Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 15;70(Pt 12):o1261–o1262. doi: 10.1107/S1600536814024696

Crystal structure of 4-bromo-N-(2-hydroxy­phen­yl)benzamide

Rodolfo Moreno-Fuquen a,*, Vanessa Melo a, Javier Ellena b
PMCID: PMC4257397  PMID: 25553033

Abstract

In the title compound, C13H10BrNO2, the mean plane of the non-H atoms of the central amide C—N—C(=O)—C fragment (r.m.s. deviation = 0.004 Å) forms a dihedral angle of 73.97 (12)° with the hy­droxy-substituted benzene ring and 25.42 (19)° with the bromo-substituted benzene ring. The two aromatic rings are inclined to one another by 80.7 (2)°. In the crystal, mol­ecules are linked by O—H⋯O and N—H⋯O hydrogen bonds, forming chains along [010]. The chains are linked by weak C—H⋯O hydrogen bonds, forming sheets parallel to (100), and enclosing R 3 3(17) and R 3 2(9) ring motifs.

Keywords: crystal structure, benzamide, hy­droxy­aniline, hydrogen bonding

Related literature  

For the anti­protozoal and anti­microbial properties of phenyl­benzamides, see: Ríos Martínez et al. (2014); Şener et al. (2000). For active metabolites of benzoxazoles, see: Mobinikhaledi et al. (2006). For studies of phenyl­benzamides as inhibitors of tyrosine kinases, see: Capdeville et al. (2002). For studies of phenyl­benzamides as inducers of apoptosis in biological processes, see: Olsson et al. (2002). For related structures, see: Fun et al. (2012); Hibbert et al. (1998).graphic file with name e-70-o1261-scheme1.jpg

Experimental  

Crystal data  

  • C13H10BrNO2

  • M r = 292.13

  • Monoclinic, Inline graphic

  • a = 23.4258 (10) Å

  • b = 5.6473 (1) Å

  • c = 9.2464 (3) Å

  • β = 93.008 (1)°

  • V = 1221.54 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.35 mm−1

  • T = 295 K

  • 0.20 × 0.18 × 0.13 mm

Data collection  

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.537, T max = 0.662

  • 21458 measured reflections

  • 2490 independent reflections

  • 1664 reflections with I > 2σ(I)

  • R int = 0.063

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.168

  • S = 0.99

  • 2490 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.68 e Å−3

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814024696/su5019sup1.cif

e-70-o1261-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024696/su5019Isup2.hkl

e-70-o1261-Isup2.hkl (136.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024696/su5019Isup3.cml

. DOI: 10.1107/S1600536814024696/su5019fig1.tif

The mol­ecular structure of the title compound (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a 3 3 3 2 . DOI: 10.1107/S1600536814024696/su5019fig2.tif

Part of the crystal packing of the title compound (I) viewed along the a axis, showing the formation of R3 3(17) and R3 2(9) ring motifs within the two-dimensional hydrogen bonded network running parallel to (100). Hydrogen bonds are shown as dashed lines; see Table 1 for details [symmetry codes: (i) x, −y-3/2, z-1/2; (ii) x, −y-1/2, z-1/2; (iii) x, y+1, z].

CCDC reference: 1033535

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O2HO2O1i 0.82 2.00 2.682(3) 141
N1H1O1ii 0.86 2.02 2.824(3) 155
C6H6O2iii 0.93 2.56 3.458(5) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RMF is grateful to the Universidad del Valle, Colombia, for partial financial support.

supplementary crystallographic information

S1. Comment

The crystal structure determination of the title compound (I), is part of a study on phenylbenzamides carried out in our research group, and they are synthesized from the reaction of picryl benzoates with 2-hydroxy-aniline. These compounds have received extensive attention because of their antiprotozoal (Ríos Martínez et al., 2014) and anti-microbialactivity (Şener et al., 2000), and as active metabolites of benzoxazoles (Mobinikhaledi et al., 2006). They have also been studied as inhibitors of tyrosine kinases (Capdeville et al., 2002) and inducers of apoptosis in the tumor development process (Olsson et al., 2002). Similar compounds to (I) have been reported in the literature, viz. 4-bromo-N-phenylbenzamide (II) (Fun et al., 2012) and 2-hydroxy-N-benzoylaniline (III) (Hibbert et al., 1998).

The molecular structure of (I) is shown in Fig. 1. The central amide moiety, C8—N1-C7(═O1)—C1, is essentially planar (r.m.s. deviation for all non-H atoms = 0.0026 Å) and it forms dihedral angles of 73.97 (12)° with the hydroxy-substituted phenyl ring and 25.42 (19)° with the bromo-substituted benzene ring. The bond lengths and angles within the molecule of (I) are in a good agreement with those found in the related compounds (II) and (III), although the N1-C7 bond length in the central amide segment, is slightly increased in structure (II), [C1-C7= 1.361 (2)Å].

In the crystal of (I), molecules are linked by O-H···O and N-H···O hydrogen bonds of medium-strength and weak C-H···O intermolecular contacts forming sheets parallel to (100) (Table 1 and Fig. 2). The O2-HO2···O1 hydrogen bonds are responsible for crystal growth in the b direction. In this interaction, the hydroxy O2-HO2 group in the molecule at (x, y, z) acts as a hydrogen-bond donor to atom O1 of the carbonyl group at (x ,-y-3/2, z-1/2). In turn, the N1-H1···O1 hydrogen bonds and weak C6-H6···O2 interactions, complement crystal growth in the c direction (see Fig. 2). The N1-H1 group of the amide moiety in the molecule at (x ,y, z) acts as hydrogen bond donor to carbonyl atom O1 in the molecule at (x, -y-1/2, z-1/2) and the C6-H6 group in the molecule at (x, y, z) acts as a hydrogen bond donor to atom O2 in the molecule at (x, y+1 ,z). Very likely, these interactions are responsible for the twist of the rings with respect to the central amide moiety. The combination of these interactions generate edge-fused R33(17) and R32(9) ring motifs.

S2. Experimental

4-bromobenzoate 2,4,6-trinitrophenyl (0.050 g, 0.117 mmol) and 2-hydroxyaniline (0.0254 g) in molar ratio 1:2, were dissolved in 15 mL of toluene and mixed for 6 h under reflux and constant stirring. On completion of the reaction part of the solvent was evaporated and a crystalline black solid was obtained. [m.p.: 454 (1) K].

S3. Refinement

The H-atoms were positioned in geometrically idealized positions and treated as riding atoms: O—H = 0.82 Å, N—H = 0.86 Å and C—H = 0.93 Å, with Uiso(H) = 1.5Ueq(O) for the hydroxyl H atom and = 1.2Ueq(N, C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Part of the crystal packing of the title compound (I) viewed along the a axis, showing the formation of R33(17) and R32(9) ring motifs within the two-dimensional hydrogen bonded network running parallel to (100). Hydrogen bonds are shown as dashed lines; see Table 1 for details [symmetry codes: (i) x, -y-3/2, z-1/2; (ii) x, -y-1/2, z-1/2; (iii) x, y+1, z].

Crystal data

C13H10BrNO2 F(000) = 584
Mr = 292.13 Dx = 1.588 Mg m3
Monoclinic, P21/c Melting point: 454(1) K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 23.4258 (10) Å Cell parameters from 2490 reflections
b = 5.6473 (1) Å θ = 3.5–26.4°
c = 9.2464 (3) Å µ = 3.35 mm1
β = 93.008 (1)° T = 295 K
V = 1221.54 (7) Å3 Block, black
Z = 4 0.20 × 0.18 × 0.13 mm

Data collection

Nonius KappaCCD diffractometer 2490 independent reflections
Radiation source: fine-focus sealed tube 1664 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.063
CCD rotation images, thick slices scans θmax = 26.4°, θmin = 3.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −29→29
Tmin = 0.537, Tmax = 0.662 k = −7→6
21458 measured reflections l = −11→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168 H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0999P)2 + 0.5651P] where P = (Fo2 + 2Fc2)/3
2490 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.68 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.46192 (2) 1.31657 (9) 0.85256 (8) 0.1081 (3)
O1 0.23094 (11) 0.5820 (4) 0.8853 (2) 0.0546 (6)
C7 0.24418 (16) 0.7116 (6) 0.7843 (3) 0.0462 (8)
C9 0.15972 (16) 0.4064 (6) 0.5411 (4) 0.0513 (8)
O2 0.20914 (13) 0.3579 (5) 0.4767 (3) 0.0700 (8)
HO2 0.2040 0.2472 0.4201 0.105*
N1 0.21228 (13) 0.7256 (5) 0.6607 (3) 0.0520 (7)
H1 0.2235 0.8168 0.5933 0.062*
C1 0.29740 (16) 0.8587 (6) 0.7961 (3) 0.0490 (8)
C6 0.30259 (17) 1.0664 (6) 0.7177 (4) 0.0565 (9)
H6 0.2728 1.1161 0.6543 0.068*
C8 0.16058 (15) 0.5964 (6) 0.6357 (3) 0.0500 (8)
C5 0.3522 (2) 1.1998 (7) 0.7340 (5) 0.0675 (11)
H5 0.3560 1.3385 0.6811 0.081*
C2 0.34181 (18) 0.7886 (7) 0.8900 (4) 0.0604 (9)
H2 0.3384 0.6499 0.9431 0.073*
C4 0.39549 (18) 1.1262 (7) 0.8281 (5) 0.0665 (10)
C13 0.1110 (2) 0.6596 (7) 0.7011 (4) 0.0683 (11)
H13 0.1113 0.7876 0.7645 0.082*
C10 0.11003 (19) 0.2786 (8) 0.5152 (5) 0.0696 (11)
H10 0.1096 0.1490 0.4532 0.083*
C11 0.0610 (2) 0.3429 (9) 0.5812 (5) 0.0816 (13)
H11 0.0275 0.2566 0.5635 0.098*
C3 0.39140 (18) 0.9208 (7) 0.9065 (5) 0.0704 (11)
H3 0.4214 0.8717 0.9694 0.084*
C12 0.06136 (19) 0.5340 (10) 0.6729 (5) 0.0851 (14)
H12 0.0280 0.5786 0.7160 0.102*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0702 (4) 0.0749 (4) 0.1796 (7) −0.0166 (2) 0.0112 (4) −0.0221 (3)
O1 0.0774 (17) 0.0477 (13) 0.0385 (12) −0.0068 (12) 0.0028 (11) 0.0028 (10)
C7 0.062 (2) 0.0424 (17) 0.0345 (16) 0.0026 (15) 0.0049 (15) −0.0055 (13)
C9 0.059 (2) 0.0450 (18) 0.0493 (18) 0.0008 (16) −0.0007 (16) 0.0039 (15)
O2 0.0772 (19) 0.0527 (14) 0.0812 (18) 0.0004 (13) 0.0136 (15) −0.0171 (13)
N1 0.071 (2) 0.0511 (15) 0.0340 (14) −0.0087 (14) 0.0044 (13) 0.0005 (12)
C1 0.064 (2) 0.0451 (17) 0.0381 (16) −0.0018 (15) 0.0080 (15) −0.0056 (14)
C6 0.072 (2) 0.0474 (19) 0.0498 (19) −0.0078 (17) −0.0011 (17) −0.0017 (15)
C8 0.061 (2) 0.0484 (18) 0.0405 (16) 0.0038 (16) −0.0009 (15) 0.0046 (14)
C5 0.088 (3) 0.048 (2) 0.068 (2) −0.0111 (19) 0.019 (2) −0.0034 (17)
C2 0.069 (2) 0.052 (2) 0.060 (2) 0.0022 (18) −0.0012 (19) −0.0004 (16)
C4 0.062 (2) 0.056 (2) 0.082 (3) −0.0074 (19) 0.012 (2) −0.014 (2)
C13 0.075 (3) 0.075 (3) 0.056 (2) 0.010 (2) 0.0069 (19) −0.0066 (18)
C10 0.072 (3) 0.065 (2) 0.070 (2) −0.011 (2) −0.007 (2) −0.005 (2)
C11 0.062 (3) 0.099 (4) 0.081 (3) −0.015 (2) −0.013 (2) 0.007 (3)
C3 0.062 (2) 0.062 (2) 0.086 (3) 0.001 (2) −0.004 (2) −0.013 (2)
C12 0.056 (3) 0.119 (4) 0.081 (3) 0.010 (3) 0.005 (2) 0.005 (3)

Geometric parameters (Å, º)

Br1—C4 1.895 (4) C8—C13 1.384 (5)
O1—C7 1.239 (4) C5—C4 1.365 (7)
C7—N1 1.334 (4) C5—H5 0.9300
C7—C1 1.497 (5) C2—C3 1.383 (6)
C9—O2 1.357 (4) C2—H2 0.9300
C9—C10 1.380 (5) C4—C3 1.374 (6)
C9—C8 1.384 (5) C13—C12 1.375 (7)
O2—HO2 0.8200 C13—H13 0.9300
N1—C8 1.423 (5) C10—C11 1.378 (7)
N1—H1 0.8600 C10—H10 0.9300
C1—C2 1.377 (5) C11—C12 1.372 (7)
C1—C6 1.388 (5) C11—H11 0.9300
C6—C5 1.387 (6) C3—H3 0.9300
C6—H6 0.9300 C12—H12 0.9300
O1—C7—N1 122.0 (3) C1—C2—C3 121.1 (4)
O1—C7—C1 120.9 (3) C1—C2—H2 119.4
N1—C7—C1 117.2 (3) C3—C2—H2 119.4
O2—C9—C10 123.4 (3) C5—C4—C3 121.6 (4)
O2—C9—C8 116.7 (3) C5—C4—Br1 118.7 (3)
C10—C9—C8 119.9 (4) C3—C4—Br1 119.7 (3)
C9—O2—HO2 109.5 C12—C13—C8 120.3 (4)
C7—N1—C8 122.9 (3) C12—C13—H13 119.9
C7—N1—H1 118.6 C8—C13—H13 119.9
C8—N1—H1 118.6 C11—C10—C9 120.1 (4)
C2—C1—C6 119.2 (3) C11—C10—H10 120.0
C2—C1—C7 119.0 (3) C9—C10—H10 120.0
C6—C1—C7 121.7 (3) C12—C11—C10 120.2 (4)
C5—C6—C1 119.9 (4) C12—C11—H11 119.9
C5—C6—H6 120.1 C10—C11—H11 119.9
C1—C6—H6 120.1 C4—C3—C2 118.6 (4)
C9—C8—C13 119.4 (4) C4—C3—H3 120.7
C9—C8—N1 119.0 (3) C2—C3—H3 120.7
C13—C8—N1 121.5 (3) C11—C12—C13 120.1 (4)
C4—C5—C6 119.6 (4) C11—C12—H12 120.0
C4—C5—H5 120.2 C13—C12—H12 120.0
C6—C5—H5 120.2
O1—C7—N1—C8 0.8 (5) C6—C1—C2—C3 −0.3 (5)
C1—C7—N1—C8 −179.6 (3) C7—C1—C2—C3 −178.8 (3)
O1—C7—C1—C2 24.5 (5) C6—C5—C4—C3 0.7 (6)
N1—C7—C1—C2 −155.1 (3) C6—C5—C4—Br1 −178.2 (3)
O1—C7—C1—C6 −153.9 (3) C9—C8—C13—C12 0.3 (6)
N1—C7—C1—C6 26.5 (4) N1—C8—C13—C12 178.8 (4)
C2—C1—C6—C5 0.3 (5) O2—C9—C10—C11 −178.0 (4)
C7—C1—C6—C5 178.7 (3) C8—C9—C10—C11 1.3 (6)
O2—C9—C8—C13 177.9 (3) C9—C10—C11—C12 −0.1 (7)
C10—C9—C8—C13 −1.4 (5) C5—C4—C3—C2 −0.8 (6)
O2—C9—C8—N1 −0.7 (4) Br1—C4—C3—C2 178.1 (3)
C10—C9—C8—N1 180.0 (3) C1—C2—C3—C4 0.6 (6)
C7—N1—C8—C9 −107.5 (4) C10—C11—C12—C13 −1.1 (7)
C7—N1—C8—C13 73.9 (5) C8—C13—C12—C11 1.0 (7)
C1—C6—C5—C4 −0.5 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—HO2···O1i 0.82 2.00 2.682 (3) 141
N1—H1···O1ii 0.86 2.02 2.824 (3) 155
C6—H6···O2iii 0.93 2.56 3.458 (5) 164

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU5019).

References

  1. Capdeville, R., Buchdunger, E., Zimmermann, J. & Matter, A. (2002). Nat. Rev. Drug Disc. 1, 493–502. [DOI] [PubMed]
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Fun, H.-K., Chantrapromma, S., Sripet, W., Ruanwas, P. & Boonnak, N. (2012). Acta Cryst. E68, o1269–o1270. [DOI] [PMC free article] [PubMed]
  4. Hibbert, F., Mills, J. F., Nyburg, S. C. & Parkins, A. W. (1998). J. Chem. Soc. Perkin Trans. 2, pp. 628–634.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Mobinikhaledi, A., Forughifar, N., Shariatzadeh, S. M. & Fallah, M. (2006). Heterocycl. Commun. 12, 427-430.
  7. Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.
  8. Olsson, A. R., Lindgren, H., Pero, R. W. & Leanderson, T. (2002). Br. J. Cancer, 86, 97-1-978. [DOI] [PMC free article] [PubMed]
  9. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  10. Ríos Martínez, C. H., Lagartera, L., Kaiser, M. & Dardonville, C. (2014). Eur. J. Med. Chem. 81, 481–491. [DOI] [PubMed]
  11. Şener, E. A., Bingöl, K. K., Ören, I., Arpacı, Ö. T., Yalçın, İ & Altanlar, N. (2000). Farmaco, 55, 469–476. [DOI] [PubMed]
  12. Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814024696/su5019sup1.cif

e-70-o1261-sup1.cif (21.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024696/su5019Isup2.hkl

e-70-o1261-Isup2.hkl (136.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024696/su5019Isup3.cml

. DOI: 10.1107/S1600536814024696/su5019fig1.tif

The mol­ecular structure of the title compound (I), with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

a 3 3 3 2 . DOI: 10.1107/S1600536814024696/su5019fig2.tif

Part of the crystal packing of the title compound (I) viewed along the a axis, showing the formation of R3 3(17) and R3 2(9) ring motifs within the two-dimensional hydrogen bonded network running parallel to (100). Hydrogen bonds are shown as dashed lines; see Table 1 for details [symmetry codes: (i) x, −y-3/2, z-1/2; (ii) x, −y-1/2, z-1/2; (iii) x, y+1, z].

CCDC reference: 1033535

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES