Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 21;70(Pt 12):o1275–o1276. doi: 10.1107/S1600536814024763

Crystal structure of methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-di­bromo-8-oxo-1-oxa­spiro­[4.5]deca-2,6,9-triene-3-car­boxyl­ate

Lucimara Julio Martins a, Deborah de Alencar Simoni b, Ricardo Aparicio c,*, Fernando Coelho a
PMCID: PMC4257376  PMID: 25553042

Abstract

The title compound, C18H12Br2O6, was synthesized from Morita–Baylis–Hillman adducts. It incorporates the bromin­ated spiro-hexa­dienone moiety typically exhibited by compounds of this class that exhibit biological activity. Both the brominated cyclo­hexa­dienone and the central five-membered rings are nearly planar (r.m.s. deviations of 0.044 and 0.016 Å, respectively), being almost perpendicularly oriented [inter­planar angle = 89.47 (5)°]. With respect to the central five-membered ring, the brominated cyclo­hexa­dienone ring, the benzodioxol ring and the carboxyl­ate fragment make C—O—C—C, O—C—C—C and C—C—C—O dihedral angles of −122.11 (8), −27.20 (11) and −8.40 (12)°, respectively. An intra­molecular C—H⋯O hydrogen bond occurs. In the crystal, mol­ecules are linked by non-classical C—H⋯O and C—H⋯Br hydrogen bonds resulting in a molecular packing in which the brominated rings are in a head-to-head orientation, forming well marked planes parallel to the b axis.

Keywords: Single-crystal X-ray study, spiro-hexa­dienone structure, Morita–Baylis–Hillman adducts

Related literature  

For compounds that contain a spiro-hexa­dienone moiety in their structures, related biological activities and examples of brominated spiro-hexa­dienones, see: König & Wright (1993); Lou (2012); Sorek et al. (2009). For strategies for the synthesis of spiro-hexa­dienones from Morita–Baylis–Hillman aducts, see: Martins et al. (2014); Barontini et al. (2013).graphic file with name e-70-o1275-scheme1.jpg

Experimental  

Crystal data  

  • C18H12Br2O6

  • M r = 484.10

  • Triclinic, Inline graphic

  • a = 8.1929 (13) Å

  • b = 8.4811 (14) Å

  • c = 12.761 (2) Å

  • α = 84.485 (4)°

  • β = 80.007 (5)°

  • γ = 78.077 (4)°

  • V = 852.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.79 mm−1

  • T = 100 K

  • 0.32 × 0.17 × 0.16 mm

Data collection  

  • Bruker APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2010) T min = 0.309, T max = 0.515

  • 27788 measured reflections

  • 7098 independent reflections

  • 6288 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.018

  • wR(F 2) = 0.047

  • S = 1.02

  • 7098 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXLE (Hübschle et al., 2011) and SHELXL2014 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2003), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814024763/hg5413sup1.cif

e-70-o1275-sup1.cif (810.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024763/hg5413Isup2.hkl

e-70-o1275-Isup2.hkl (388.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024763/hg5413Isup4.cdx

Supporting information file. DOI: 10.1107/S1600536814024763/hg5413Isup4.cml

. DOI: 10.1107/S1600536814024763/hg5413fig1.tif

The mol­ecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

. DOI: 10.1107/S1600536814024763/hg5413fig2.tif

Crystal packing of the title compound, showing hydrogen bonding inter­actions.

CCDC reference: 1033626

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C3H3O5i 0.95 2.61 3.4272(13) 144
C7H7O5 0.95 2.34 2.9441(13) 121
C10H10AO1ii 0.99 2.55 3.3995(13) 143
C12H12ABr1iii 0.99 2.96 3.9411(12) 173
C12H12AO1iii 0.99 2.53 3.0852(13) 116
C13H13O2iv 0.95 2.63 3.3909(13) 137
C16H16CO5v 0.98 2.59 3.2434(14) 124
C17H17Br1vi 0.95 3.03 3.9069(11) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors acknowledge Dr Jorge Henrique Monteiro for preliminary structure refinement. This work was supported by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP 2009/18390–4 and 2009/51602–5), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq). RA is the recipient of a research grant from CNPq.

supplementary crystallographic information

S1. Introduction

Compounds containing a spiro-hexadienone moiety typically exhibit biological activity, also sharing a structural architecture observed in some natural products (König & Wright, 1993; Sorek et al., 2009). In view of the importance of this class of compounds, recent efforts resulted in a new synthetic strategy, which starts from Morita-Baylis-Hillman adducts as building blocks for organic synthesis (Martins et al., 2014). Based on this methodology, it was possible to obtain a brominated spiro-hexadienone which resulted, to our knowledge, in the first report of a halogenated spiro-hexadienone crystal structure.

S2. Experimental

S2.1. Synthesis and crystallization

Methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-di­bromo-8-oxo-1-oxa­spiro­[4.5]deca-2,6,9-triene-3-carboxyl­ate was prepared from a subset of β-ketoesters following the experimental protocol recently described by Barontini et al. (2013). A separable mixture of mono- and dibrominated (in majority) derivatives in good overall yields was obtained.

After chromatographic separation, the dibrominated compounds were easily transformed into halogenated spiro-hexadienones, in three steps procedure, starting with the Morita-Baylis-Hillman adducts.

Methyl 2-(2H-1,3-benzodioxol-5-yl)-7,9-di­bromo-8-oxo-1-oxa­spiro­[4.5]deca-2,6,9-triene-3-carboxyl­ate (48 mg, 0.1 mmoL) was dissolved in absolute chloro­form-D1 (1 mL), followed by stirring until total dissolution was achieved. The solution was kept in the freezer. After two weeks, the resulting material was filtered under vacuum, washed with small portions of cold chloro­form and dried in a desiccator to furnish pale yellow single crystals suitable for X-ray diffraction data collection.

S2.2. Refinement

The C-bound H atoms were positioned with idealized geometry and treated as riding atoms: phenyl, methyl and methyl­ene C—H bond lengths were 0.95, 0.98 and 0.99 Å, respectively. The isotropic displacement parameters values (Uiso(H)) were fixed at 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for all other attached H atoms.

S3. Results and discussion

The title compound (Fig. 1) crystallized in the space group P1 assuming a conformational structure determined by non-classical intra­molecular C—H—O and inter­molecular C—H—O and C—H—Br bonding (Table 1, Fig. 2). The molecule contains one six-membered (brominated ciclohexadienone) and one central five-membered rings connected by a spiro-carbon C4. The mean plane of these planar rings, C1—C2—C4—C17—C18 (r.m.s.= 0.044 Å) and C4—C10—C11—C5—O2 (r.m.s. = 0.016 Å), are almost perpendicularly oriented, making a plane-plane angle of 90.53°. With respect to the central five-membered ring, the brominated spiro-hexadienone and the benzodioxol rings make dihedral angles C5—O2—C4—C3 = -122.11 (8)° and O2—C5—C6—C14 = -27.20 (11)°, respectively, while the dihedral angle with the carboxyl­ate fragment C10—C11—C15—O6 is -8.40 (12)°.

In the hexadienone ring of the title compound, the C2—C3, C17—C18 and C1—O1 bond lengths are 1.3351 (13), 1.3354 (13) and 1.2139 (11) Å, respectively, and the bond length between the spiro-carbon (C4) and the oxygen atom C4—O2 is 1.4684 (11) Å, similar to those reported for a related oxa­spiro structure (Lou, 2012). In the latter, the plane-plane angle between the mean planes of the six-membered and the central five-membered rings in the spiro-carbon is 96.06°, slightly different from that observed in the title compound (90.53°). Further comparison also reveals different orientations of the carboxyl­ate moiety, which makes a dihedral angle of 170.6 (1)° (C10—C11—C15—O5) in the title compound, with a corresponding angle equal to 11.3 (3)° in the related structure (Lou, 2012). This large difference is consistent with an observed C7—H7—O5 intra­molecular hydrogen bond (Table 1) in the title compound, which results in a favourable conformation of the carboxyl­ate group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, showing hydrogen bonding interactions.

Crystal data

C18H12Br2O6 Z = 2
Mr = 484.10 F(000) = 476
Triclinic, P1 Dx = 1.885 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1929 (13) Å Cell parameters from 9887 reflections
b = 8.4811 (14) Å θ = 3.2–35.1°
c = 12.761 (2) Å µ = 4.79 mm1
α = 84.485 (4)° T = 100 K
β = 80.007 (5)° Block, pale yellow
γ = 78.077 (4)° 0.32 × 0.17 × 0.16 mm
V = 852.7 (2) Å3

Data collection

Bruker APEX CCD detector diffractometer 7098 independent reflections
Radiation source: fine-focus sealed tube 6288 reflections with I > 2σ(I)
Detector resolution: 8.3333 pixels mm-1 Rint = 0.017
phi and ω scans θmax = 34.3°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2010) h = −12→12
Tmin = 0.309, Tmax = 0.515 k = −13→13
27788 measured reflections l = −20→20

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.018 H-atom parameters constrained
wR(F2) = 0.047 w = 1/[σ2(Fo2) + (0.0245P)2 + 0.2583P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.003
7098 reflections Δρmax = 0.57 e Å3
236 parameters Δρmin = −0.39 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.81611 (2) 1.44904 (2) 0.62579 (2) 0.01782 (3)
Br2 0.72560 (2) 0.85491 (2) 0.49155 (2) 0.01638 (3)
O1 0.75814 (11) 1.20677 (9) 0.48397 (6) 0.01915 (14)
O2 0.81234 (9) 0.93071 (9) 0.86474 (5) 0.01450 (12)
O3 0.57197 (10) 0.68379 (9) 1.33065 (6) 0.01608 (13)
O4 0.81596 (9) 0.50402 (9) 1.26861 (6) 0.01609 (13)
O5 1.24024 (10) 0.67487 (10) 1.01728 (6) 0.01916 (14)
O6 1.37041 (9) 0.72220 (9) 0.84968 (6) 0.01529 (12)
C1 0.79228 (12) 1.13898 (10) 0.56785 (7) 0.01214 (14)
C2 0.83286 (12) 1.22429 (10) 0.65381 (7) 0.01222 (14)
C3 0.88062 (12) 1.14902 (11) 0.74351 (7) 0.01357 (15)
H3 0.8963 1.2114 0.7977 0.016*
C4 0.91021 (12) 0.96878 (11) 0.76100 (7) 0.01264 (15)
C5 0.91926 (12) 0.83972 (10) 0.92957 (7) 0.01135 (14)
C6 0.82769 (11) 0.79788 (10) 1.03513 (7) 0.01106 (14)
C7 0.88494 (12) 0.65586 (11) 1.09690 (7) 0.01202 (14)
H7 0.9864 0.5828 1.0731 0.014*
C8 0.78592 (12) 0.62914 (11) 1.19325 (7) 0.01182 (14)
C9 0.63896 (12) 0.73620 (11) 1.23042 (7) 0.01254 (14)
C10 1.09810 (12) 0.89627 (12) 0.77135 (7) 0.01504 (16)
H10A 1.1501 0.8183 0.7164 0.018*
H10B 1.1655 0.9820 0.7656 0.018*
C11 1.08297 (12) 0.81321 (11) 0.88176 (7) 0.01190 (14)
C12 0.66357 (14) 0.52054 (12) 1.34563 (8) 0.01708 (17)
H12A 0.6912 0.5003 1.4188 0.020*
H12B 0.5948 0.4422 1.3344 0.020*
C13 0.58111 (12) 0.87530 (11) 1.17181 (8) 0.01435 (15)
H13 0.4809 0.9486 1.1975 0.017*
C14 0.67762 (12) 0.90331 (11) 1.07223 (7) 0.01288 (15)
H14 0.6401 0.9965 1.0287 0.015*
C15 1.23289 (12) 0.72953 (11) 0.92621 (7) 0.01239 (14)
C16 1.52864 (13) 0.64225 (14) 0.88280 (9) 0.02125 (19)
H16A 1.5418 0.6880 0.9478 0.032*
H16B 1.6222 0.6580 0.8261 0.032*
H16C 1.5291 0.5265 0.8969 0.032*
C17 0.85126 (12) 0.88535 (11) 0.68028 (7) 0.01319 (15)
H17 0.8524 0.7728 0.6918 0.016*
C18 0.79718 (12) 0.96291 (10) 0.59287 (7) 0.01170 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02471 (5) 0.00997 (4) 0.01954 (5) −0.00466 (3) −0.00492 (4) 0.00072 (3)
Br2 0.02188 (5) 0.01408 (4) 0.01473 (4) −0.00300 (3) −0.00654 (3) −0.00306 (3)
O1 0.0307 (4) 0.0153 (3) 0.0107 (3) −0.0017 (3) −0.0063 (3) 0.0023 (2)
O2 0.0119 (3) 0.0197 (3) 0.0100 (3) −0.0004 (2) −0.0030 (2) 0.0048 (2)
O3 0.0186 (3) 0.0160 (3) 0.0112 (3) −0.0020 (2) 0.0011 (2) 0.0023 (2)
O4 0.0173 (3) 0.0147 (3) 0.0138 (3) −0.0009 (2) −0.0019 (2) 0.0056 (2)
O5 0.0146 (3) 0.0278 (4) 0.0125 (3) 0.0000 (3) −0.0034 (2) 0.0045 (3)
O6 0.0106 (3) 0.0196 (3) 0.0133 (3) 0.0005 (2) −0.0009 (2) 0.0011 (2)
C1 0.0137 (4) 0.0115 (3) 0.0101 (3) −0.0011 (3) −0.0008 (3) −0.0001 (3)
C2 0.0144 (4) 0.0101 (3) 0.0119 (4) −0.0024 (3) −0.0017 (3) 0.0000 (3)
C3 0.0153 (4) 0.0137 (3) 0.0123 (4) −0.0032 (3) −0.0034 (3) −0.0009 (3)
C4 0.0137 (4) 0.0143 (3) 0.0091 (3) −0.0018 (3) −0.0025 (3) 0.0023 (3)
C5 0.0129 (4) 0.0113 (3) 0.0096 (3) −0.0011 (3) −0.0037 (3) 0.0010 (3)
C6 0.0123 (4) 0.0117 (3) 0.0093 (3) −0.0021 (3) −0.0028 (3) 0.0004 (3)
C7 0.0128 (4) 0.0113 (3) 0.0114 (3) −0.0009 (3) −0.0024 (3) 0.0003 (3)
C8 0.0135 (4) 0.0111 (3) 0.0109 (3) −0.0020 (3) −0.0036 (3) 0.0012 (3)
C9 0.0139 (4) 0.0133 (3) 0.0101 (3) −0.0028 (3) −0.0012 (3) −0.0001 (3)
C10 0.0131 (4) 0.0196 (4) 0.0110 (4) −0.0014 (3) −0.0027 (3) 0.0036 (3)
C11 0.0122 (4) 0.0133 (3) 0.0095 (3) −0.0010 (3) −0.0024 (3) 0.0009 (3)
C12 0.0219 (5) 0.0149 (4) 0.0127 (4) −0.0037 (3) 0.0000 (3) 0.0027 (3)
C13 0.0139 (4) 0.0140 (4) 0.0130 (4) 0.0005 (3) −0.0006 (3) 0.0004 (3)
C14 0.0131 (4) 0.0127 (3) 0.0116 (4) −0.0004 (3) −0.0026 (3) 0.0015 (3)
C15 0.0115 (4) 0.0132 (3) 0.0117 (4) −0.0005 (3) −0.0023 (3) −0.0003 (3)
C16 0.0119 (4) 0.0287 (5) 0.0201 (5) 0.0015 (4) −0.0019 (3) 0.0012 (4)
C17 0.0151 (4) 0.0114 (3) 0.0126 (4) −0.0018 (3) −0.0031 (3) 0.0012 (3)
C18 0.0134 (4) 0.0110 (3) 0.0108 (3) −0.0018 (3) −0.0025 (3) −0.0011 (3)

Geometric parameters (Å, º)

Br1—C2 1.8863 (9) C6—C14 1.4001 (13)
Br2—C18 1.8887 (9) C6—C7 1.4158 (12)
O1—C1 1.2139 (11) C7—C8 1.3775 (13)
O2—C5 1.3772 (11) C7—H7 0.9500
O2—C4 1.4684 (11) C8—C9 1.3900 (13)
O3—C9 1.3721 (11) C9—C13 1.3777 (13)
O3—C12 1.4444 (12) C10—C11 1.5104 (13)
O4—C8 1.3746 (11) C10—H10A 0.9900
O4—C12 1.4397 (13) C10—H10B 0.9900
O5—C15 1.2158 (11) C11—C15 1.4623 (13)
O6—C15 1.3520 (11) C12—H12A 0.9900
O6—C16 1.4459 (13) C12—H12B 0.9900
C1—C2 1.4887 (13) C13—C14 1.4026 (13)
C1—C18 1.4904 (12) C13—H13 0.9500
C2—C3 1.3351 (13) C14—H14 0.9500
C3—C4 1.4985 (13) C16—H16A 0.9800
C3—H3 0.9500 C16—H16B 0.9800
C4—C17 1.4996 (13) C16—H16C 0.9800
C4—C10 1.5585 (14) C17—C18 1.3354 (13)
C5—C11 1.3563 (13) C17—H17 0.9500
C5—C6 1.4733 (12)
C5—O2—C4 109.46 (7) C11—C10—H10A 111.3
C9—O3—C12 104.80 (7) C4—C10—H10A 111.3
C8—O4—C12 105.13 (7) C11—C10—H10B 111.3
C15—O6—C16 115.44 (8) C4—C10—H10B 111.3
O1—C1—C2 122.93 (8) H10A—C10—H10B 109.2
O1—C1—C18 122.50 (8) C5—C11—C15 128.64 (8)
C2—C1—C18 114.57 (8) C5—C11—C10 110.13 (8)
C3—C2—C1 123.31 (8) C15—C11—C10 121.07 (8)
C3—C2—Br1 121.81 (7) O4—C12—O3 106.94 (7)
C1—C2—Br1 114.87 (6) O4—C12—H12A 110.3
C2—C3—C4 121.73 (8) O3—C12—H12A 110.3
C2—C3—H3 119.1 O4—C12—H12B 110.3
C4—C3—H3 119.1 O3—C12—H12B 110.3
O2—C4—C3 107.32 (7) H12A—C12—H12B 108.6
O2—C4—C17 106.47 (7) C9—C13—C14 116.62 (9)
C3—C4—C17 114.33 (8) C9—C13—H13 121.7
O2—C4—C10 105.43 (7) C14—C13—H13 121.7
C3—C4—C10 111.56 (8) C6—C14—C13 121.91 (8)
C17—C4—C10 111.13 (8) C6—C14—H14 119.0
C11—C5—O2 112.55 (8) C13—C14—H14 119.0
C11—C5—C6 135.58 (8) O5—C15—O6 122.92 (9)
O2—C5—C6 111.85 (8) O5—C15—C11 127.60 (9)
C14—C6—C7 120.45 (8) O6—C15—C11 109.47 (8)
C14—C6—C5 117.27 (8) O6—C16—H16A 109.5
C7—C6—C5 122.27 (8) O6—C16—H16B 109.5
C8—C7—C6 116.53 (8) H16A—C16—H16B 109.5
C8—C7—H7 121.7 O6—C16—H16C 109.5
C6—C7—H7 121.7 H16A—C16—H16C 109.5
O4—C8—C7 127.79 (8) H16B—C16—H16C 109.5
O4—C8—C9 109.53 (8) C18—C17—C4 122.64 (8)
C7—C8—C9 122.61 (8) C18—C17—H17 118.7
O3—C9—C13 128.16 (9) C4—C17—H17 118.7
O3—C9—C8 109.94 (8) C17—C18—C1 122.38 (8)
C13—C9—C8 121.85 (8) C17—C18—Br2 121.91 (7)
C11—C10—C4 102.30 (7) C1—C18—Br2 115.70 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C3—H3···O5i 0.95 2.61 3.4272 (13) 144
C7—H7···O5 0.95 2.34 2.9441 (13) 121
C10—H10A···O1ii 0.99 2.55 3.3995 (13) 143
C12—H12A···Br1iii 0.99 2.96 3.9411 (12) 173
C12—H12A···O1iii 0.99 2.53 3.0852 (13) 116
C13—H13···O2iv 0.95 2.63 3.3909 (13) 137
C16—H16C···O5v 0.98 2.59 3.2434 (14) 124
C17—H17···Br1vi 0.95 3.03 3.9069 (11) 153
C14—H14···O2 0.95 2.36 2.6937 (12) 100

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+2, −y+2, −z+1; (iii) x, y−1, z+1; (iv) −x+1, −y+2, −z+2; (v) −x+3, −y+1, −z+2; (vi) x, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5413).

References

  1. Barontini, M., Proietti Silvestri, I., Nardi, V., Crisante, F., Pepe, G., Pari, L., Gallucci, F., Bovicelli, P. & Righi, G. (2013). Med. Chem. Res. 22, 674–680.
  2. Bruker (2010). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.
  4. Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst. 44, 1281–1284. [DOI] [PMC free article] [PubMed]
  5. König, G. M. & Wright, A. D. (1993). Heterocycles, 36, 1351–1358.
  6. Lou, Y. (2012). Acta Cryst. E68, o1152. [DOI] [PMC free article] [PubMed]
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Martins, L. J., Ferreira, B. V., Almeida, W. P., Lancellotti, M. & Coelho, F. (2014). Tetrahedron Lett. 55, 5264–5267.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sorek, H., Rudi, A., Goldberg, I., Aknin, M. & Kashman, Y. (2009). J. Nat. Prod. 72, 784–786. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814024763/hg5413sup1.cif

e-70-o1275-sup1.cif (810.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024763/hg5413Isup2.hkl

e-70-o1275-Isup2.hkl (388.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024763/hg5413Isup4.cdx

Supporting information file. DOI: 10.1107/S1600536814024763/hg5413Isup4.cml

. DOI: 10.1107/S1600536814024763/hg5413fig1.tif

The mol­ecular structure of the title compound with atom labels and 50% probability displacement ellipsoids.

. DOI: 10.1107/S1600536814024763/hg5413fig2.tif

Crystal packing of the title compound, showing hydrogen bonding inter­actions.

CCDC reference: 1033626

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES