Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 5;70(Pt 12):o1233–o1234. doi: 10.1107/S160053681402385X

Crystal structure of 5-chloro-2,4,6-trimethyl-3-(4-methyl­phenyl­sulfin­yl)-1-benzo­furan

Hong Dae Choi a, Uk Lee b,*
PMCID: PMC4257403  PMID: 25553017

Abstract

In the title compound, C18H17ClO2S, the dihedral angle between the planes of the benzo­furan ring [r.m.s. deviation = 0.013 (1) Å] and the 4-methyl­phenyl ring is 87.37 (5)°. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds and π–π inter­actions between the furan and benzene rings of neighbouring mol­ecules [centroid–centroid distance = 3.525 (2) Å]. In addition, an S⋯S [3.6584 (9) Å] contact is observed.

Keywords: crystal structure, benzo­furan, 4-methyl­phen­yl, C—H⋯O and C—H⋯π hydrogen bonds, π–π and S⋯S inter­actions

Related literature  

For the pharmacological properties of benzo­furan compounds, see: Aslam et al. (2009); Galal et al. (2009); Howlett et al. (1999); Wahab Khan et al. (2005); Ono et al. (2002). For natural products with a benzo­furan ring, see: Akgul & Anil (2003); Soekamto et al. (2003). For the synthesis of the starting material 5-chloro-2,4,6-trimethyl-3-(4-methyl­phenyl­sulfan­yl)-1-benzo­furan, see: Choi et al. (1999). For a related structure, see: Choi et al. (2012).graphic file with name e-70-o1233-scheme1.jpg

Experimental  

Crystal data  

  • C18H17ClO2S

  • M r = 332.83

  • Triclinic, Inline graphic

  • a = 8.7938 (2) Å

  • b = 9.1775 (3) Å

  • c = 10.7298 (3) Å

  • α = 86.571 (1)°

  • β = 69.157 (1)°

  • γ = 81.093 (2)°

  • V = 799.51 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 173 K

  • 0.60 × 0.56 × 0.08 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.807, T max = 0.971

  • 14763 measured reflections

  • 3988 independent reflections

  • 3502 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.124

  • S = 1.05

  • 3988 reflections

  • 203 parameters

  • H-atom parameters constrained

  • Δρmax = 0.83 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681402385X/nk2227sup1.cif

e-70-o1233-sup1.cif (443.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681402385X/nk2227Isup2.hkl

e-70-o1233-Isup2.hkl (195.4KB, hkl)

Supporting information file. DOI: 10.1107/S160053681402385X/nk2227Isup3.cml

. DOI: 10.1107/S160053681402385X/nk2227fig1.tif

The mol­ecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

x y z x y z x y z x y z x y z x y z . DOI: 10.1107/S160053681402385X/nk2227fig2.tif

A view of the C—H⋯O, π–π and S⋯S inter­actions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) − x + 1, − y + 2, − z + 1; (iii) − x + 1, − y + 1, − z + 1; (iv) − x, − y + 2, − z + 1; (v) x − 1, y, z; (vi) x, y − 1, z.]

CCDC reference: 1031568

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C6H6O2i 0.95 2.30 3.180(2) 154
C17H17O1ii 0.95 2.56 3.434(2) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The X-ray centre of the Gyeongsang National University is acknowledged for providing access to the single-crystal diffractometer.

supplementary crystallographic information

S1. Comment

Substituted benzofurans show interesting pharmacological properties such as antibacterial and antifungal, antitumor and antiviral, antimicrobial activities (Aslam et al. 2009, Galal et al., 2009, Wahab Khan et al., 2005), and potential inhibitor of β-amyloid aggregation (Howlett et al., 1999, Ono et al., 2002). These benzofuran compounds occur in a great number of natural products. (Akgul & Anil, 2003, Soekamto et al., 2003). As a part of our ongoing project of 3-arylsulfinyl-5-chloro-2-methyl-1-benzofuran derivatives containing 4-bromophenylsulfinyl substituent in 3-position (Choi et al., 2012), we report herein on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran unit is essentially planar, with a mean deviation of 0.013 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.003 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring and the 4-methylphenyl ring is 87.37 (5)°. In the crystal structure (Fig. 2), molecules are linked by C—H···O hydrogen bonds (Table 1) and π–π interactions between the furan and benzene rings of neighbouring molecules, with a Cg1···Cg2iii distance of 3.525 (2) Å and an interplanar distance of 3.479 (2) Å resulting in a slippage of 0.568 (2) Å (Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively). In the crystal (Fig. 2), an S1···S1iv [3.6584 (9) Å] contact are observed.

S2. Experimental

The starting material 5-chloro-2,4,6-trimethyl-3-(4-methylphenylsulfanyl)-1-benzofuran was prepared by literature method (Choi et al. 1999). 3-Chloroperoxybenzoic acid (77%, 224 mg, 1.0 mmol) was added in small portions to a stirred solution of 5-chloro-2,4,6-trimethyl-3-(4-methylphenylsulfanyl)-1-benzofuran (285 mg, 0.9 mmol) in dichloromethane (25 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution (2 X 10 mL) and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 2:1 v/v) to afford the title compound as a colorless solid [yield 68% (226 mg); m.p. 466–467 K; Rf = 0.43 (hexane–ethyl acetate, 2:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound (23 mg) in acetone (15 mL) at room temperature.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms.The positions of methyl hydrogens were optimized using the SHELXL-97's command AFIX 137 (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O, π–π and S···S interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) - x + 1, - y + 2, - z + 1; (iii) - x + 1, - y + 1, - z + 1; (iv) - x, - y + 2, - z + 1; (v) x - 1, y, z; (vi) x, y - 1, z.]

Crystal data

C18H17ClO2S Z = 2
Mr = 332.83 F(000) = 348
Triclinic, P1 Dx = 1.383 Mg m3
Hall symbol: -P 1 Melting point = 467–466 K
a = 8.7938 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.1775 (3) Å Cell parameters from 6565 reflections
c = 10.7298 (3) Å θ = 2.6–28.3°
α = 86.571 (1)° µ = 0.37 mm1
β = 69.157 (1)° T = 173 K
γ = 81.093 (2)° Block, colourless
V = 799.51 (4) Å3 0.60 × 0.56 × 0.08 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3988 independent reflections
Radiation source: rotating anode 3502 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.048
Detector resolution: 10.0 pixels mm-1 θmax = 28.4°, θmin = 2.0°
φ and ω scans h = −11→11
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −12→12
Tmin = 0.807, Tmax = 0.971 l = −11→14
14763 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: difference Fourier map
wR(F2) = 0.124 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.2785P] where P = (Fo2 + 2Fc2)/3
3988 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.83 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Experimental. 1H NMR (δ p.p.m., CDCl3, 400 Hz): 7.34 (d, J = 8.24 Hz, 2H), 7.22 (d, J = 7.84 Hz, 2H), 7.19 (s, 1H), 2.71 (s, 3H), 2.43 (s, 3H), 2.37 (s, 3H), 2.32 (s, 3H).
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.73398 (7) 0.38071 (5) 0.09920 (5) 0.04987 (16)
S1 0.14021 (5) 0.82594 (5) 0.46437 (4) 0.03532 (13)
O1 0.54038 (13) 0.77389 (12) 0.54951 (11) 0.0305 (2)
O2 0.06142 (17) 0.69774 (17) 0.45239 (15) 0.0502 (4)
C1 0.33771 (18) 0.76626 (16) 0.46945 (16) 0.0281 (3)
C2 0.47994 (18) 0.66515 (15) 0.39027 (15) 0.0256 (3)
C3 0.5174 (2) 0.56896 (16) 0.28374 (16) 0.0298 (3)
C4 0.6780 (2) 0.49579 (17) 0.23736 (16) 0.0321 (3)
C5 0.7994 (2) 0.50928 (18) 0.29109 (17) 0.0330 (3)
C6 0.75771 (19) 0.60170 (17) 0.39906 (16) 0.0315 (3)
H6 0.8345 0.6131 0.4403 0.038*
C7 0.60010 (19) 0.67636 (16) 0.44414 (15) 0.0265 (3)
C8 0.38130 (19) 0.82609 (17) 0.56227 (16) 0.0296 (3)
C9 0.3921 (3) 0.5445 (2) 0.2249 (2) 0.0471 (5)
H9A 0.4114 0.5990 0.1406 0.071*
H9B 0.2817 0.5794 0.2872 0.071*
H9C 0.4015 0.4390 0.2084 0.071*
C10 0.9703 (2) 0.4263 (2) 0.2351 (2) 0.0486 (5)
H10A 1.0322 0.4416 0.2921 0.073*
H10B 1.0256 0.4623 0.1449 0.073*
H10C 0.9645 0.3209 0.2320 0.073*
C11 0.2955 (2) 0.9357 (2) 0.66964 (18) 0.0405 (4)
H11A 0.3379 1.0297 0.6427 0.061*
H11B 0.3145 0.9000 0.7515 0.061*
H11C 0.1773 0.9499 0.6857 0.061*
C12 0.19683 (19) 0.91671 (17) 0.30487 (16) 0.0303 (3)
C13 0.1421 (2) 0.87745 (19) 0.20800 (19) 0.0374 (4)
H13 0.0840 0.7954 0.2211 0.045*
C14 0.1729 (2) 0.9595 (2) 0.09110 (19) 0.0426 (4)
H14 0.1359 0.9324 0.0238 0.051*
C15 0.2563 (3) 1.07992 (19) 0.07025 (18) 0.0433 (4)
C16 0.3090 (3) 1.11627 (19) 0.1702 (2) 0.0448 (4)
H16 0.3671 1.1982 0.1576 0.054*
C17 0.2795 (2) 1.03701 (19) 0.28696 (19) 0.0383 (4)
H17 0.3155 1.0645 0.3547 0.046*
C18 0.2873 (4) 1.1712 (2) −0.0548 (2) 0.0668 (7)
H18A 0.4004 1.1425 −0.1153 0.100*
H18B 0.2711 1.2758 −0.0323 0.100*
H18C 0.2105 1.1550 −0.0983 0.100*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0693 (3) 0.0399 (2) 0.0368 (2) 0.0026 (2) −0.0170 (2) −0.01002 (18)
S1 0.0252 (2) 0.0470 (3) 0.0337 (2) −0.00534 (16) −0.01096 (16) 0.00375 (17)
O1 0.0335 (6) 0.0326 (5) 0.0308 (6) −0.0075 (4) −0.0165 (5) −0.0015 (4)
O2 0.0404 (7) 0.0647 (9) 0.0563 (9) −0.0267 (6) −0.0252 (7) 0.0181 (7)
C1 0.0271 (7) 0.0302 (7) 0.0285 (7) −0.0066 (6) −0.0109 (6) 0.0033 (6)
C2 0.0271 (7) 0.0255 (6) 0.0278 (7) −0.0082 (5) −0.0129 (6) 0.0045 (5)
C3 0.0373 (8) 0.0276 (7) 0.0295 (8) −0.0077 (6) −0.0168 (7) 0.0012 (6)
C4 0.0420 (9) 0.0266 (7) 0.0274 (7) −0.0058 (6) −0.0116 (7) 0.0016 (6)
C5 0.0314 (8) 0.0323 (8) 0.0312 (8) −0.0045 (6) −0.0072 (6) 0.0067 (6)
C6 0.0292 (7) 0.0346 (8) 0.0342 (8) −0.0089 (6) −0.0146 (6) 0.0059 (6)
C7 0.0298 (7) 0.0264 (7) 0.0265 (7) −0.0085 (5) −0.0123 (6) 0.0024 (5)
C8 0.0309 (7) 0.0297 (7) 0.0293 (8) −0.0062 (6) −0.0117 (6) 0.0031 (6)
C9 0.0541 (11) 0.0450 (10) 0.0563 (12) −0.0038 (8) −0.0359 (10) −0.0133 (9)
C10 0.0346 (9) 0.0530 (11) 0.0465 (11) 0.0025 (8) −0.0043 (8) 0.0032 (9)
C11 0.0484 (10) 0.0385 (9) 0.0327 (9) −0.0041 (7) −0.0122 (8) −0.0044 (7)
C12 0.0262 (7) 0.0323 (7) 0.0310 (8) 0.0008 (6) −0.0103 (6) 0.0003 (6)
C13 0.0385 (9) 0.0350 (8) 0.0419 (9) −0.0027 (7) −0.0190 (8) −0.0017 (7)
C14 0.0548 (11) 0.0390 (9) 0.0354 (9) 0.0051 (8) −0.0216 (8) −0.0067 (7)
C15 0.0565 (11) 0.0307 (8) 0.0335 (9) 0.0074 (7) −0.0097 (8) −0.0024 (7)
C16 0.0544 (11) 0.0300 (8) 0.0477 (11) −0.0071 (8) −0.0149 (9) 0.0007 (7)
C17 0.0429 (9) 0.0356 (8) 0.0399 (9) −0.0045 (7) −0.0190 (8) −0.0032 (7)
C18 0.105 (2) 0.0425 (11) 0.0395 (11) 0.0014 (12) −0.0150 (12) 0.0042 (9)

Geometric parameters (Å, º)

Cl1—C4 1.7500 (16) C9—H9C 0.9800
S1—O2 1.4882 (14) C10—H10A 0.9800
S1—C1 1.7574 (15) C10—H10B 0.9800
S1—C12 1.7950 (17) C10—H10C 0.9800
S1—S1i 3.6584 (9) C11—H11A 0.9800
O1—C8 1.3672 (19) C11—H11B 0.9800
O1—C7 1.3813 (18) C11—H11C 0.9800
C1—C8 1.357 (2) C12—C13 1.377 (2)
C1—C2 1.458 (2) C12—C17 1.381 (2)
C2—C7 1.392 (2) C13—C14 1.386 (3)
C2—C3 1.399 (2) C13—H13 0.9500
C3—C4 1.393 (2) C14—C15 1.384 (3)
C3—C9 1.501 (2) C14—H14 0.9500
C4—C5 1.405 (2) C15—C16 1.386 (3)
C5—C6 1.384 (2) C15—C18 1.501 (3)
C5—C10 1.502 (2) C16—C17 1.372 (3)
C6—C7 1.376 (2) C16—H16 0.9500
C6—H6 0.9500 C17—H17 0.9500
C8—C11 1.481 (2) C18—H18A 0.9800
C9—H9A 0.9800 C18—H18B 0.9800
C9—H9B 0.9800 C18—H18C 0.9800
O2—S1—C1 110.50 (8) C5—C10—H10A 109.5
O2—S1—C12 106.80 (8) C5—C10—H10B 109.5
C1—S1—C12 98.98 (7) H10A—C10—H10B 109.5
O2—S1—S1i 113.79 (6) C5—C10—H10C 109.5
C1—S1—S1i 134.58 (5) H10A—C10—H10C 109.5
C12—S1—S1i 77.68 (5) H10B—C10—H10C 109.5
C8—O1—C7 106.51 (11) C8—C11—H11A 109.5
C8—C1—C2 107.06 (13) C8—C11—H11B 109.5
C8—C1—S1 118.18 (12) H11A—C11—H11B 109.5
C2—C1—S1 134.71 (12) C8—C11—H11C 109.5
C7—C2—C3 118.93 (14) H11A—C11—H11C 109.5
C7—C2—C1 104.37 (13) H11B—C11—H11C 109.5
C3—C2—C1 136.70 (14) C13—C12—C17 120.71 (16)
C4—C3—C2 115.52 (14) C13—C12—S1 120.19 (13)
C4—C3—C9 122.27 (15) C17—C12—S1 118.68 (13)
C2—C3—C9 122.20 (15) C12—C13—C14 119.00 (17)
C3—C4—C5 125.18 (15) C12—C13—H13 120.5
C3—C4—Cl1 117.32 (12) C14—C13—H13 120.5
C5—C4—Cl1 117.49 (13) C15—C14—C13 121.47 (17)
C6—C5—C4 118.13 (15) C15—C14—H14 119.3
C6—C5—C10 119.95 (16) C13—C14—H14 119.3
C4—C5—C10 121.92 (17) C14—C15—C16 117.83 (17)
C7—C6—C5 117.09 (14) C14—C15—C18 121.9 (2)
C7—C6—H6 121.5 C16—C15—C18 120.3 (2)
C5—C6—H6 121.5 C17—C16—C15 121.75 (18)
C6—C7—O1 124.07 (13) C17—C16—H16 119.1
C6—C7—C2 125.10 (14) C15—C16—H16 119.1
O1—C7—C2 110.83 (13) C16—C17—C12 119.23 (16)
C1—C8—O1 111.21 (13) C16—C17—H17 120.4
C1—C8—C11 133.88 (15) C12—C17—H17 120.4
O1—C8—C11 114.89 (14) C15—C18—H18A 109.5
C3—C9—H9A 109.5 C15—C18—H18B 109.5
C3—C9—H9B 109.5 H18A—C18—H18B 109.5
H9A—C9—H9B 109.5 C15—C18—H18C 109.5
C3—C9—H9C 109.5 H18A—C18—H18C 109.5
H9A—C9—H9C 109.5 H18B—C18—H18C 109.5
H9B—C9—H9C 109.5
O2—S1—C1—C8 −134.63 (14) C8—O1—C7—C2 −0.45 (16)
C12—S1—C1—C8 113.57 (14) C3—C2—C7—C6 1.5 (2)
S1i—S1—C1—C8 32.06 (17) C1—C2—C7—C6 −178.85 (15)
O2—S1—C1—C2 48.36 (18) C3—C2—C7—O1 −178.86 (13)
C12—S1—C1—C2 −63.44 (17) C1—C2—C7—O1 0.82 (16)
S1i—S1—C1—C2 −144.96 (13) C2—C1—C8—O1 0.66 (18)
C8—C1—C2—C7 −0.88 (17) S1—C1—C8—O1 −177.12 (10)
S1—C1—C2—C7 176.36 (13) C2—C1—C8—C11 179.10 (17)
C8—C1—C2—C3 178.70 (17) S1—C1—C8—C11 1.3 (3)
S1—C1—C2—C3 −4.1 (3) C7—O1—C8—C1 −0.16 (17)
C7—C2—C3—C4 −2.4 (2) C7—O1—C8—C11 −178.91 (13)
C1—C2—C3—C4 178.08 (16) O2—S1—C12—C13 10.13 (16)
C7—C2—C3—C9 176.67 (16) C1—S1—C12—C13 124.85 (14)
C1—C2—C3—C9 −2.9 (3) S1i—S1—C12—C13 −101.30 (13)
C2—C3—C4—C5 1.6 (2) O2—S1—C12—C17 −177.26 (13)
C9—C3—C4—C5 −177.46 (17) C1—S1—C12—C17 −62.55 (14)
C2—C3—C4—Cl1 −177.10 (11) S1i—S1—C12—C17 71.31 (13)
C9—C3—C4—Cl1 3.8 (2) C17—C12—C13—C14 0.8 (2)
C3—C4—C5—C6 0.3 (3) S1—C12—C13—C14 173.25 (13)
Cl1—C4—C5—C6 179.01 (12) C12—C13—C14—C15 −0.4 (3)
C3—C4—C5—C10 179.99 (16) C13—C14—C15—C16 0.2 (3)
Cl1—C4—C5—C10 −1.3 (2) C13—C14—C15—C18 −178.73 (18)
C4—C5—C6—C7 −1.3 (2) C14—C15—C16—C17 −0.4 (3)
C10—C5—C6—C7 178.96 (15) C18—C15—C16—C17 178.56 (19)
C5—C6—C7—O1 −179.13 (14) C15—C16—C17—C12 0.8 (3)
C5—C6—C7—C2 0.5 (2) C13—C12—C17—C16 −1.0 (3)
C8—O1—C7—C6 179.22 (15) S1—C12—C17—C16 −173.55 (13)

Symmetry code: (i) −x, −y+2, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···O2ii 0.95 2.30 3.180 (2) 154
C17—H17···O1iii 0.95 2.56 3.434 (2) 153

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: NK2227).

References

  1. Akgul, Y. Y. & Anil, H. (2003). Phytochemistry, 63, 939–943. [DOI] [PubMed]
  2. Aslam, S. N., Stevenson, P. C., Kokubun, T. & Hall, D. R. (2009). Microbiol. Res. 164, 191–195. [DOI] [PubMed]
  3. Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  4. Bruker (2009). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o2080. [DOI] [PMC free article] [PubMed]
  6. Choi, H. D., Seo, P. J. & Son, B. W. (1999). J. Korean Chem. Soc 43, 606–608.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Galal, S. A., Abd El-All, A. S., Abdallah, M. M. & El-Diwani, H. I. (2009). Bioorg. Med. Chem. Lett. 19, 2420–2428. [DOI] [PubMed]
  9. Howlett, D. R., Perry, A. E., Godfrey, F., Swatton, J. E., Jennings, K. H., Spitzfaden, C., Wadsworth, H., Wood, S. J. & Markwell, R. E. (1999). Biochem. J. 340, 283–289. [PMC free article] [PubMed]
  10. Ono, M., Kung, M. P., Hou, C. & Kung, H. F. (2002). Nucl. Med. Biol. 29, 633–642. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soekamto, N. H., Achmad, S. A., Ghisalberti, E. L., Hakim, E. H. & Syah, Y. M. (2003). Phytochemistry, 64, 831–834. [DOI] [PubMed]
  13. Wahab Khan, M., Jahangir Alam, M., Rashid, M. A. & Chowdhury, R. (2005). Bioorg. Med. Chem. 13, 4796–4805. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681402385X/nk2227sup1.cif

e-70-o1233-sup1.cif (443.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681402385X/nk2227Isup2.hkl

e-70-o1233-Isup2.hkl (195.4KB, hkl)

Supporting information file. DOI: 10.1107/S160053681402385X/nk2227Isup3.cml

. DOI: 10.1107/S160053681402385X/nk2227fig1.tif

The mol­ecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

x y z x y z x y z x y z x y z x y z . DOI: 10.1107/S160053681402385X/nk2227fig2.tif

A view of the C—H⋯O, π–π and S⋯S inter­actions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1, y, z; (ii) − x + 1, − y + 2, − z + 1; (iii) − x + 1, − y + 1, − z + 1; (iv) − x, − y + 2, − z + 1; (v) x − 1, y, z; (vi) x, y − 1, z.]

CCDC reference: 1031568

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES