Abstract
In the title compound, C13H10BrNO2, the mean plane of the non-H atoms of the central amide C—N—C(=O)—C fragment (r.m.s. deviation = 0.004 Å) forms a dihedral angle of 73.97 (12)° with the hydroxy-substituted benzene ring and 25.42 (19)° with the bromo-substituted benzene ring. The two aromatic rings are inclined to one another by 80.7 (2)°. In the crystal, molecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming chains along [010]. The chains are linked by weak C—H⋯O hydrogen bonds, forming sheets parallel to (100), and enclosing R 3 3(17) and R 3 2(9) ring motifs.
Keywords: crystal structure, benzamide, hydroxyaniline, hydrogen bonding
Related literature
For the antiprotozoal and antimicrobial properties of phenylbenzamides, see: Ríos Martínez et al. (2014 ▶); Şener et al. (2000 ▶). For active metabolites of benzoxazoles, see: Mobinikhaledi et al. (2006 ▶). For studies of phenylbenzamides as inhibitors of tyrosine kinases, see: Capdeville et al. (2002 ▶). For studies of phenylbenzamides as inducers of apoptosis in biological processes, see: Olsson et al. (2002 ▶). For related structures, see: Fun et al. (2012 ▶); Hibbert et al. (1998 ▶).
Experimental
Crystal data
C13H10BrNO2
M r = 292.13
Monoclinic,
a = 23.4258 (10) Å
b = 5.6473 (1) Å
c = 9.2464 (3) Å
β = 93.008 (1)°
V = 1221.54 (7) Å3
Z = 4
Mo Kα radiation
μ = 3.35 mm−1
T = 295 K
0.20 × 0.18 × 0.13 mm
Data collection
Nonius KappaCCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.537, T max = 0.662
21458 measured reflections
2490 independent reflections
1664 reflections with I > 2σ(I)
R int = 0.063
Refinement
R[F 2 > 2σ(F 2)] = 0.052
wR(F 2) = 0.168
S = 0.99
2490 reflections
154 parameters
H-atom parameters constrained
Δρmax = 0.61 e Å−3
Δρmin = −0.68 e Å−3
Data collection: COLLECT (Nonius, 2000 ▶); cell refinement: SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: DENZO (Otwinowski & Minor, 1997 ▶) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▶) and Mercury (Macrae et al., 2008 ▶); software used to prepare material for publication: WinGX (Farrugia, 2012 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814024696/su5019sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024696/su5019Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814024696/su5019Isup3.cml
. DOI: 10.1107/S1600536814024696/su5019fig1.tif
The molecular structure of the title compound (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
a 3 3 3 2 . DOI: 10.1107/S1600536814024696/su5019fig2.tif
Part of the crystal packing of the title compound (I) viewed along the a axis, showing the formation of R3 3(17) and R3 2(9) ring motifs within the two-dimensional hydrogen bonded network running parallel to (100). Hydrogen bonds are shown as dashed lines; see Table 1 for details [symmetry codes: (i) x, −y-3/2, z-1/2; (ii) x, −y-1/2, z-1/2; (iii) x, y+1, z].
CCDC reference: 1033535
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| O2HO2O1i | 0.82 | 2.00 | 2.682(3) | 141 |
| N1H1O1ii | 0.86 | 2.02 | 2.824(3) | 155 |
| C6H6O2iii | 0.93 | 2.56 | 3.458(5) | 164 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.
supplementary crystallographic information
S1. Comment
The crystal structure determination of the title compound (I), is part of a study on phenylbenzamides carried out in our research group, and they are synthesized from the reaction of picryl benzoates with 2-hydroxy-aniline. These compounds have received extensive attention because of their antiprotozoal (Ríos Martínez et al., 2014) and anti-microbialactivity (Şener et al., 2000), and as active metabolites of benzoxazoles (Mobinikhaledi et al., 2006). They have also been studied as inhibitors of tyrosine kinases (Capdeville et al., 2002) and inducers of apoptosis in the tumor development process (Olsson et al., 2002). Similar compounds to (I) have been reported in the literature, viz. 4-bromo-N-phenylbenzamide (II) (Fun et al., 2012) and 2-hydroxy-N-benzoylaniline (III) (Hibbert et al., 1998).
The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1-C7(═O1)—C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0026 Å) and it forms dihedral angles of 73.97 (12)° with the hydroxy-substituted phenyl ring and 25.42 (19)° with the bromo-substituted benzene ring. The bond lengths and angles within the molecule of (I) are in a good agreement with those found in the related compounds (II) and (III), although the N1-C7 bond length in the central amide segment, is slightly increased in structure (II), [C1-C7= 1.361 (2)Å].
In the crystal of (I), molecules are linked by O-H···O and N-H···O hydrogen bonds of medium-strength and weak C-H···O intermolecular contacts forming sheets parallel to (100) (Table 1 and Fig. 2). The O2-HO2···O1 hydrogen bonds are responsible for crystal growth in the b direction. In this interaction, the hydroxy O2-HO2 group in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O1 of the carbonyl group at (x ,-y-3/2, z-1/2). In turn, the N1-H1···O1 hydrogen bonds and weak C6-H6···O2 interactions, complement crystal growth in the c direction (see Fig. 2). The N1-H1 group of the amide moiety in the molecule at (x ,y, z) acts as hydrogen bond donor to carbonyl atom O1 in the molecule at (x, -y-1/2, z-1/2) and the C6-H6 group in the molecule at (x, y, z) acts as a hydrogen bond donor to atom O2 in the molecule at (x, y+1 ,z). Very likely, these interactions are responsible for the twist of the rings with respect to the central amide moiety. The combination of these interactions generate edge-fused R33(17) and R32(9) ring motifs.
S2. Experimental
4-bromobenzoate 2,4,6-trinitrophenyl (0.050 g, 0.117 mmol) and 2-hydroxyaniline (0.0254 g) in molar ratio 1:2, were dissolved in 15 mL of toluene and mixed for 6 h under reflux and constant stirring. On completion of the reaction part of the solvent was evaporated and a crystalline black solid was obtained. [m.p.: 454 (1) K].
S3. Refinement
The H-atoms were positioned in geometrically idealized positions and treated as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93 Å, with Uiso(H) = 1.5Ueq(O) for the hydroxyl H atom and = 1.2Ueq(N, C) for other H atoms.
Figures
Fig. 1.

The molecular structure of the title compound (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
Part of the crystal packing of the title compound (I) viewed along the a axis, showing the formation of R33(17) and R32(9) ring motifs within the two-dimensional hydrogen bonded network running parallel to (100). Hydrogen bonds are shown as dashed lines; see Table 1 for details [symmetry codes: (i) x, -y-3/2, z-1/2; (ii) x, -y-1/2, z-1/2; (iii) x, y+1, z].
Crystal data
| C13H10BrNO2 | F(000) = 584 |
| Mr = 292.13 | Dx = 1.588 Mg m−3 |
| Monoclinic, P21/c | Melting point: 454(1) K |
| Hall symbol: -P 2ybc | Mo Kα radiation, λ = 0.71073 Å |
| a = 23.4258 (10) Å | Cell parameters from 2490 reflections |
| b = 5.6473 (1) Å | θ = 3.5–26.4° |
| c = 9.2464 (3) Å | µ = 3.35 mm−1 |
| β = 93.008 (1)° | T = 295 K |
| V = 1221.54 (7) Å3 | Block, black |
| Z = 4 | 0.20 × 0.18 × 0.13 mm |
Data collection
| Nonius KappaCCD diffractometer | 2490 independent reflections |
| Radiation source: fine-focus sealed tube | 1664 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.063 |
| CCD rotation images, thick slices scans | θmax = 26.4°, θmin = 3.5° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −29→29 |
| Tmin = 0.537, Tmax = 0.662 | k = −7→6 |
| 21458 measured reflections | l = −11→11 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.168 | H-atom parameters constrained |
| S = 0.99 | w = 1/[σ2(Fo2) + (0.0999P)2 + 0.5651P] where P = (Fo2 + 2Fc2)/3 |
| 2490 reflections | (Δ/σ)max < 0.001 |
| 154 parameters | Δρmax = 0.61 e Å−3 |
| 0 restraints | Δρmin = −0.68 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Br1 | 0.46192 (2) | 1.31657 (9) | 0.85256 (8) | 0.1081 (3) | |
| O1 | 0.23094 (11) | 0.5820 (4) | 0.8853 (2) | 0.0546 (6) | |
| C7 | 0.24418 (16) | 0.7116 (6) | 0.7843 (3) | 0.0462 (8) | |
| C9 | 0.15972 (16) | 0.4064 (6) | 0.5411 (4) | 0.0513 (8) | |
| O2 | 0.20914 (13) | 0.3579 (5) | 0.4767 (3) | 0.0700 (8) | |
| HO2 | 0.2040 | 0.2472 | 0.4201 | 0.105* | |
| N1 | 0.21228 (13) | 0.7256 (5) | 0.6607 (3) | 0.0520 (7) | |
| H1 | 0.2235 | 0.8168 | 0.5933 | 0.062* | |
| C1 | 0.29740 (16) | 0.8587 (6) | 0.7961 (3) | 0.0490 (8) | |
| C6 | 0.30259 (17) | 1.0664 (6) | 0.7177 (4) | 0.0565 (9) | |
| H6 | 0.2728 | 1.1161 | 0.6543 | 0.068* | |
| C8 | 0.16058 (15) | 0.5964 (6) | 0.6357 (3) | 0.0500 (8) | |
| C5 | 0.3522 (2) | 1.1998 (7) | 0.7340 (5) | 0.0675 (11) | |
| H5 | 0.3560 | 1.3385 | 0.6811 | 0.081* | |
| C2 | 0.34181 (18) | 0.7886 (7) | 0.8900 (4) | 0.0604 (9) | |
| H2 | 0.3384 | 0.6499 | 0.9431 | 0.073* | |
| C4 | 0.39549 (18) | 1.1262 (7) | 0.8281 (5) | 0.0665 (10) | |
| C13 | 0.1110 (2) | 0.6596 (7) | 0.7011 (4) | 0.0683 (11) | |
| H13 | 0.1113 | 0.7876 | 0.7645 | 0.082* | |
| C10 | 0.11003 (19) | 0.2786 (8) | 0.5152 (5) | 0.0696 (11) | |
| H10 | 0.1096 | 0.1490 | 0.4532 | 0.083* | |
| C11 | 0.0610 (2) | 0.3429 (9) | 0.5812 (5) | 0.0816 (13) | |
| H11 | 0.0275 | 0.2566 | 0.5635 | 0.098* | |
| C3 | 0.39140 (18) | 0.9208 (7) | 0.9065 (5) | 0.0704 (11) | |
| H3 | 0.4214 | 0.8717 | 0.9694 | 0.084* | |
| C12 | 0.06136 (19) | 0.5340 (10) | 0.6729 (5) | 0.0851 (14) | |
| H12 | 0.0280 | 0.5786 | 0.7160 | 0.102* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Br1 | 0.0702 (4) | 0.0749 (4) | 0.1796 (7) | −0.0166 (2) | 0.0112 (4) | −0.0221 (3) |
| O1 | 0.0774 (17) | 0.0477 (13) | 0.0385 (12) | −0.0068 (12) | 0.0028 (11) | 0.0028 (10) |
| C7 | 0.062 (2) | 0.0424 (17) | 0.0345 (16) | 0.0026 (15) | 0.0049 (15) | −0.0055 (13) |
| C9 | 0.059 (2) | 0.0450 (18) | 0.0493 (18) | 0.0008 (16) | −0.0007 (16) | 0.0039 (15) |
| O2 | 0.0772 (19) | 0.0527 (14) | 0.0812 (18) | 0.0004 (13) | 0.0136 (15) | −0.0171 (13) |
| N1 | 0.071 (2) | 0.0511 (15) | 0.0340 (14) | −0.0087 (14) | 0.0044 (13) | 0.0005 (12) |
| C1 | 0.064 (2) | 0.0451 (17) | 0.0381 (16) | −0.0018 (15) | 0.0080 (15) | −0.0056 (14) |
| C6 | 0.072 (2) | 0.0474 (19) | 0.0498 (19) | −0.0078 (17) | −0.0011 (17) | −0.0017 (15) |
| C8 | 0.061 (2) | 0.0484 (18) | 0.0405 (16) | 0.0038 (16) | −0.0009 (15) | 0.0046 (14) |
| C5 | 0.088 (3) | 0.048 (2) | 0.068 (2) | −0.0111 (19) | 0.019 (2) | −0.0034 (17) |
| C2 | 0.069 (2) | 0.052 (2) | 0.060 (2) | 0.0022 (18) | −0.0012 (19) | −0.0004 (16) |
| C4 | 0.062 (2) | 0.056 (2) | 0.082 (3) | −0.0074 (19) | 0.012 (2) | −0.014 (2) |
| C13 | 0.075 (3) | 0.075 (3) | 0.056 (2) | 0.010 (2) | 0.0069 (19) | −0.0066 (18) |
| C10 | 0.072 (3) | 0.065 (2) | 0.070 (2) | −0.011 (2) | −0.007 (2) | −0.005 (2) |
| C11 | 0.062 (3) | 0.099 (4) | 0.081 (3) | −0.015 (2) | −0.013 (2) | 0.007 (3) |
| C3 | 0.062 (2) | 0.062 (2) | 0.086 (3) | 0.001 (2) | −0.004 (2) | −0.013 (2) |
| C12 | 0.056 (3) | 0.119 (4) | 0.081 (3) | 0.010 (3) | 0.005 (2) | 0.005 (3) |
Geometric parameters (Å, º)
| Br1—C4 | 1.895 (4) | C8—C13 | 1.384 (5) |
| O1—C7 | 1.239 (4) | C5—C4 | 1.365 (7) |
| C7—N1 | 1.334 (4) | C5—H5 | 0.9300 |
| C7—C1 | 1.497 (5) | C2—C3 | 1.383 (6) |
| C9—O2 | 1.357 (4) | C2—H2 | 0.9300 |
| C9—C10 | 1.380 (5) | C4—C3 | 1.374 (6) |
| C9—C8 | 1.384 (5) | C13—C12 | 1.375 (7) |
| O2—HO2 | 0.8200 | C13—H13 | 0.9300 |
| N1—C8 | 1.423 (5) | C10—C11 | 1.378 (7) |
| N1—H1 | 0.8600 | C10—H10 | 0.9300 |
| C1—C2 | 1.377 (5) | C11—C12 | 1.372 (7) |
| C1—C6 | 1.388 (5) | C11—H11 | 0.9300 |
| C6—C5 | 1.387 (6) | C3—H3 | 0.9300 |
| C6—H6 | 0.9300 | C12—H12 | 0.9300 |
| O1—C7—N1 | 122.0 (3) | C1—C2—C3 | 121.1 (4) |
| O1—C7—C1 | 120.9 (3) | C1—C2—H2 | 119.4 |
| N1—C7—C1 | 117.2 (3) | C3—C2—H2 | 119.4 |
| O2—C9—C10 | 123.4 (3) | C5—C4—C3 | 121.6 (4) |
| O2—C9—C8 | 116.7 (3) | C5—C4—Br1 | 118.7 (3) |
| C10—C9—C8 | 119.9 (4) | C3—C4—Br1 | 119.7 (3) |
| C9—O2—HO2 | 109.5 | C12—C13—C8 | 120.3 (4) |
| C7—N1—C8 | 122.9 (3) | C12—C13—H13 | 119.9 |
| C7—N1—H1 | 118.6 | C8—C13—H13 | 119.9 |
| C8—N1—H1 | 118.6 | C11—C10—C9 | 120.1 (4) |
| C2—C1—C6 | 119.2 (3) | C11—C10—H10 | 120.0 |
| C2—C1—C7 | 119.0 (3) | C9—C10—H10 | 120.0 |
| C6—C1—C7 | 121.7 (3) | C12—C11—C10 | 120.2 (4) |
| C5—C6—C1 | 119.9 (4) | C12—C11—H11 | 119.9 |
| C5—C6—H6 | 120.1 | C10—C11—H11 | 119.9 |
| C1—C6—H6 | 120.1 | C4—C3—C2 | 118.6 (4) |
| C9—C8—C13 | 119.4 (4) | C4—C3—H3 | 120.7 |
| C9—C8—N1 | 119.0 (3) | C2—C3—H3 | 120.7 |
| C13—C8—N1 | 121.5 (3) | C11—C12—C13 | 120.1 (4) |
| C4—C5—C6 | 119.6 (4) | C11—C12—H12 | 120.0 |
| C4—C5—H5 | 120.2 | C13—C12—H12 | 120.0 |
| C6—C5—H5 | 120.2 | ||
| O1—C7—N1—C8 | 0.8 (5) | C6—C1—C2—C3 | −0.3 (5) |
| C1—C7—N1—C8 | −179.6 (3) | C7—C1—C2—C3 | −178.8 (3) |
| O1—C7—C1—C2 | 24.5 (5) | C6—C5—C4—C3 | 0.7 (6) |
| N1—C7—C1—C2 | −155.1 (3) | C6—C5—C4—Br1 | −178.2 (3) |
| O1—C7—C1—C6 | −153.9 (3) | C9—C8—C13—C12 | 0.3 (6) |
| N1—C7—C1—C6 | 26.5 (4) | N1—C8—C13—C12 | 178.8 (4) |
| C2—C1—C6—C5 | 0.3 (5) | O2—C9—C10—C11 | −178.0 (4) |
| C7—C1—C6—C5 | 178.7 (3) | C8—C9—C10—C11 | 1.3 (6) |
| O2—C9—C8—C13 | 177.9 (3) | C9—C10—C11—C12 | −0.1 (7) |
| C10—C9—C8—C13 | −1.4 (5) | C5—C4—C3—C2 | −0.8 (6) |
| O2—C9—C8—N1 | −0.7 (4) | Br1—C4—C3—C2 | 178.1 (3) |
| C10—C9—C8—N1 | 180.0 (3) | C1—C2—C3—C4 | 0.6 (6) |
| C7—N1—C8—C9 | −107.5 (4) | C10—C11—C12—C13 | −1.1 (7) |
| C7—N1—C8—C13 | 73.9 (5) | C8—C13—C12—C11 | 1.0 (7) |
| C1—C6—C5—C4 | −0.5 (6) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O2—HO2···O1i | 0.82 | 2.00 | 2.682 (3) | 141 |
| N1—H1···O1ii | 0.86 | 2.02 | 2.824 (3) | 155 |
| C6—H6···O2iii | 0.93 | 2.56 | 3.458 (5) | 164 |
Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) x, y+1, z.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5019).
References
- Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug Disc. 1, 493–502. [DOI] [PubMed]
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Fun, H.-K., Chantrapromma, S., Sripet, W., Ruanwas, P. & Boonnak, N. (2012). Acta Cryst. E68, o1269–o1270. [DOI] [PMC free article] [PubMed]
- Hibbert, F., Mills, J. F., Nyburg, S. C. & Parkins, A. W. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 628–634.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Mobinikhaledi, A., Forughifar, N., Shariatzadeh, S. M. & Fallah, M. (2006). Heterocycl. Commun. 12, 427-430.
- Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
- Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 97-1-978. [DOI] [PMC free article] [PubMed]
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Ríos Martínez, C. H., Lagartera, L., Kaiser, M. & Dardonville, C. (2014). Eur. J. Med. Chem. 81, 481–491. [DOI] [PubMed]
- Şener, E. A., Bingöl, K. K., Ören, I., Arpacı, Ö. T., Yalçın, İ & Altanlar, N. (2000). Farmaco, 55, 469–476. [DOI] [PubMed]
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814024696/su5019sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024696/su5019Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814024696/su5019Isup3.cml
. DOI: 10.1107/S1600536814024696/su5019fig1.tif
The molecular structure of the title compound (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
a 3 3 3 2 . DOI: 10.1107/S1600536814024696/su5019fig2.tif
Part of the crystal packing of the title compound (I) viewed along the a axis, showing the formation of R3 3(17) and R3 2(9) ring motifs within the two-dimensional hydrogen bonded network running parallel to (100). Hydrogen bonds are shown as dashed lines; see Table 1 for details [symmetry codes: (i) x, −y-3/2, z-1/2; (ii) x, −y-1/2, z-1/2; (iii) x, y+1, z].
CCDC reference: 1033535
Additional supporting information: crystallographic information; 3D view; checkCIF report

