Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 21;70(Pt 12):562–565. doi: 10.1107/S1600536814024465

Crystal structure of 3-[({2-[bis­(2-hy­droxy­benz­yl)amino]­eth­yl}(2-hy­droxy­benz­yl)amino)­meth­yl]-2-hydroxy-5-methyl­benzaldehyde

Alexandra S Fonseca a, Adailton J Bortoluzzi a,*
PMCID: PMC4257411  PMID: 25552993

The mol­ecular structure of a non-symmetric structure based on a tetra­substituted ethyl­enedi­amine backbone consists of three hy­droxy­benzyl groups and one 2-hy­droxy-5-methyl­benzaldehyde group bonded to the N atoms of the di­amine unit. The ethyl­enedi­amine skeleton shows a regular extended conformation, while the phenol arms are randomly oriented but governed by hydrogen bonds.

Keywords: crystal structure, non-symmetrical compound, tetra­substituted ethyl­enedi­amine, phenol-arm substituents

Abstract

The non-symmetric title mol­ecule, C32H34N2O5, is based on a tetra­substituted ethyl­enedi­amine backbone. The mol­ecular structure consists of three hy­droxy­benzyl groups and one 2-hy­droxy-5-methyl­benzaldehyde group bonded to the N atoms of the di­amine unit. The ethyl­enedi­amine skeleton shows a regular extended conformation, while the spatial orientation of the phenol arms is governed by hydrogen bonds. In the 2-hy­droxy-5-methyl­benzaldehyde group, an intra­molecular S(6) O—H⋯O hydrogen bond is observed between the alcohol and aldehyde functions, and the neighbouring phenol arm participates in an intra­molecular S(6) O—H⋯N hydrogen bond. The third phenol group is involved in a bifurcated intra­molecular hydrogen bond with graph-set notation S(6) for O—H⋯N and O—H⋯O intra­molecular hydrogen bonds between neighbouring amine and phenol arms, respectively. Finally, the fourth phenol group acts as an acceptor in a bifurcated intra­molecular hydrogen bond and also acts as donor in an inter­molecular hydrogen bond, which connects inversion-related mol­ecules into dimers with R 4 4(8) ring motifs.

Chemical context  

The preparation of non-symmetric compounds has always been of inter­est in organic synthesis, as well as in coordination chemistry. Compounds containing tetra­substituted ethyl­ene­di­amine groups have attracted significant inter­est because of their coordination versatility towards metal ions, their easy preparation and their biological activity (Musa et al., 2014). With respect to medical applications, high in vitro cytotoxic activity of free ethyl­enedi­amine-type compounds against different types of cancer cells, such as HL-60 leukemic and B16 human melanoma cells lines, has been reported (Dencic et al., 2012; Lazić et al., 2010). In addition, metal complexes containing substituted ethyl­enedi­amine have also found valuable applications in pharmacological research as potential anti­cancer agents (Ansari et al., 2009), radiopharmaceuticals for tumor imaging (Boros et al., 2011; Price et al., 2012) and artificial nucleases (Raman et al., 2011). In this paper, we report the synthesis and crystal structure of the non-symmetric mol­ecule 3-[({2-[bis­(2-hy­droxy­benz­yl)amino]­eth­yl}(2-hydroxy­benz­yl)amino)­meth­yl]-2-hy­droxy-5-methyl­benzaldehyde, (I), which is a potential hexa­dentate ligand with an N2O4-donor set which could stabilize complexes containing high-oxidation-state metal ions, such as TcIII, GaIII and InIII ions, that are widely used in radiopharmaceuticals for diagnostic imaging and related research. graphic file with name e-70-00562-scheme1.jpg

Structural commentary  

Compound (I) is a non-symmetric mol­ecule based on a tetra­substituted ethyl­enedi­amine backbone (Fig. 1). The structure consists of three hy­droxy­benzyl groups and one 2-hy­droxy-5-methyl­benzaldehyde group bonded to nitro­gen atoms of the di­amine unit. The ethyl­enedi­amine skeleton shows a regular extended ‘zigzag’ conformation [with an N1—C2—C3—N4 torsion angle of 174.78 (13)°], while the pendant phenol arms are randomly oriented but governed by hydrogen bonds (Table 1). Three intra­molecular hydrogen bonds with an S(6) graph-set motif are observed in the mol­ecular structure of (I) (Fig. 2). One of these occurs between the neighbouring alcohol and aldehyde groups. In addition, intra­molecular O—H⋯N and O—H⋯O inter­actions, which include bifurcated hydrogen bonds, are observed, involving O—H functions as donors and the amine sites and one phenolic oxygen atom as acceptors. All bond lengths and angles found for (I) are in the expected range for organic compounds (Bruno et al., 2004).

Figure 1.

Figure 1

The mol­ecular structure of (I), with displacement ellipsoids drawn at the 40% probability level.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O10H10O20i 0.93 1.80 2.7230(16) 177
O20H20N1 0.94 1.75 2.5928(17) 148
O20H20O10 0.94 2.43 3.0362(19) 122
O30H30N4 0.93 1.94 2.784(2) 149
O40H40O41 0.93 1.76 2.6146(19) 151

Symmetry code: (i) Inline graphic.

Figure 2.

Figure 2

The intra­molecular hydrogen bonds (dashed lines) observed in (I).

Supra­molecular features  

In the crystal of (I), inversion dimers with Inline graphic(8) ring motifs are formed by pairs of O—H⋯O hydrogen bonds (Fig. 3, Table 1). The approximate planes of the ring motifs of the dimers are arranged as stacks along [010] (Fig. 4). No π–π stacking inter­actions are observed.

Figure 3.

Figure 3

An inversion dimer of (I) formed by inter­molecular O—H⋯O hydrogen bonds (dashed lines). [Symmetry code: (′) −x + 1, −y, −z.]

Figure 4.

Figure 4

Partial packing of (I), showing dimers stacked along [010].

Database survey  

A search for similar structures in the current version of the Cambridge Structural Database (Version 5.35, November 2013; Groom & Allen, 2014) resulted in four entries but only three different structures: (i) HUNDIE (CCDC 727272) and HUNDOK (CCDC 727273) (Boyle et al., 2009); (ii) USODUC (CCDC 809654) (Wang et al., 2011a ) and (iii) USODUC01 (CCDC 809654) (Wang et al., 2011b ). All of these structures are symmetric mol­ecules and the phenol groups have an additional one or two substituents in the para and ortho positions with respect to the O–H function. As observed in (I), the spatial orientations of the phenol arms are influenced by intra- and inter­molecular hydrogen bonding. There are no significant differences in the geometrical parameters; however, the crystal packing shows distinguishable three-dimensional arrangements due to differences in mol­ecular symmetry and inter­molecular inter­actions.

Synthesis and crystallization  

The title compound was obtained from a nucleophilic substitution reaction between N,N,N′-tris­(2-hy­droxy­benz­yl)-1,2-di­amino­ethane (Schmitt et al., 2002) and chloro­methyl-4-methyl-6-formyl­phenol. These precursors were prepared following the methodologies already described in the literature (Schmitt et al., 2002; Thoer et al., 1988). A solution of 2-chloro­methyl-4-methyl-6-formyl­phenol (1.19 g, 6.6 mmol) in tetra­hydro­furan (40 ml) was added slowly to a cooled solution of N,N,N′-tris­(2-hy­droxy­benz­yl)-1,2-di­amino­ethane (2.50 g, 6.6 mmol) in tetra­hydro­furan (40 ml) containing tri­ethyl­amine (0.96 ml, 6.6 mmol). The reaction was kept cooled during addition time, and the resulting solution stirred for 24 h. Yellow mixture oil/solid was obtained after evaporation of the solvent. A solution of this mixture in CH2Cl2 (50 ml) was washed with a saturated solution of NaHCO3 (3 × 50 ml) and filtered off in the presence of NaSO4. The solvent was removed, and a straw-yellow solid was obtained. This solid was refluxed in n-hexa­ne/CHCl3 (1:1, 100 ml). After cooling the solid was filtered off, washed with n-hexane (80 ml), dried and recrystallized from an ethyl acetate solution to afford 3-[({2-[bis­(2-hydroxy­benz­yl)amino]­eth­yl}(2-hy­droxy­benz­yl)amino)meth­yl]-2-hydroxy-5-methyl­benzaldehyde, (I).

The formation of (I) was indicated by the presence of the band at 1655 cm−1 in the IR spectrum, which is typical for stretching vibrations ν(C=O) of free aldehyde. In the 1H NMR spectrum, the signal at 9.81 p.p.m. related to one aldehyde proton is further evidence for product formation. Yield 90%, m.p. 444.8–445.4 K. IR (KBr, cm−1): ν(O—H) 3273, ν(C—Har and C—Halif) 3042–2718, ν(C=O)1655, ν(C=C) 1615–1457, δ(O—H) 1365, δ(C—O) 1252, δ(C—Har) 757; 1H NMR (400 MHz, CDCl3) (δ, p.p.m.): 2.29 (s, 3H, CH3), 2.78 (s, 4H, CH2-en), 3.58 (s, 2H, CH2), 3.61–3.77 (m, 6 H, CH2), 6.69–6.87 (m, 6H, CHar), 6.91 (d, 2H, CHar), 6.99 (d, 2 H, CHar), 7.07–7.19 (m, 2H, CHar), 7.24 (d, 2H, CHar), 9.81 (s, 1H, CHald); 13C NMR (400 MHz, DMSO-d 6, δ p.p.m.): 20.0, 48.6, 48.8, 53.5, 54.3, 115.2, 121.7, 122.7, 123.2, 124.5, 127.6, 128.4, 128.7, 129.8, 130.8, 136.7, 156.2, 156.5, 158.7, 191.6. Negative HPLC/ESI–MS (m/z): [M−H] calculated for C32H35N2O5 , 527.25; found, 527.19. Colourless blocks were grown by slow evaporation of the solvent from a saturated solution of (I) in ethyl acetate.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in idealized positions with distances of 0.95 (CHAr), 0.99 (CH2) or 0.98 Å (CH3) with U iso = 1.2U eq(C) or 1.5U eq(Cmeth­yl). The hydrogen atoms of the alcohol groups were located from a Fourier difference map and treated with a riding-model approximation with U iso(H) = 1.5U eq(O).

Table 2. Experimental details.

Crystal data
Chemical formula C32H34N2O5
M r 526.61
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 190
a, b, c () 10.1635(5), 11.0440(6), 13.5439(7)
, , () 113.549(2), 98.381(2), 99.451(3)
V (3) 1336.64(12)
Z 2
Radiation type Mo K
(mm1) 0.09
Crystal size (mm) 0.15 0.08 0.04
 
Data collection
Diffractometer Bruker APEXII DUO
No. of measured, independent and observed [I > 2(I)] reflections 17177, 8122, 5175
R int 0.031
(sin /)max (1) 0.715
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.057, 0.166, 1.02
No. of reflections 8122
No. of parameters 353
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.42, 0.25

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 and SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536814024465/lh5739sup1.cif

e-70-00562-sup1.cif (34.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024465/lh5739Isup2.hkl

e-70-00562-Isup2.hkl (389.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024465/lh5739Isup3.mol

Supporting information file. DOI: 10.1107/S1600536814024465/lh5739Isup4.cml

CCDC reference: 1033129

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Financiadora de Estudos e Projetos (FINEP) for support.

supplementary crystallographic information

Crystal data

C32H34N2O5 Z = 2
Mr = 526.61 F(000) = 560
Triclinic, P1 Dx = 1.308 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.1635 (5) Å Cell parameters from 4159 reflections
b = 11.0440 (6) Å θ = 2.4–30.3°
c = 13.5439 (7) Å µ = 0.09 mm1
α = 113.549 (2)° T = 190 K
β = 98.381 (2)° Prismatic, colourless
γ = 99.451 (3)° 0.15 × 0.08 × 0.04 mm
V = 1336.64 (12) Å3

Data collection

Bruker APEXII DUO diffractometer 5175 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.031
Graphite monochromator θmax = 30.6°, θmin = 1.7°
φ and ω scans h = −13→14
17177 measured reflections k = −15→15
8122 independent reflections l = −9→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0806P)2 + 0.2575P] where P = (Fo2 + 2Fc2)/3
8122 reflections (Δ/σ)max < 0.001
353 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.55546 (13) 0.19576 (13) 0.30195 (10) 0.0231 (3)
C2 0.46867 (17) 0.29324 (17) 0.32893 (12) 0.0268 (3)
H2A 0.5193 0.3775 0.3954 0.032*
H2B 0.3853 0.2536 0.3460 0.032*
C3 0.42744 (17) 0.32788 (16) 0.23213 (12) 0.0258 (3)
H3A 0.5117 0.3735 0.2200 0.031*
H3B 0.3865 0.2416 0.1646 0.031*
N4 0.33030 (13) 0.41522 (13) 0.24463 (11) 0.0258 (3)
C10 0.69979 (16) 0.26500 (17) 0.31867 (13) 0.0280 (3)
H10A 0.7441 0.3071 0.3987 0.034*
H10B 0.7017 0.3390 0.2948 0.034*
C11 0.78117 (16) 0.17145 (16) 0.25636 (13) 0.0263 (3)
C12 0.74930 (16) 0.11211 (18) 0.14067 (13) 0.0288 (3)
C13 0.82640 (18) 0.02915 (19) 0.08148 (15) 0.0350 (4)
H13 0.8023 −0.0122 0.0028 0.042*
C14 0.93856 (18) 0.0067 (2) 0.13728 (16) 0.0368 (4)
H14 0.9915 −0.0497 0.0967 0.044*
C15 0.97344 (18) 0.06622 (19) 0.25181 (16) 0.0350 (4)
H15 1.0507 0.0515 0.2901 0.042*
C16 0.89474 (17) 0.14765 (18) 0.31045 (14) 0.0312 (4)
H16 0.9188 0.1880 0.3891 0.037*
C20 0.54425 (17) 0.11170 (17) 0.36403 (13) 0.0268 (3)
H20A 0.5551 0.1718 0.4434 0.032*
H20B 0.6192 0.0640 0.3576 0.032*
C21 0.40800 (16) 0.00815 (16) 0.32108 (13) 0.0259 (3)
C22 0.34574 (17) −0.05756 (17) 0.20764 (14) 0.0296 (3)
C23 0.22507 (19) −0.15869 (19) 0.16750 (17) 0.0394 (4)
H23 0.1832 −0.2018 0.0905 0.047*
C24 0.1654 (2) −0.1970 (2) 0.23937 (19) 0.0457 (5)
H24 0.0838 −0.2678 0.2113 0.055*
C25 0.2237 (2) −0.1331 (2) 0.35144 (19) 0.0439 (5)
H25 0.1822 −0.1592 0.4007 0.053*
C26 0.34370 (18) −0.03025 (19) 0.39182 (16) 0.0338 (4)
H26 0.3827 0.0149 0.4693 0.041*
C30 0.20423 (18) 0.36075 (19) 0.27170 (17) 0.0364 (4)
H30A 0.2235 0.3827 0.3516 0.044*
H30B 0.1767 0.2604 0.2293 0.044*
C31 0.08900 (18) 0.41958 (19) 0.24471 (18) 0.0404 (4)
C32 0.0497 (2) 0.4116 (2) 0.13898 (18) 0.0453 (5)
C33 −0.0650 (2) 0.4543 (2) 0.1098 (2) 0.0613 (7)
H33 −0.0926 0.4460 0.0368 0.074*
C34 −0.1378 (2) 0.5087 (2) 0.1875 (3) 0.0637 (7)
H34 −0.2174 0.5359 0.1672 0.076*
C35 −0.0980 (2) 0.5243 (2) 0.2931 (3) 0.0603 (7)
H35 −0.1472 0.5660 0.3467 0.072*
C36 0.0148 (2) 0.4792 (2) 0.3227 (2) 0.0499 (5)
H36 0.0416 0.4889 0.3962 0.060*
C40 0.39032 (17) 0.55858 (16) 0.32520 (14) 0.0286 (3)
H40A 0.4334 0.5613 0.3967 0.034*
H40B 0.3159 0.6066 0.3376 0.034*
C41 0.49612 (16) 0.63311 (16) 0.28855 (13) 0.0247 (3)
C42 0.62638 (16) 0.70468 (16) 0.35788 (12) 0.0260 (3)
C43 0.71949 (16) 0.78163 (17) 0.32493 (13) 0.0284 (3)
C44 0.68364 (17) 0.78221 (17) 0.22159 (13) 0.0293 (3)
H44 0.7473 0.8341 0.1998 0.035*
C45 0.55741 (18) 0.70888 (17) 0.15050 (13) 0.0290 (3)
C46 0.46489 (17) 0.63763 (17) 0.18737 (13) 0.0277 (3)
H46 0.3762 0.5900 0.1406 0.033*
C47 0.85585 (19) 0.8554 (2) 0.39565 (15) 0.0385 (4)
H47 0.9159 0.9059 0.3704 0.046*
C48 0.5214 (2) 0.7027 (2) 0.03654 (14) 0.0406 (4)
H48A 0.5719 0.7864 0.0368 0.061*
H48B 0.4226 0.6935 0.0152 0.061*
H48C 0.5462 0.6241 −0.0166 0.061*
O10 0.64008 (13) 0.13999 (14) 0.09024 (10) 0.0368 (3)
H10 0.6275 0.1024 0.0139 0.044*
O20 0.40399 (13) −0.02278 (13) 0.13465 (9) 0.0364 (3)
H20 0.4684 0.0616 0.1734 0.044*
O30 0.12438 (17) 0.36127 (17) 0.06209 (13) 0.0586 (4)
H30 0.2124 0.3804 0.1050 0.070*
O40 0.66072 (13) 0.69757 (14) 0.45562 (10) 0.0380 (3)
H40 0.7520 0.7475 0.4859 0.046*
O41 0.89821 (14) 0.85675 (16) 0.48535 (11) 0.0491 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0239 (6) 0.0241 (6) 0.0259 (6) 0.0070 (5) 0.0077 (5) 0.0144 (5)
C2 0.0319 (8) 0.0270 (8) 0.0272 (7) 0.0117 (7) 0.0117 (6) 0.0142 (6)
C3 0.0303 (8) 0.0247 (8) 0.0257 (7) 0.0085 (6) 0.0090 (6) 0.0128 (6)
N4 0.0230 (6) 0.0211 (6) 0.0359 (7) 0.0052 (5) 0.0086 (5) 0.0144 (5)
C10 0.0237 (8) 0.0273 (8) 0.0306 (8) 0.0022 (6) 0.0043 (6) 0.0125 (6)
C11 0.0215 (7) 0.0259 (8) 0.0335 (8) 0.0023 (6) 0.0066 (6) 0.0162 (7)
C12 0.0231 (8) 0.0338 (9) 0.0340 (8) 0.0060 (7) 0.0087 (6) 0.0189 (7)
C13 0.0317 (9) 0.0410 (10) 0.0359 (9) 0.0095 (8) 0.0128 (7) 0.0182 (8)
C14 0.0283 (9) 0.0389 (10) 0.0515 (10) 0.0116 (8) 0.0183 (8) 0.0235 (9)
C15 0.0233 (8) 0.0389 (10) 0.0512 (10) 0.0082 (7) 0.0082 (7) 0.0278 (9)
C16 0.0243 (8) 0.0341 (9) 0.0363 (8) 0.0027 (7) 0.0034 (6) 0.0193 (7)
C20 0.0279 (8) 0.0285 (8) 0.0280 (7) 0.0070 (6) 0.0057 (6) 0.0165 (6)
C21 0.0248 (8) 0.0242 (8) 0.0342 (8) 0.0090 (6) 0.0088 (6) 0.0165 (6)
C22 0.0294 (8) 0.0240 (8) 0.0371 (8) 0.0085 (7) 0.0097 (7) 0.0136 (7)
C23 0.0314 (9) 0.0274 (9) 0.0484 (10) 0.0037 (7) 0.0034 (8) 0.0088 (8)
C24 0.0287 (9) 0.0303 (10) 0.0757 (14) 0.0027 (8) 0.0142 (9) 0.0218 (10)
C25 0.0371 (10) 0.0409 (11) 0.0705 (14) 0.0126 (9) 0.0256 (10) 0.0352 (10)
C26 0.0336 (9) 0.0351 (9) 0.0443 (9) 0.0121 (7) 0.0149 (7) 0.0255 (8)
C30 0.0277 (9) 0.0319 (9) 0.0552 (11) 0.0045 (7) 0.0136 (8) 0.0242 (8)
C31 0.0225 (8) 0.0279 (9) 0.0699 (13) 0.0010 (7) 0.0098 (8) 0.0226 (9)
C32 0.0336 (10) 0.0280 (10) 0.0612 (12) 0.0057 (8) 0.0007 (9) 0.0106 (9)
C33 0.0442 (13) 0.0331 (11) 0.0821 (17) 0.0056 (10) −0.0162 (11) 0.0127 (11)
C34 0.0277 (10) 0.0339 (12) 0.113 (2) 0.0043 (9) 0.0014 (12) 0.0225 (13)
C35 0.0338 (11) 0.0353 (11) 0.116 (2) 0.0094 (9) 0.0324 (13) 0.0314 (13)
C36 0.0362 (11) 0.0367 (11) 0.0832 (15) 0.0069 (9) 0.0258 (10) 0.0292 (11)
C40 0.0279 (8) 0.0253 (8) 0.0348 (8) 0.0062 (6) 0.0134 (7) 0.0135 (7)
C41 0.0255 (7) 0.0207 (7) 0.0305 (7) 0.0079 (6) 0.0109 (6) 0.0114 (6)
C42 0.0273 (8) 0.0266 (8) 0.0261 (7) 0.0077 (6) 0.0079 (6) 0.0125 (6)
C43 0.0243 (8) 0.0284 (8) 0.0317 (8) 0.0038 (6) 0.0058 (6) 0.0134 (7)
C44 0.0302 (8) 0.0262 (8) 0.0360 (8) 0.0048 (7) 0.0112 (7) 0.0175 (7)
C45 0.0336 (9) 0.0260 (8) 0.0300 (8) 0.0092 (7) 0.0077 (6) 0.0140 (6)
C46 0.0253 (8) 0.0251 (8) 0.0311 (8) 0.0057 (6) 0.0032 (6) 0.0119 (6)
C47 0.0283 (9) 0.0394 (10) 0.0428 (10) −0.0015 (8) 0.0034 (7) 0.0184 (8)
C48 0.0518 (12) 0.0422 (11) 0.0324 (9) 0.0116 (9) 0.0078 (8) 0.0215 (8)
O10 0.0338 (7) 0.0523 (8) 0.0295 (6) 0.0177 (6) 0.0082 (5) 0.0200 (6)
O20 0.0418 (7) 0.0324 (7) 0.0269 (6) 0.0004 (6) 0.0070 (5) 0.0086 (5)
O30 0.0575 (10) 0.0587 (10) 0.0500 (9) 0.0222 (8) −0.0007 (7) 0.0155 (8)
O40 0.0342 (7) 0.0497 (8) 0.0323 (6) 0.0037 (6) 0.0048 (5) 0.0235 (6)
O41 0.0367 (7) 0.0579 (9) 0.0432 (8) −0.0025 (7) −0.0056 (6) 0.0230 (7)

Geometric parameters (Å, º)

N1—C2 1.471 (2) C26—H26 0.9500
N1—C10 1.478 (2) C30—C31 1.497 (3)
N1—C20 1.4828 (19) C30—H30A 0.9900
C2—C3 1.528 (2) C30—H30B 0.9900
C2—H2A 0.9900 C31—C32 1.392 (3)
C2—H2B 0.9900 C31—C36 1.398 (3)
C3—N4 1.471 (2) C32—O30 1.370 (3)
C3—H3A 0.9900 C32—C33 1.390 (3)
C3—H3B 0.9900 C33—C34 1.372 (4)
N4—C40 1.476 (2) C33—H33 0.9500
N4—C30 1.483 (2) C34—C35 1.361 (4)
C10—C11 1.500 (2) C34—H34 0.9500
C10—H10A 0.9900 C35—C36 1.392 (3)
C10—H10B 0.9900 C35—H35 0.9500
C11—C16 1.395 (2) C36—H36 0.9500
C11—C12 1.397 (2) C40—C41 1.507 (2)
C12—O10 1.361 (2) C40—H40A 0.9900
C12—C13 1.389 (2) C40—H40B 0.9900
C13—C14 1.387 (3) C41—C46 1.384 (2)
C13—H13 0.9500 C41—C42 1.400 (2)
C14—C15 1.383 (3) C42—O40 1.3556 (18)
C14—H14 0.9500 C42—C43 1.407 (2)
C15—C16 1.389 (2) C43—C44 1.397 (2)
C15—H15 0.9500 C43—C47 1.456 (2)
C16—H16 0.9500 C44—C45 1.380 (2)
C20—C21 1.509 (2) C44—H44 0.9500
C20—H20A 0.9900 C45—C46 1.400 (2)
C20—H20B 0.9900 C45—C48 1.505 (2)
C21—C26 1.393 (2) C46—H46 0.9500
C21—C22 1.401 (2) C47—O41 1.222 (2)
C22—O20 1.369 (2) C47—H47 0.9500
C22—C23 1.385 (2) C48—H48A 0.9800
C23—C24 1.382 (3) C48—H48B 0.9800
C23—H23 0.9500 C48—H48C 0.9800
C24—C25 1.377 (3) O10—H10 0.9269
C24—H24 0.9500 O20—H20 0.9386
C25—C26 1.390 (3) O30—H30 0.9332
C25—H25 0.9500 O40—H40 0.9349
C2—N1—C10 111.44 (12) C25—C26—H26 119.3
C2—N1—C20 112.03 (12) C21—C26—H26 119.3
C10—N1—C20 111.35 (12) N4—C30—C31 111.34 (14)
N1—C2—C3 110.69 (12) N4—C30—H30A 109.4
N1—C2—H2A 109.5 C31—C30—H30A 109.4
C3—C2—H2A 109.5 N4—C30—H30B 109.4
N1—C2—H2B 109.5 C31—C30—H30B 109.4
C3—C2—H2B 109.5 H30A—C30—H30B 108.0
H2A—C2—H2B 108.1 C32—C31—C36 118.15 (19)
N4—C3—C2 116.14 (12) C32—C31—C30 120.33 (18)
N4—C3—H3A 108.3 C36—C31—C30 121.5 (2)
C2—C3—H3A 108.3 O30—C32—C33 119.1 (2)
N4—C3—H3B 108.3 O30—C32—C31 120.03 (18)
C2—C3—H3B 108.3 C33—C32—C31 120.9 (2)
H3A—C3—H3B 107.4 C34—C33—C32 119.3 (3)
C3—N4—C40 114.03 (13) C34—C33—H33 120.3
C3—N4—C30 112.54 (12) C32—C33—H33 120.3
C40—N4—C30 109.74 (13) C35—C34—C33 121.2 (2)
N1—C10—C11 113.43 (13) C35—C34—H34 119.4
N1—C10—H10A 108.9 C33—C34—H34 119.4
C11—C10—H10A 108.9 C34—C35—C36 119.9 (2)
N1—C10—H10B 108.9 C34—C35—H35 120.0
C11—C10—H10B 108.9 C36—C35—H35 120.0
H10A—C10—H10B 107.7 C35—C36—C31 120.4 (2)
C16—C11—C12 117.97 (15) C35—C36—H36 119.8
C16—C11—C10 121.94 (15) C31—C36—H36 119.8
C12—C11—C10 119.96 (14) N4—C40—C41 113.41 (13)
O10—C12—C13 122.45 (15) N4—C40—H40A 108.9
O10—C12—C11 116.65 (15) C41—C40—H40A 108.9
C13—C12—C11 120.90 (15) N4—C40—H40B 108.9
C14—C13—C12 119.98 (16) C41—C40—H40B 108.9
C14—C13—H13 120.0 H40A—C40—H40B 107.7
C12—C13—H13 120.0 C46—C41—C42 118.20 (14)
C15—C14—C13 120.14 (17) C46—C41—C40 120.76 (14)
C15—C14—H14 119.9 C42—C41—C40 120.98 (14)
C13—C14—H14 119.9 O40—C42—C41 119.10 (14)
C14—C15—C16 119.55 (16) O40—C42—C43 121.17 (14)
C14—C15—H15 120.2 C41—C42—C43 119.73 (14)
C16—C15—H15 120.2 C44—C43—C42 119.95 (15)
C15—C16—C11 121.45 (16) C44—C43—C47 119.64 (15)
C15—C16—H16 119.3 C42—C43—C47 120.34 (15)
C11—C16—H16 119.3 C45—C44—C43 121.23 (15)
N1—C20—C21 111.67 (12) C45—C44—H44 119.4
N1—C20—H20A 109.3 C43—C44—H44 119.4
C21—C20—H20A 109.3 C44—C45—C46 117.50 (15)
N1—C20—H20B 109.3 C44—C45—C48 121.42 (16)
C21—C20—H20B 109.3 C46—C45—C48 121.06 (16)
H20A—C20—H20B 107.9 C41—C46—C45 123.31 (15)
C26—C21—C22 117.90 (16) C41—C46—H46 118.3
C26—C21—C20 121.25 (15) C45—C46—H46 118.3
C22—C21—C20 120.77 (14) O41—C47—C43 124.37 (17)
O20—C22—C23 119.00 (16) O41—C47—H47 117.8
O20—C22—C21 120.26 (15) C43—C47—H47 117.8
C23—C22—C21 120.74 (17) C45—C48—H48A 109.5
C24—C23—C22 120.06 (18) C45—C48—H48B 109.5
C24—C23—H23 120.0 H48A—C48—H48B 109.5
C22—C23—H23 120.0 C45—C48—H48C 109.5
C25—C24—C23 120.42 (18) H48A—C48—H48C 109.5
C25—C24—H24 119.8 H48B—C48—H48C 109.5
C23—C24—H24 119.8 C12—O10—H10 112.6
C24—C25—C26 119.46 (18) C22—O20—H20 109.6
C24—C25—H25 120.3 C32—O30—H30 103.6
C26—C25—H25 120.3 C42—O40—H40 104.9
C25—C26—C21 121.40 (18)
C10—N1—C2—C3 81.42 (15) C40—N4—C30—C31 72.17 (19)
C20—N1—C2—C3 −153.07 (13) N4—C30—C31—C32 54.0 (2)
N1—C2—C3—N4 174.78 (13) N4—C30—C31—C36 −128.35 (18)
C2—C3—N4—C40 72.09 (17) C36—C31—C32—O30 176.19 (18)
C2—C3—N4—C30 −53.74 (18) C30—C31—C32—O30 −6.1 (3)
C2—N1—C10—C11 −159.44 (12) C36—C31—C32—C33 −3.7 (3)
C20—N1—C10—C11 74.67 (16) C30—C31—C32—C33 174.00 (18)
N1—C10—C11—C16 −117.78 (16) O30—C32—C33—C34 −178.0 (2)
N1—C10—C11—C12 66.33 (19) C31—C32—C33—C34 1.9 (3)
C16—C11—C12—O10 −178.35 (15) C32—C33—C34—C35 1.5 (3)
C10—C11—C12—O10 −2.3 (2) C33—C34—C35—C36 −2.9 (3)
C16—C11—C12—C13 1.6 (2) C34—C35—C36—C31 1.0 (3)
C10—C11—C12—C13 177.67 (15) C32—C31—C36—C35 2.3 (3)
O10—C12—C13—C14 178.56 (17) C30—C31—C36—C35 −175.38 (17)
C11—C12—C13—C14 −1.4 (3) C3—N4—C40—C41 67.55 (17)
C12—C13—C14—C15 0.3 (3) C30—N4—C40—C41 −165.16 (14)
C13—C14—C15—C16 0.5 (3) N4—C40—C41—C46 54.7 (2)
C14—C15—C16—C11 −0.3 (3) N4—C40—C41—C42 −128.20 (16)
C12—C11—C16—C15 −0.8 (2) C46—C41—C42—O40 −177.66 (14)
C10—C11—C16—C15 −176.73 (15) C40—C41—C42—O40 5.2 (2)
C2—N1—C20—C21 72.32 (16) C46—C41—C42—C43 1.9 (2)
C10—N1—C20—C21 −162.11 (13) C40—C41—C42—C43 −175.28 (15)
N1—C20—C21—C26 −146.22 (15) O40—C42—C43—C44 177.11 (15)
N1—C20—C21—C22 37.1 (2) C41—C42—C43—C44 −2.4 (2)
C26—C21—C22—O20 179.39 (15) O40—C42—C43—C47 0.2 (3)
C20—C21—C22—O20 −3.8 (2) C41—C42—C43—C47 −179.35 (16)
C26—C21—C22—C23 −0.9 (2) C42—C43—C44—C45 0.3 (3)
C20—C21—C22—C23 175.91 (16) C47—C43—C44—C45 177.31 (17)
O20—C22—C23—C24 179.02 (16) C43—C44—C45—C46 2.1 (2)
C21—C22—C23—C24 −0.7 (3) C43—C44—C45—C48 −176.43 (16)
C22—C23—C24—C25 1.4 (3) C42—C41—C46—C45 0.7 (2)
C23—C24—C25—C26 −0.4 (3) C40—C41—C46—C45 177.87 (15)
C24—C25—C26—C21 −1.2 (3) C44—C45—C46—C41 −2.7 (3)
C22—C21—C26—C25 1.8 (2) C48—C45—C46—C41 175.86 (16)
C20—C21—C26—C25 −174.92 (16) C44—C43—C47—O41 −177.20 (19)
C3—N4—C30—C31 −159.71 (15) C42—C43—C47—O41 −0.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O10—H10···O20i 0.93 1.80 2.7230 (16) 177
O20—H20···N1 0.94 1.75 2.5928 (17) 148
O20—H20···O10 0.94 2.43 3.0362 (19) 122
O30—H30···N4 0.93 1.94 2.784 (2) 149
O40—H40···O41 0.93 1.76 2.6146 (19) 151

Symmetry code: (i) −x+1, −y, −z.

References

  1. Ansari, K. I., Kasiri, S., Grant, J. D. & Mandal, S. S. (2009). Dalton Trans. pp. 8525–8531. [DOI] [PubMed]
  2. Boros, E., Ferreira, C. L., Patrick, B. O., Adam, M. J. & Orvig, C. (2011). Nucl. Med. Biol. 38, 1165–1174. [DOI] [PubMed]
  3. Boyle, T. J., Pratt, H. D. III, Ottley, L. A. M., Alam, T. M., McIntyre, S. K., Rodriguez, M. A., Farrell, J. & Campana, C. F. (2009). Inorg. Chem. 48, 9191–9204. [DOI] [PubMed]
  4. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R., Cooper, R. I., Harris, S. E. & Orpen, A. G. (2004). J. Chem. Inf. Comput. Sci. 44, 2133–2144. [DOI] [PubMed]
  6. Dencic, S. M., Poljarevic, J., Vilimanovich, U., Bogdanovic, A., Isakovic, A. J., Stevovic, T. K., Dulovic, M., Zogovic, N., Isakovic, A. M., Grguric-Sipka, S., Bumbasirevic, V., Sabo, T., Trajkovic, V. & Markovic, I. (2012). Chem. Res. Toxicol. 25, 931–939. [DOI] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Lazić, J. M., Vučićević, L., Grgurić-Šipka, S., Janjetović, K., Kaluđerović, G. N., Misirkić, M., Gruden-Pavlović, M., Popadić, D., Paschke, R., Trajković, V. & Sabo, T. J. (2010). ChemMedChem, 5, 881–889. [DOI] [PubMed]
  9. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  10. Musa, M. A., Badisa, V. L. D. & Latinwo, L. M. (2014). Anticancer Res. 34, 1601–1607. [PubMed]
  11. Price, E. W., Cawthray, J. F., Bailey, G. A., Ferreira, C. L., Boros, E., Adam, M. J. & Orvig, C. (2012). J. Am. Chem. Soc. 134, 8670–8683. [DOI] [PubMed]
  12. Raman, N., Selvan, A. & Sudharsan, S. (2011). Spectrochim. Acta Part A, 79, 873–883. [DOI] [PubMed]
  13. Schmitt, H., Lomoth, R., Magnuson, A., Park, J., Fryxelius, J., Kritikos, M., Mårtensson, J., Hammarström, L., Sun, L. & Åkermark, B. (2002). Chem. Eur. J. 8, 3757–3768. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Thoer, A., Denis, G., Delmas, M. & Gaset, A. (1988). Synth. Commun. 18, 2095–2101.
  17. Wang, N.-S., Wang, Y.-T., Guo, X.-K. & Li, T.-D. (2011a). Acta Cryst. E67, o1438. [DOI] [PMC free article] [PubMed]
  18. Wang, N. S., Wang, Y. T., Li, J. Y. & Li, T. D. (2011b). Chin. J. Org. Chem. 31, 1703–1706.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536814024465/lh5739sup1.cif

e-70-00562-sup1.cif (34.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024465/lh5739Isup2.hkl

e-70-00562-Isup2.hkl (389.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024465/lh5739Isup3.mol

Supporting information file. DOI: 10.1107/S1600536814024465/lh5739Isup4.cml

CCDC reference: 1033129

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES