Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 15;70(Pt 12):489–493. doi: 10.1107/S1600536814024532

Crystal structures of Ca(ClO4)2·4H2O and Ca(ClO4)2·6H2O

Erik Hennings a, Horst Schmidt a,*, Wolfgang Voigt a
PMCID: PMC4257416  PMID: 25552974

The crystal structures of the tetra- and hexa­hydrate phases of Ca(ClO4)2 consist of Ca2+ ions in distorted square-anti­prismatic environments and of perchlorate tetra­hedra. O—H⋯O hydrogen bonds between water mol­ecules and ClO4 units lead to the formation of a three-dimensional network in the structures.

Keywords: crystal structure, low-temperature salt hydrates, perchlorate hydrates, calcium salts, Mars minerals

Abstract

The title compounds, calcium perchlorate tetra­hydrate and calcium perchlorate hexa­hydrate, were crystallized at low temperatures according to the solid–liquid phase diagram. The structure of the tetra­hydrate consists of one Ca2+ cation eightfold coordinated in a square-anti­prismatic fashion by four water mol­ecules and four O atoms of four perchlorate tetra­hedra, forming chains parallel to [01-1] by sharing corners of the ClO4 tetra­hedra. The structure of the hexa­hydrate contains two different Ca2+ cations, each coordinated by six water mol­ecules and two O atoms of two perchlorate tetra­hedra, forming [Ca(H2O)6(ClO4)]2 dimers by sharing two ClO4 tetra­hedra. The dimers are arranged in sheets parallel (001) and alternate with layers of non-coordinating ClO4 tetra­hedra. O—H⋯O hydrogen bonds between the water mol­ecules as donor and ClO4 tetra­hedra and water mol­ecules as acceptor groups lead to the formation of a three-dimensional network in the two structures. Ca(ClO4)2·6H2O was refined as a two-component inversion twin, with an approximate twin component ratio of 1:1 in each of the two structures.

Chemical context  

Since the detection of perchlorates on Mars during the Phoenix Mission (Chevrier et al., 2009), inter­est in these salts, and especially their hydrates, has risen considerably (Kim et al., 2013; Quinn et al., 2013; Kerr, 2013; Davila et al., 2013; Schuttlefield et al., 2011; Navarro-González et al., 2010; Marion et al., 2010). To gain more knowledge about the behavior of salts and salt hydrates, it is essential to determine the corresponding phase diagrams. For calcium perchlorate, this was performed by several authors (Marion et al., 2010; Pestova et al., 2005; Dobrynina, 1984; Lilich & Djurinskii, 1956; Nicholson & Felsing, 1950; Willard & Smith, 1923) for different concentration areas with different results. The stable salt hydrate phase at room temperature in this system is calcium perchlorate tetra­hydrate. At lower temperatures, a higher hydrated phase, i.e. the hexa­hydrate, occurs as the stable phase.

Structural commentary  

The Ca2+ cation in Ca(ClO4)·4H2O is coordinated by four water mol­ecules (O1, O2, O7, O8) and four O atoms from two pairs of symmetry-related perchlorate tetra­hedra as shown in Fig. 1 a. The resulting coordination polyhedron is a distorted square anti-prism (Fig. 1 b). The Ca—O bond lengths involving the water mol­ecules range from 2.3284 (17) to 2.4153 (16) Å and are considerably shorter than the Ca—O bond lengths involving the perchlorate O atoms [2.5417 (16) to 2.5695 (17) Å].

Figure 1.

Figure 1

(a) The principle building block in the structure of Ca(ClO4)2·4H2O and (b) the square anti-prismatic coordination of Ca2+. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) 1 − x, −y, 1 − z; (ii) 1 − x, 1 − y, 2 − z.]

The two different Ca2+ cations in Ca(ClO4)·6H2O are each coordinated by six water mol­ecules and two perchlorate tetra­hedra (Fig. 2). Again, the bond lengths between the cations and water mol­ecules [2.319 (6)–2.500 (6) Å] are shorter than those to the perchlorate groups. For the latter, one of the two distances for each of the Ca2+ cations is by 0.5 Å markedly longer than the other (∼3.07 versus ∼2.53 Å). Nevertheless, according to the bond-valence model (Brown, 2002), the longer bond contributes ca. 0.05 valence units to the overall bond-valence sum and hence should not be neglected. If this longer bond is considered to be relevant, again a square anti-prismatic coordination polyhedron is realised for both Ca2+ cations, however with a much greater distortion. Two perchlorate tetra­hedra in the hexa­hydrate are shared between two Ca2+ ions, leading to the formation of [Ca(H2O)6(ClO4)]2 dimers oriented in layers parallel to (001).

Figure 2.

Figure 2

The principle building blocks in the structure of Ca(ClO4)2·6H2O. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

The perchlorate tetra­hedra in the structure of Ca(ClO4)·4H2O are shared between two adjacent Ca2+ ions, forming chains extending parallel to [01Inline graphic] (Fig. 3) whereby each Ca2+ ion is connected along the chain on one side with a pair of Cl1 perchlorate tetra­hedra, and on the opposite side with a pair of Cl2 perchlorate tetra­hedra. The chains are arranged in sheets parallel to (0Inline graphic1) and are linked by O—H⋯O hydrogen bonds into a three-dimensional network with similar O⋯O distances between the water mol­ecules and the perchlorate tetra­hedra (Table 1).

Figure 3.

Figure 3

Formation of sheets and inter­connection of chains via hydrogen bonds in Ca(ClO4)2·4H2O. Only the strongest hydrogen bonds are shown, represented by dashed lines.

Table 1. Hydrogen-bond geometry (, ) for Ca(ClO4)24H2O.

DHA DH HA D A DHA
O1H1BO11i 0.82(1) 2.11(2) 2.888(2) 158(3)
O1H1AO3ii 0.82(1) 2.13(1) 2.947(2) 174(3)
O2H2AO11iii 0.82(1) 2.17(2) 2.947(2) 159(3)
O2H2BO4iv 0.82(1) 2.02(1) 2.830(2) 172(3)
O7H7BO4 0.81(1) 2.22(2) 2.924(2) 146(3)
O7H7AO1iii 0.82(1) 2.06(1) 2.870(2) 172(3)
O8H8AO4v 0.82(1) 2.33(3) 2.986(2) 137(4)
O8H8BO2vi 0.82(1) 2.14(1) 2.950(2) 169(5)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

In addition to the two coordinating perchlorate tetra­hedra in Ca(ClO4)·6H2O, two ‘free’ perchlorate tetra­hedra are present in the crystal structure. These ‘free’ ClO4 tetra­hedra are arranged in sheets and alternate with the [Ca(H2O)6(ClO4)]2 sheets along [001] (Fig. 4). The ‘free’ perchlorate tetra­hedra are connected to the dimers via O—H⋯O hydrogen bonds, as shown in Fig. 4. The dimers are additionally connected through further O—H⋯O hydrogen bonds (Table 2) into a three-dimensional network (Fig. 5).

Figure 4.

Figure 4

Formation of perchlorate-bridged dimers in Ca(ClO4)2·6H2O and location of ‘free’ perchlorate tetra­hedra in the gaps between the dimers (highlighted in dark green). Only the strongest hydrogen bonds are shown, represented by dashed lines.

Table 2. Hydrogen-bond geometry (, ) for Ca(ClO4)26H2O.

DHA DH HA D A DHA
O1H1AO15 0.84(2) 2.07(3) 2.887(10) 164(8)
O1H1BO5i 0.84(2) 2.25(5) 2.915(7) 136(6)
O1H1BO16i 0.84(2) 2.44(5) 3.132(10) 140(6)
O2H2AO23ii 0.84(2) 2.03(2) 2.856(9) 169(7)
O2H2BO26iii 0.84(2) 2.14(3) 2.932(8) 155(6)
O3H3AO12iv 0.84(2) 2.07(2) 2.899(8) 168(8)
O3H3BO19iii 0.84(2) 2.15(3) 2.934(8) 156(7)
O4H4AO27 0.84(2) 2.28(3) 3.074(11) 158(8)
O4H4BO28iii 0.84(2) 2.36(3) 3.177(10) 163(8)
O5H5AO2iv 0.84(2) 1.98(3) 2.783(8) 159(7)
O5H5BO19 0.84(2) 2.20(5) 2.903(9) 142(6)
O6H6AO8v 0.84(2) 2.18(4) 2.925(7) 149(7)
O6H6BO19 0.84(2) 2.08(3) 2.891(10) 162(8)
O7H7AO23vi 0.84(2) 2.29(4) 3.042(9) 149(6)
O7H7BO24vii 0.84(2) 2.50(5) 3.199(9) 141(6)
O7H7BO27viii 0.84(2) 2.57(5) 3.242(11) 138(6)
O8H8AO10ix 0.84(2) 2.08(4) 2.805(8) 145(6)
O8H8BO15 0.84(2) 2.07(3) 2.879(9) 162(7)
O9H9AO27x 0.84(2) 2.06(3) 2.865(10) 161(7)
O9H9BO21vi 0.84(2) 2.23(5) 2.962(10) 145(7)
O10H10AO21vii 0.84(2) 2.12(3) 2.930(9) 163(7)
O10H10BO28x 0.84(2) 2.10(3) 2.902(10) 162(7)
O11H11AO9ix 0.84(2) 2.14(4) 2.893(9) 150(7)
O11H11BO15xi 0.84(2) 2.11(3) 2.915(9) 161(7)
O12H12AO26 0.84(2) 2.35(5) 2.995(9) 135(6)
O12H12AO20 0.84(2) 2.40(4) 3.102(9) 142(6)
O12H12BO24ii 0.84(2) 2.03(2) 2.861(9) 171(7)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic.

Figure 5.

Figure 5

Formation of layers parallel to (001) in Ca(ClO4)2·6H2O. Only the strongest hydrogen bonds are shown, represented by dashed lines.

Database survey  

For crystal structures of other M(ClO4)2·4H2O phases, see: Robertson & Bish (2010; M = Mg); Hennings et al. (2014; Sr); Solovyov (2012; Mg); Johansson (1966; Hg). For crystal structures of other M(ClO4)2·6H2O phases, see: Ghosh et al. (1997; M = Ni, Zn); Ghosh & Ray (1981; Fe); Johansson et al. (1978; Hg); Mani & Ramaseshan (1961; Cu); Johansson & Sandström (1987; Cd); Gallucci & Gerkin (1989; Cu); West (1935; Mg).

Synthesis and crystallization  

Ca(ClO4)2·4H2O was crystallized from an aqueous solution of 62.96 wt% Ca(ClO4)2 at 273 K after one day and Ca(ClO4)2·6H2O from an aqueous solution of 57.55 wt% Ca(ClO4)2 at 238 K after one week. For the preparation of these aqueous solutions, Ca(ClO4)2·4H2O (Acros Organics, p.A.) was used. The Ca2+ content was analysed via complexometric titration with EDTA. The crystals remain stable in the saturated aqueous solution over at least four weeks.

The samples were stored in a freezer or a cryostat at low temperatures. The crystals were separated and embedded in perfluorinated ether for X-ray analysis.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms of each structure were placed in the positions indicated by difference Fourier maps. For Ca(ClO4)2·4H2O, distance restraints were applied for all water mol­ecules, with O—H and H—H distance restraints of 0.82 (1) and 1.32 (1) Å, respectively. For Ca(ClO4)2·6H2O, U iso values were set at 1.2U eq(O) using a riding-model approximation. Distance restraints were applied for that structure for all water mol­ecules, with O—H and H—H distance restraints of 0.84 (2) and 1.4 (2) Å, respectively. Ca(ClO4)2·6H2O was refined as a two-component inversion twin, with an approximate twin component ratio of 1:1.

Table 3. Experimental details.

  Ca(ClO4)24H2O Ca(ClO4)26H2O
Crystal data
M r 311.04 347.08
Crystal system, space group Triclinic, P Inline graphic Orthorhombic, P c a21
Temperature (K) 200 180
a, b, c () 5.4886(11), 7.8518(15), 11.574(2) 10.9603(4), 7.9667(7), 26.7735(18)
, , () 99.663(16), 90.366(16), 90.244(16) 90, 90, 90
V (3) 491.71(17) 2337.8(3)
Z 2 8
Radiation type Mo K Mo K
(mm1) 1.24 1.06
Crystal size (mm) 0.04 0.03 0.02 0.38 0.31 0.08
 
Data collection
Diffractometer Stoe IPDS2 Stoe IPDS2
Absorption correction Integration Coppens (1970) Integration (Coppens, 1970)
T min, T max 0.644, 0.789 0.684, 0.923
No. of measured, independent and observed [I > 2(I)] reflections 2659, 2636, 2529 15755, 5326, 4919
R int 0.074 0.062
(sin /)max (1) 0.686 0.650
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.031, 0.089, 1.20 0.042, 0.113, 1.09
No. of reflections 2636 5326
No. of parameters 168 380
No. of restraints 12 37
H-atom treatment All H-atom parameters refined Only H-atom coordinates refined
max, min (e 3) 0.36, 0.75 0.41, 0.67
Absolute structure   Refined as an inversion twin
Absolute structure parameter   0.45(9)

Computer programs: X-AREA and X-RED (Stoe Cie, 2009), SHELXS97 and SHELXL2012 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) CaClO4_4H2O_200K, CaClO4_6H2O_180K. DOI: 10.1107/S1600536814024532/wm5079sup1.cif

e-70-00489-sup1.cif (722.9KB, cif)

Structure factors: contains datablock(s) CaClO4_4H2O_200K. DOI: 10.1107/S1600536814024532/wm5079CaClO4_4H2O_200Ksup2.hkl

Structure factors: contains datablock(s) CaClO4_6H2O_180K. DOI: 10.1107/S1600536814024532/wm5079CaClO4_6H2O_180Ksup3.hkl

Supporting information file. DOI: 10.1107/S1600536814024532/wm5079CaClO4_4H2O_200Ksup4.cml

Supporting information file. DOI: 10.1107/S1600536814024532/wm5079CaClO4_6H2O_180Ksup5.cml

CCDC references: 1033323, 1033324

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

Ca(ClO4)2·6H2O Dx = 1.972 Mg m3
Mr = 347.08 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 17254 reflections
a = 10.9603 (4) Å θ = 2.9–29.6°
b = 7.9667 (7) Å µ = 1.06 mm1
c = 26.7735 (18) Å T = 180 K
V = 2337.8 (3) Å3 Plate, colourless
Z = 8 0.38 × 0.31 × 0.08 mm
F(000) = 1424

Data collection

Stoe IPDS-2 diffractometer 5326 independent reflections
Radiation source: fine-focus sealed tube 4919 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.062
Detector resolution: 6.67 pixels mm-1 θmax = 27.5°, θmin = 1.5°
rotation method scans h = −15→15
Absorption correction: integration (Coppens, 1970) k = −11→9
Tmin = 0.684, Tmax = 0.923 l = −37→37
15755 measured reflections

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full Only H-atom coordinates refined
R[F2 > 2σ(F2)] = 0.042 w = 1/[σ2(Fo2) + (0.0687P)2 + 2.3411P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.113 (Δ/σ)max < 0.001
S = 1.09 Δρmax = 0.41 e Å3
5326 reflections Δρmin = −0.67 e Å3
380 parameters Absolute structure: Refined as an inversion twin
37 restraints Absolute structure parameter: 0.45 (9)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ca1 0.87471 (15) 0.02736 (19) 0.29261 (6) 0.0110 (3)
Ca2 0.87640 (16) 0.47462 (18) 0.07672 (6) 0.0112 (3)
Cl3 0.7770 (2) 0.50239 (14) 0.39582 (8) 0.0102 (5)
Cl4 0.79753 (11) 0.06649 (15) 0.13985 (8) 0.0110 (2)
Cl1 0.95348 (11) 0.43473 (15) 0.22917 (8) 0.0109 (2)
Cl2 0.0260 (2) 0.99991 (14) 0.47324 (8) 0.0128 (5)
O5 0.7128 (5) 0.2189 (8) 0.2859 (2) 0.0169 (11)
H5B 0.714 (6) 0.295 (6) 0.264 (2) 0.020*
H5A 0.660 (5) 0.209 (10) 0.3081 (19) 0.020*
O3 0.7416 (5) −0.1972 (7) 0.2841 (2) 0.0185 (12)
H3A 0.672 (3) −0.190 (10) 0.296 (3) 0.022*
H3B 0.752 (7) −0.274 (6) 0.263 (2) 0.022*
O7 0.9726 (7) 0.4844 (6) −0.0075 (3) 0.0162 (14)
H7B 0.995 (7) 0.557 (7) −0.028 (2) 0.019*
H7A 0.989 (6) 0.406 (6) −0.027 (2) 0.019*
O8 1.0380 (5) 0.2796 (7) 0.0823 (2) 0.0132 (10)
H8A 1.094 (4) 0.245 (8) 0.064 (2) 0.016*
H8B 1.013 (6) 0.186 (4) 0.093 (2) 0.016*
O6 0.7539 (4) 0.6064 (6) 0.13676 (16) 0.0190 (8)
H6B 0.761 (7) 0.565 (10) 0.1655 (14) 0.023*
H6A 0.684 (3) 0.648 (9) 0.133 (3) 0.023*
O1 0.9967 (4) −0.1049 (6) 0.23219 (17) 0.0186 (8)
H1A 0.987 (7) −0.060 (10) 0.2041 (15) 0.022*
H1B 1.0726 (17) −0.118 (9) 0.232 (3) 0.022*
O2 0.9964 (5) −0.1849 (7) 0.3393 (2) 0.0119 (11)
H2A 1.007 (7) −0.184 (9) 0.3702 (7) 0.014*
H2B 0.967 (6) −0.281 (4) 0.335 (2) 0.014*
O4 0.7803 (9) 0.0171 (8) 0.3739 (3) 0.0262 (18)
H4B 0.793 (8) −0.068 (6) 0.392 (3) 0.031*
H4A 0.795 (7) 0.093 (7) 0.395 (2) 0.031*
O15 0.9234 (8) 0.0045 (5) 0.1339 (4) 0.0152 (16)
O14 0.7230 (8) −0.0046 (5) 0.1019 (3) 0.0194 (18)
O19 0.8302 (8) 0.4971 (5) 0.2349 (3) 0.0142 (15)
O20 1.0316 (9) 0.5052 (6) 0.2678 (4) 0.027 (2)
O26 0.8567 (9) 0.5044 (5) 0.3525 (3) 0.0215 (19)
O12 1.0148 (5) 0.2008 (7) 0.3398 (2) 0.0129 (11)
H12B 1.034 (7) 0.189 (9) 0.3699 (10) 0.016*
H12A 1.006 (6) 0.303 (3) 0.334 (2) 0.016*
O16 0.7540 (9) 0.0215 (7) 0.1877 (3) 0.0234 (15)
O21 0.1020 (10) 0.9989 (6) 0.5168 (3) 0.026 (2)
O28 0.7947 (7) 0.6558 (9) 0.4237 (3) 0.0231 (15)
O27 0.8080 (7) 0.3589 (9) 0.4260 (3) 0.0260 (16)
O23 0.0566 (6) 0.8560 (8) 0.4423 (3) 0.0183 (13)
O24 0.0519 (7) 1.1496 (9) 0.4444 (3) 0.0212 (14)
O18 0.9975 (9) 0.4783 (7) 0.1797 (3) 0.0223 (14)
O13 0.7991 (3) 0.2473 (5) 0.13424 (18) 0.0150 (8)
O17 0.9520 (4) 0.2544 (5) 0.23441 (19) 0.0158 (8)
O9 0.7381 (6) 0.2976 (8) 0.0297 (2) 0.0171 (12)
H9A 0.721 (7) 0.338 (8) 0.0016 (13) 0.021*
H9B 0.753 (7) 0.195 (3) 0.025 (3) 0.021*
O22 −0.0976 (9) 0.9933 (7) 0.4886 (5) 0.034 (2)
O25 0.6508 (8) 0.4900 (7) 0.3824 (5) 0.034 (2)
O10 0.7580 (5) 0.6907 (7) 0.0295 (2) 0.0139 (11)
H10B 0.746 (7) 0.658 (8) 0.0002 (11) 0.017*
H10A 0.783 (6) 0.789 (4) 0.025 (2) 0.017*
O11 1.0097 (5) 0.7020 (8) 0.0838 (3) 0.0192 (12)
H11A 1.079 (3) 0.736 (9) 0.075 (3) 0.023*
H11B 0.987 (7) 0.799 (4) 0.092 (3) 0.023*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ca1 0.0083 (6) 0.0090 (5) 0.0157 (7) 0.0010 (5) 0.0018 (4) −0.0005 (7)
Ca2 0.0095 (6) 0.0084 (5) 0.0155 (7) 0.0010 (5) 0.0021 (4) 0.0016 (7)
Cl3 0.0096 (11) 0.0097 (11) 0.0113 (11) −0.0005 (4) 0.0016 (10) 0.0004 (4)
Cl4 0.0127 (5) 0.0095 (6) 0.0108 (5) −0.0007 (4) 0.0020 (4) 0.0012 (5)
Cl1 0.0124 (6) 0.0080 (6) 0.0122 (5) −0.0018 (4) 0.0019 (4) 0.0008 (5)
Cl2 0.0180 (13) 0.0098 (11) 0.0105 (11) −0.0001 (4) 0.0016 (11) 0.0002 (4)
O5 0.015 (2) 0.015 (2) 0.020 (2) 0.0012 (19) 0.0022 (19) 0.0054 (19)
O3 0.019 (3) 0.013 (2) 0.024 (2) −0.007 (2) 0.007 (2) −0.0047 (18)
O7 0.022 (3) 0.019 (3) 0.008 (3) 0.0018 (18) 0.009 (2) −0.0048 (16)
O8 0.011 (2) 0.0077 (19) 0.020 (2) 0.0033 (17) 0.0061 (18) −0.0006 (17)
O6 0.0201 (19) 0.024 (2) 0.0130 (16) 0.0123 (17) 0.0008 (17) 0.0029 (18)
O1 0.0196 (19) 0.021 (2) 0.0151 (17) 0.0079 (17) 0.0003 (17) 0.0028 (18)
O2 0.017 (2) 0.009 (2) 0.009 (2) −0.0002 (19) −0.0009 (17) 0.0010 (17)
O4 0.033 (4) 0.023 (3) 0.023 (4) 0.000 (2) 0.008 (3) 0.006 (2)
O15 0.014 (4) 0.010 (3) 0.022 (4) 0.0049 (13) −0.001 (3) −0.0002 (14)
O14 0.019 (4) 0.019 (4) 0.021 (4) −0.0067 (15) 0.000 (3) −0.0045 (15)
O19 0.013 (4) 0.019 (3) 0.011 (3) 0.0049 (14) 0.007 (3) 0.0011 (13)
O20 0.027 (5) 0.023 (4) 0.033 (5) −0.0106 (18) −0.016 (4) −0.0050 (18)
O26 0.034 (5) 0.011 (3) 0.020 (4) −0.0004 (16) 0.014 (4) 0.0002 (14)
O12 0.016 (2) 0.011 (2) 0.013 (2) 0.0011 (19) −0.0010 (17) 0.0021 (18)
O16 0.027 (3) 0.022 (2) 0.021 (3) 0.001 (2) 0.015 (2) 0.011 (2)
O21 0.035 (5) 0.029 (4) 0.013 (4) 0.0009 (18) −0.010 (4) 0.0018 (15)
O28 0.037 (4) 0.011 (3) 0.021 (3) −0.004 (2) 0.002 (3) −0.005 (2)
O27 0.042 (4) 0.017 (3) 0.019 (3) 0.008 (3) 0.003 (3) 0.008 (3)
O23 0.027 (3) 0.014 (3) 0.015 (3) 0.002 (2) 0.001 (2) −0.006 (2)
O24 0.034 (3) 0.012 (3) 0.017 (3) −0.003 (2) −0.006 (2) 0.008 (2)
O18 0.025 (3) 0.027 (2) 0.015 (3) 0.001 (2) 0.012 (2) 0.002 (2)
O13 0.0195 (19) 0.0081 (18) 0.017 (2) 0.0011 (14) 0.0007 (15) 0.0020 (15)
O17 0.0197 (19) 0.0074 (17) 0.020 (2) −0.0009 (15) −0.0007 (15) 0.0014 (16)
O9 0.025 (3) 0.011 (2) 0.016 (2) −0.003 (2) −0.003 (2) 0.0006 (19)
O22 0.024 (5) 0.032 (4) 0.044 (6) 0.0013 (19) 0.013 (4) 0.000 (2)
O25 0.010 (4) 0.038 (4) 0.054 (6) −0.0011 (19) −0.014 (4) 0.004 (2)
O10 0.012 (2) 0.014 (2) 0.016 (2) 0.0008 (19) 0.0021 (18) 0.0005 (18)
O11 0.016 (3) 0.015 (2) 0.027 (2) −0.002 (2) 0.000 (2) −0.0030 (19)

Geometric parameters (Å, º)

Ca1—O3 2.319 (6) Cl3—O25 1.432 (9)
Ca1—O5 2.347 (6) Cl3—O27 1.440 (7)
Ca1—O1 2.349 (5) Cl3—O28 1.446 (7)
Ca1—O4 2.412 (9) Cl3—O26 1.452 (9)
Ca1—O12 2.421 (6) Cl4—O16 1.414 (8)
Ca1—O2 2.490 (6) Cl4—O14 1.421 (8)
Ca1—O17 2.533 (5) Cl4—O13 1.449 (4)
Ca1—O16 3.104 (9) Cl4—O15 1.474 (8)
Ca2—O11 2.335 (6) Cl1—O17 1.444 (4)
Ca2—O6 2.343 (5) Cl1—O19 1.448 (8)
Ca2—O8 2.360 (5) Cl1—O18 1.451 (8)
Ca2—O9 2.423 (6) Cl1—O20 1.455 (9)
Ca2—O7 2.491 (7) Cl2—O22 1.416 (10)
Ca2—O10 2.500 (6) Cl2—O21 1.433 (10)
Ca2—O13 2.523 (4) Cl2—O24 1.449 (7)
Ca2—O18 3.061 (9) Cl2—O23 1.453 (7)
O3—Ca1—O5 91.1 (3) O7—Ca2—O10 74.9 (2)
O3—Ca1—O1 86.81 (19) O11—Ca2—O13 135.8 (2)
O5—Ca1—O1 132.0 (2) O6—Ca2—O13 73.17 (15)
O3—Ca1—O4 78.0 (2) O8—Ca2—O13 75.00 (17)
O5—Ca1—O4 76.5 (3) O9—Ca2—O13 71.91 (17)
O1—Ca1—O4 148.3 (2) O7—Ca2—O13 135.81 (17)
O3—Ca1—O12 152.9 (2) O10—Ca2—O13 128.95 (17)
O5—Ca1—O12 98.5 (2) O11—Ca2—O18 69.4 (2)
O1—Ca1—O12 104.72 (19) O6—Ca2—O18 68.03 (19)
O4—Ca1—O12 79.7 (3) O8—Ca2—O18 67.9 (2)
O3—Ca1—O2 82.1 (2) O9—Ca2—O18 138.2 (2)
O5—Ca1—O2 152.3 (2) O7—Ca2—O18 129.2 (3)
O1—Ca1—O2 74.68 (18) O10—Ca2—O18 132.42 (19)
O4—Ca1—O2 75.8 (2) O13—Ca2—O18 66.58 (17)
O12—Ca1—O2 77.7 (2) O25—Cl3—O27 108.3 (5)
O3—Ca1—O17 134.5 (2) O25—Cl3—O28 108.5 (5)
O5—Ca1—O17 75.01 (18) O27—Cl3—O28 110.4 (5)
O1—Ca1—O17 72.92 (15) O25—Cl3—O26 112.4 (7)
O4—Ca1—O17 136.29 (19) O27—Cl3—O26 108.3 (4)
O12—Ca1—O17 72.61 (17) O28—Cl3—O26 108.8 (4)
O2—Ca1—O17 127.91 (18) O16—Cl4—O14 110.7 (5)
O3—Ca1—O16 68.4 (2) O16—Cl4—O13 110.5 (3)
O5—Ca1—O16 67.5 (2) O14—Cl4—O13 109.2 (3)
O1—Ca1—O16 67.2 (2) O16—Cl4—O15 109.2 (5)
O4—Ca1—O16 129.3 (3) O14—Cl4—O15 109.1 (5)
O12—Ca1—O16 138.63 (19) O13—Cl4—O15 108.1 (3)
O2—Ca1—O16 132.21 (19) O17—Cl1—O19 108.7 (3)
O17—Ca1—O16 66.22 (16) O17—Cl1—O18 109.3 (3)
O11—Ca2—O6 87.4 (2) O19—Cl1—O18 109.0 (5)
O11—Ca2—O8 92.1 (3) O17—Cl1—O20 108.8 (3)
O6—Ca2—O8 133.0 (2) O19—Cl1—O20 110.0 (5)
O11—Ca2—O9 152.3 (2) O18—Cl1—O20 111.1 (5)
O6—Ca2—O9 105.0 (2) O22—Cl2—O21 108.6 (7)
O8—Ca2—O9 96.8 (2) O22—Cl2—O24 111.9 (4)
O11—Ca2—O7 77.6 (2) O21—Cl2—O24 108.9 (4)
O6—Ca2—O7 148.20 (18) O22—Cl2—O23 110.9 (4)
O8—Ca2—O7 76.1 (2) O21—Cl2—O23 108.9 (4)
O9—Ca2—O7 79.2 (2) O24—Cl2—O23 107.5 (5)
O11—Ca2—O10 80.3 (2) Cl4—O16—Ca1 132.3 (5)
O6—Ca2—O10 75.00 (17) Cl1—O18—Ca2 132.5 (5)
O8—Ca2—O10 151.0 (2) Cl4—O13—Ca2 141.3 (3)
O9—Ca2—O10 79.2 (3) Cl1—O17—Ca1 140.7 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O15 0.84 (2) 2.07 (3) 2.887 (10) 164 (8)
O1—H1B···O5i 0.84 (2) 2.25 (5) 2.915 (7) 136 (6)
O1—H1B···O16i 0.84 (2) 2.44 (5) 3.132 (10) 140 (6)
O2—H2A···O23ii 0.84 (2) 2.03 (2) 2.856 (9) 169 (7)
O2—H2B···O26iii 0.84 (2) 2.14 (3) 2.932 (8) 155 (6)
O3—H3A···O12iv 0.84 (2) 2.07 (2) 2.899 (8) 168 (8)
O3—H3B···O19iii 0.84 (2) 2.15 (3) 2.934 (8) 156 (7)
O4—H4A···O27 0.84 (2) 2.28 (3) 3.074 (11) 158 (8)
O4—H4B···O28iii 0.84 (2) 2.36 (3) 3.177 (10) 163 (8)
O5—H5A···O2iv 0.84 (2) 1.98 (3) 2.783 (8) 159 (7)
O5—H5B···O19 0.84 (2) 2.20 (5) 2.903 (9) 142 (6)
O6—H6A···O8v 0.84 (2) 2.18 (4) 2.925 (7) 149 (7)
O6—H6B···O19 0.84 (2) 2.08 (3) 2.891 (10) 162 (8)
O7—H7A···O23vi 0.84 (2) 2.29 (4) 3.042 (9) 149 (6)
O7—H7B···O24vii 0.84 (2) 2.50 (5) 3.199 (9) 141 (6)
O7—H7B···O27viii 0.84 (2) 2.57 (5) 3.242 (11) 138 (6)
O8—H8A···O10ix 0.84 (2) 2.08 (4) 2.805 (8) 145 (6)
O8—H8B···O15 0.84 (2) 2.07 (3) 2.879 (9) 162 (7)
O9—H9A···O27x 0.84 (2) 2.06 (3) 2.865 (10) 161 (7)
O9—H9B···O21vi 0.84 (2) 2.23 (5) 2.962 (10) 145 (7)
O10—H10A···O21vii 0.84 (2) 2.12 (3) 2.930 (9) 163 (7)
O10—H10B···O28x 0.84 (2) 2.10 (3) 2.902 (10) 162 (7)
O11—H11A···O9ix 0.84 (2) 2.14 (4) 2.893 (9) 150 (7)
O11—H11B···O15xi 0.84 (2) 2.11 (3) 2.915 (9) 161 (7)
O12—H12A···O26 0.84 (2) 2.35 (5) 2.995 (9) 135 (6)
O12—H12A···O20 0.84 (2) 2.40 (4) 3.102 (9) 142 (6)
O12—H12B···O24ii 0.84 (2) 2.03 (2) 2.861 (9) 171 (7)

Symmetry codes: (i) x+1/2, −y, z; (ii) x+1, y−1, z; (iii) x, y−1, z; (iv) x−1/2, −y, z; (v) x−1/2, −y+1, z; (vi) −x+1, −y+1, z−1/2; (vii) −x+1, −y+2, z−1/2; (viii) −x+2, −y+1, z−1/2; (ix) x+1/2, −y+1, z; (x) −x+3/2, y, z−1/2; (xi) x, y+1, z.

References

  1. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  2. Brown, I. D. (2002). In The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press.
  3. Chevrier, V. F., Hanley, J. & Altheide, T. S. (2009). Geophys. Res. Lett. 36, 1–6.
  4. Coppens, P. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 255–270. Copenhagen: Munksgaard.
  5. Davila, A. F., Willson, D., Coates, J. D. & McKay, C. P. (2013). Int. J. Astrobiology, 12, 321–325.
  6. Dobrynina, T. A. (1984). Zh. Neorg. Khim. 29, 1818–1822.
  7. Gallucci, J. C. & Gerkin, R. E. (1989). Acta Cryst. C45, 1279–1284. [DOI] [PubMed]
  8. Ghosh, S., Mukherjee, M., Seal, A. & Ray, S. (1997). Acta Cryst. B53, 639–644.
  9. Ghosh, M. & Ray, S. (1981). Z. Kristallogr. 155, 129–137.
  10. Hennings, E., Schmidt, H. & Voigt, W. (2014). Acta Cryst. E70, 510–514. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johansson, G. & Sandström, M. (1978). Acta Chem. Scand. 32, 109–113.
  12. Johansson, G., Sandström, M., Maartmann-Moe, K., Maberg, O., Scheie, A. & Louër, D. (1987). Acta Chem. Scand. Ser. A, 41, 113–116.
  13. Johansson, G., Wallmark, I., Bergson, G., Ehrenberg, L., Brunvoll, J., Bunnenberg, E., Djerassi, C. & Records, R. (1966). Acta Chem. Scand. 20, 553–562.
  14. Kerr, R. A. (2013). Science, 340, 138.
  15. Kim, Y. S., Wo, Y. S., Maity, S., Atreya, S. K. & Kaiser, R. I. (2013). J. Am. Chem. Soc. 135, 4910–4913. [DOI] [PubMed]
  16. Lilich, L. S. & Djurinskii, B. F. (1956). Zh. Obshch. Khim. 26, 1549–1553.
  17. Mani, N. V. & Ramaseshan, S. (1961). Z. Kristallogr. 115, 97–109.
  18. Marion, G. M., Catling, D. C., Zahnle, K. J. & Claire, M. W. (2010). Icarus, 207, 678–685.
  19. Navarro-González, R., Vargas, E., de la Rosa, J., Raga, A. C. & McKay, C. P. (2010). J. Geophys. Res. 115, 1–11.
  20. Nicholson, D. E. & Felsing, W. A. (1950). J. Am. Chem. Soc. 72, 4469–4471.
  21. Pestova, O. N., Myund, L. A., Khripun, M. K. & Prigaro, A. V. (2005). Russ. J. Appl. Chem. 78, 409–413.
  22. Quinn, R. C., Martucci, H. F. H., Miller, S. R., Bryson, C. E., Grunthaner, F. J. & Grunthaner, P. J. (2013). Astrobiology, 13, 515–520. [DOI] [PMC free article] [PubMed]
  23. Robertson, K. & Bish, D. (2010). Acta Cryst. B66, 579–584. [DOI] [PubMed]
  24. Schuttlefield, J. D., Sambur, J. B., Gelwicks, M., Eggleston, C. M. & Parkinson, B. A. (2011). J. Am. Chem. Soc. 133, 17521–17523. [DOI] [PubMed]
  25. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  26. Solovyov, L. A. (2012). Acta Cryst. B68, 89–90. [DOI] [PubMed]
  27. Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
  28. West, C. D. (1935). Z. Kristallogr. 91, 480–493.
  29. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  30. Willard, H. H. & Smith, G. F. (1923). J. Am. Chem. Soc. 45, 286–297.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) CaClO4_4H2O_200K, CaClO4_6H2O_180K. DOI: 10.1107/S1600536814024532/wm5079sup1.cif

e-70-00489-sup1.cif (722.9KB, cif)

Structure factors: contains datablock(s) CaClO4_4H2O_200K. DOI: 10.1107/S1600536814024532/wm5079CaClO4_4H2O_200Ksup2.hkl

Structure factors: contains datablock(s) CaClO4_6H2O_180K. DOI: 10.1107/S1600536814024532/wm5079CaClO4_6H2O_180Ksup3.hkl

Supporting information file. DOI: 10.1107/S1600536814024532/wm5079CaClO4_4H2O_200Ksup4.cml

Supporting information file. DOI: 10.1107/S1600536814024532/wm5079CaClO4_6H2O_180Ksup5.cml

CCDC references: 1033323, 1033324

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES