17 1.382 (3)
O4—C16 1.367 (2) C12—C13 1.393 (3)
O4—C18 1.418 (3) C13—C14 1.386 (3)
O5—C15 1.380 (2) C13—H13 0.9300
O5—C19 1.420 (3) C14—C15 1.398 (3)
O6—C14 1.369 (2) C15—C16 1.392 (3)
O6—C20 1.429 (3) C16—C17 1.396 (3)
C1—C6 1.386 (3) C17—H17 0.9300
C1—C2 1.393 (3) C18—H18A 0.9600
C1—C8 1.513 (3) C18—H18B 0.9600
C2—C3 1.371 (3) C18—H18C 0.9600
C2—H2 0.9300 C19—H19A 0.9600
C3—C4 1.372 (3) C19—H19B 0.9600
C4—C5 1.361 (3) C19—H19C 0.9600
C5—C6 1.395 (3) C20—H20A 0.9600
C5—H5 0.9300 C20—H20B 0.9600
C6—H6 0.9300 C20—H20C 0.9600
C10—S1—C11 94.26 (9) C9—C10—H10B 110.1
C9—N1—C11 119.64 (16) S1—C10—H10B 110.1
C9—N1—C8 121.38 (16) H10A—C10—H10B 108.4
C11—N1—C8 118.90 (16) N1—C11—C12 112.43 (15)
C4—O1—C7 104.81 (19) N1—C11—S1 105.27 (13)
C3—O2—C7 104.86 (19) C12—C11—S1 114.18 (14)
C16—O4—C18 117.14 (16) N1—C11—H11 110.3 (12)
C15—O5—C19 114.25 (18) C12—C11—H11 107.3 (13)
C14—O6—C20 117.56 (17) S1—C11—H11 107.2 (12)
C6—C1—C2 119.85 (18) C17—C12—C13 120.77 (17)
C6—C1—C8 120.77 (18) C17—C12—C11 118.81 (17)
C2—C1—C8 119.37 (17) C13—C12—C11 120.29 (17)
C3—C2—C1 117.18 (18) C14—C13—C12 119.46 (18)
C3—C2—H2 121.4 C14—C13—H13 120.3
C1—C2—H2 121.4 C12—C13—H13 120.3
C2—C3—C4 122.25 (19) O6—C14—C13 124.46 (18)
C2—C3—O2 128.10 (19) O6—C14—C15 115.25 (17)
C4—C3—O2 109.59 (18) C13—C14—C15 120.28 (18)
C5—C4—C3 122.0 (2) O5—C15—C16 119.59 (18)
C5—C4—O1 128.6 (2) O5—C15—C14 120.59 (18)
C3—C4—O1 109.4 (2) C16—C15—C14 119.76 (17)
C4—C5—C6 116.4 (2) O4—C16—C15 115.97 (17)
C4—C5—H5 121.8 O4—C16—C17 124.14 (19)
C6—C5—H5 121.8 C15—C16—C17 119.89 (18)
C1—C6—C5 122.3 (2) C12—C17—C16 119.78 (18)
C1—C6—H6 118.8 C12—C17—H17 120.1
C5—C6—H6 118.8 C16—C17—H17 120.1
O1—C7—O2 109.8 (2) O4—C18—H18A 109.5
O1—C7—H7A 109.7 O4—C18—H18B 109.5
O2—C7—H7A 109.7 H18A—C18—H18B 109.5
O1—C7—H7B 109.7 O4—C18—H18C 109.5
O2—C7—H7B 109.7 H18A—C18—H18C 109.5
H7A—C7—H7B 108.2 H18B—C18—H18C 109.5
N1—C8—C1 113.99 (15) O5—C19—H19A 109.5
N1—C8—H8A 108.8 O5—C19—H19B 109.5
C1—C8—H8A 108.8 H19A—C19—H19B 109.5
N1—C8—H8B 108.8 O5—C19—H19C 109.5
C1—C8—H8B 108.8 H19A—C19—H19C 109.5
H8A—C8—H8B 107.6 H19B—C19—H19C 109.5
O3—C9—N1 124.56 (18) O6—C20—H20A 109.5
O3—C9—C10 122.99 (18) O6—C20—H20B 109.5
N1—C9—C10 112.44 (15) H20A—C20—H20B 109.5
C9—C10—S1 108.06 (14) O6—C20—H20C 109.5
C9—C10—H10A 110.1 H20A—C20—H20C 109.5
S1—C10—H10A 110.1 H20B—C20—H20C 109.5
C6—C1—C2—C3 −1.2 (3) C8—N1—C11—C12 −60.8 (2)
C8—C1—C2—C3 177.50 (16) C9—N1—C11—S1 −2.3 (2)
C1—C2—C3—C4 0.4 (3) C8—N1—C11—S1 174.29 (13)
C1—C2—C3—O2 −176.52 (18) C10—S1—C11—N1 4.45 (14)
C7—O2—C3—C2 −175.1 (2) C10—S1—C11—C12 −119.35 (15)
C7—O2—C3—C4 7.6 (3) N1—C11—C12—C17 113.8 (2)
C2—C3—C4—C5 1.1 (3) S1—C11—C12—C17 −126.32 (17)
O2—C3—C4—C5 178.6 (2) N1—C11—C12—C13 −62.1 (2)
C2—C3—C4—O1 −177.80 (18) S1—C11—C12—C13 57.8 (2)
O2—C3—C4—O1 −0.3 (2) C17—C12—C13—C14 −2.2 (3)
C7—O1—C4—C5 174.1 (3) C11—C12—C13—C14 173.64 (17)
C7—O1—C4—C3 −7.1 (3) C20—O6—C14—C13 −3.9 (3)
C3—C4—C5—C6 −1.8 (3) C20—O6—C14—C15 177.17 (19)
O1—C4—C5—C6 176.9 (2) C12—C13—C14—O6 −176.27 (17)
C2—C1—C6—C5 0.5 (3) C12—C13—C14—C15 2.7 (3)
C8—C1—C6—C5 −178.2 (2) C19—O5—C15—C16 −100.9 (2)
C4—C5—C6—C1 0.9 (3) C19—O5—C15—C14 81.9 (2)
C4—O1—C7—O2 12.0 (3) O6—C14—C15—O5 −5.0 (3)
C3—O2—C7—O1 −12.2 (3) C13—C14—C15—O5 175.98 (17)
C9—N1—C8—C1 −98.3 (2) O6—C14—C15—C16 177.76 (17)
C11—N1—C8—C1 85.2 (2) C13—C14—C15—C16 −1.3 (3)
C6—C1—C8—N1 −137.52 (19) C18—O4—C16—C15 178.6 (2)
C2—C1—C8—N1 43.8 (2) C18—O4—C16—C17 −1.4 (3)
C11—N1—C9—O3 178.98 (17) O5—C15—C16—O4 2.1 (3)
C8—N1—C9—O3 2.5 (3) C14—C15—C16—O4 179.39 (18)
C11—N1—C9—C10 −1.8 (2) O5—C15—C16—C17 −177.93 (17)
C8—N1—C9—C10 −178.28 (16) C14—C15—C16—C17 −0.7 (3)
O3—C9—C10—S1 −175.68 (14) C13—C12—C17—C16 0.3 (3)
N1—C9—C10—S1 5.1 (2) C11—C12—C17—C16 −175.61 (17)
C11—S1—C10—C9 −5.43 (15) O4—C16—C17—C12 −178.89 (18)
C9—N1—C11—C12 122.59 (18) C15—C16—C17—C12 1.2 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18A···O1i 0.96 2.45 3.350 (3) 155
C8—H8B···O6ii 0.97 2.60 3.529 (2) 161

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GG2142).

References

  1. Abonia, R. (2014). Curr. Org. Synth. 11, 773-786.
  2. Abonia, R., Castillo, J., Insuasty, B., Quiroga, J., Nogueras, M. & Cobo, J. (2010). Eur. J. Org. Chem. 33, 6454–6463.
  3. Barreca, M. L., Balzarini, J., Chimirri, A., Clercq, E., Luca, L., Holtje, H. D., Holtje, M., Monforte, A. M., Monforte, P., Pannecouque, C., Rao, A. & Zappala, M. (2002). J. Med. Chem. 45, 5410–5413. [DOI] [PubMed]
  4. Cunico, W., Capri, L. R., Gomes, C. R. B., Wardell, S. M. S. V., Low, J. N. & Glidewell, C. (2007). Acta Cryst. C63, o102–o107. [DOI] [PubMed]
  5. Etter, M. (1990). Acc. Chem. Res. 23, 120–126.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Fun, H.-K., Hemamalini, M., Shanmugavelan, P., Ponnuswamy, A. & Jagatheesan, R. (2011). Acta Cryst. E67, o2706. [DOI] [PMC free article] [PubMed]
  8. Gududuru, V., Hurh, E., Dalton, J. T. & Miller, D. D. (2004). Bioorg. Med. Chem. Lett. 14, 5289–5293. [DOI] [PubMed]
  9. Jackson, C. M., Blass, B., Coburn, K., Djandjighian, L., Fadayel, G., Fluxe, A. J., Hodson, S., Janusz, J. M., Murawsky, M., Ridgeway, J. M., White, R. E. & Wu, S. (2007). Bioorg. Med. Chem. Lett. 17, 282–284. [DOI] [PubMed]
  10. Kunzler, A., Neuenfeldt, D. N., Neves, A., Pereira, C., Marques, G. H., Nascente, P., Fernandes, M., Hubner, S. O. & Cunico, W. (2013). Eur. J. Med. Chem. 64, 74–80. [DOI] [PubMed]
  11. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  12. Moreno-Fuquen, R., Castillo, J. C., Abonia, R., Ellena, J. & Tenorio, J. C. (2014). Acta Cryst. E70, o490. [DOI] [PMC free article] [PubMed]
  13. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  14. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  15. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  16. Rawal, R. K., Katti, S. B., Kaushik-Basu, N., Arora, P. & Pan, Z. (2008). Bioorg. Med. Chem. Lett. 18, 6110–6114. [DOI] [PMC free article] [PubMed]
  17. Rawal, R. K., Tripathi, R., Katti, S. B., Pannecouque, C. & Clercq, E. D. (2007). Bioorg. Med. Chem. 15, 1725–1731. [DOI] [PubMed]
  18. Rojas, F. A., Garcia, R. N., Villabona, S., Gomez, A., Torres, D. F., Perez, B. M., Nogal, J. J., Martinez, A. R. & Kouznetsov, V. V. (2011). Bioorg. Med. Chem. 19, 4562–4573.
  19. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S160053681402340X/gg2142sup1.cif

e-70-o1235-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681402340X/gg2142Isup2.hkl

e-70-o1235-Isup2.hkl (188.5KB, hkl)

. DOI: 10.1107/S160053681402340X/gg2142fig1.tif

Mol­ecular conformation and atom numbering scheme for the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

. DOI: 10.1107/S160053681402340X/gg2142fig2.tif

Part of the crystal structure of (I), forming one-dimensional chain, along [001]. Symmetry code: (i) −x+1,-y,-z+1; (ii) x,+y,+z-1.

. DOI: 10.1107/S160053681402340X/gg2142fig3.tif

The formation of the title compound.

CCDC reference: 1030709

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES