Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 15;70(Pt 12):m397–m398. doi: 10.1107/S1600536814024404

Crystal structure of bis­[1,3,4,5-tetra­methyl-1H-imidazole-2(3H)-thione-κS]chlorido­copper(I)

Ulrich Flörke a,*, Aziza Ahmida a, Hans Egold a, Gerald Henkel a
PMCID: PMC4257435  PMID: 25553008

Abstract

The mol­ecular structure of the title compound, [CuCl(C7H12N2S)2], shows a slightly distorted trigonal–planar coordination geometry of the Cu atom. The Cu—Cl bond measures 2.2287 (9) Å, and the two Cu—S bonds are significantly different from each other, with values of 2.2270 (10) and 2.2662 (10) Å. Also, the S—Cu—Cl angles differ, with values of 113.80 (4) and 124.42 (4)°, while the S—Cu—S angle is 121.51 (4)°. The two imidazole rings are almost parallel, making a dihedral angle of 2.1 (2)°. In the crystal, the shortest C—H⋯Cl interactions stabilize a three-dimensional network with molecules linked into centrosymmetric dimers that are stacked along the b-axis direction.

Keywords: crystal structure, trigonal coordination, copper, imidazole

Related literature  

For structures of related Cu complexes, see: Devillanova et al. (1980); Kimani et al. (2011). For background to effective anti-oxidants, see: Bhabak et al. (2010); Yamashita & Yamashita (2010). graphic file with name e-70-0m397-scheme1.jpg

Experimental  

Crystal data  

  • [CuCl(C7H12N2S)2]

  • M r = 411.48

  • Monoclinic, Inline graphic

  • a = 9.4738 (14) Å

  • b = 13.662 (2) Å

  • c = 14.119 (2) Å

  • β = 98.314 (3)°

  • V = 1808.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 120 K

  • 0.25 × 0.20 × 0.11 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.692, T max = 0.845

  • 17386 measured reflections

  • 4304 independent reflections

  • 2584 reflections with I > 2σ(I)

  • R int = 0.099

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.091

  • S = 0.85

  • 4304 reflections

  • 207 parameters

  • H-atom parameters constrained

  • Δρmax = 0.52 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814024404/zq2228sup1.cif

e-70-0m397-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024404/zq2228Isup2.hkl

e-70-0m397-Isup2.hkl (210.9KB, hkl)

. DOI: 10.1107/S1600536814024404/zq2228fig1.tif

Mol­ecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level.

CCDC reference: 1032971

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
C4H4BCl1i 0.98 2.75 3.717(4) 170
C11H11ACl1ii 0.98 2.76 3.721(3) 165
C14H14BCl1iii 0.98 2.80 3.782(4) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

supplementary crystallographic information

S1. Comment

We are interested in the chemistry of N,N-dimethylimidazole-thione derivatives due to their ability to act as effective antioxidants (Bhabak et al., 2010; Yamashita et al., 2010). Here we report the synthesis of a copper(I) chloride complex with 1,3,4,5-tetra-methylimidazole-2-thione ligands.

The title compound shows the same trans configuration as the bis-N,N'-dimethylimidazole-thione-Cu(I) compound (Kimani et al., 2011) or bis-N,N'-dimethylimidazolidine-thione-CuCl (Devillanova et al., 1980) whereas the cis configuration is also known for bis-N,N'-dimethylimidazole-thione-CuX (X = Cl, Br, I) (Kimani et al., 2011). In contrast to all the reported complexes in the title compound both Cu and Cl atoms lie on general positions and the two Cu—S bond lengths differ strongly with Cu–S1 2.2662 (10) and Cu–S2 2.2270 (10) Å. Also the S—Cu—Cl angles differ with 113.80 (4)° and 124.41 (4)°, while the S—Cu—S angle is 121.51 (4)°.

The intramolecular hydrogen bonds between the chlorine atom and hydrogen atoms of the methyl group amount to 4.838 (H2b—Cl) and 4.911 Å(H9a—Cl).

S2. Experimental

To a solution of 1,3,4,5-tetra-methylimidazoline-2-thione (0.390 mg, 2.75 mmol) in acetonitrile (50 ml) CuCl2 (0.168 mg, 1.25 mmol) was added and the mixture was stirred at room temperature for 24 h. Afterwards the solvent was removed under vacuum. White crystals were obtained from diffusion of diethyl ether into acetonitrile.

S3. Refinement

Hydrogen atoms were clearly identified in difference syntheses, refined at idealized positions riding on the carbon atoms with isotropic displacement parameters Uiso(H) = 1.5Ueq(–CH3) and C–H = 0.98 Å. All CH3 hydrogen atoms were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level.

Crystal data

[CuCl(C7H12N2S)2] F(000) = 856
Mr = 411.48 Dx = 1.512 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.4738 (14) Å Cell parameters from 2398 reflections
b = 13.662 (2) Å θ = 2.6–23.8°
c = 14.119 (2) Å µ = 1.59 mm1
β = 98.314 (3)° T = 120 K
V = 1808.2 (5) Å3 Prism, blue
Z = 4 0.25 × 0.20 × 0.11 mm

Data collection

Bruker SMART CCD area-detector diffractometer 4304 independent reflections
Radiation source: sealed tube 2584 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.099
φ and ω scans θmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −12→12
Tmin = 0.692, Tmax = 0.845 k = −17→16
17386 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: difference Fourier map
wR(F2) = 0.091 H-atom parameters constrained
S = 0.85 w = 1/[σ2(Fo2) + (0.0349P)2] where P = (Fo2 + 2Fc2)/3
4304 reflections (Δ/σ)max = 0.001
207 parameters Δρmax = 0.52 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 −0.42892 (4) 0.63369 (3) 0.67946 (3) 0.02856 (13)
Cl1 −0.50281 (8) 0.51059 (6) 0.76351 (6) 0.0275 (2)
S1 −0.18839 (9) 0.64545 (9) 0.69146 (7) 0.0453 (3)
S2 −0.57219 (9) 0.74573 (7) 0.60170 (6) 0.0308 (2)
N1 −0.1745 (3) 0.5835 (2) 0.5081 (2) 0.0312 (7)
N2 −0.0533 (3) 0.71469 (19) 0.54686 (19) 0.0215 (6)
N3 −0.4380 (3) 0.77570 (19) 0.44451 (19) 0.0224 (6)
N4 −0.3860 (3) 0.88515 (19) 0.55378 (19) 0.0246 (7)
C1 −0.1411 (3) 0.6492 (2) 0.5796 (2) 0.0264 (8)
C2 −0.2621 (4) 0.4972 (3) 0.5142 (3) 0.0497 (12)
H2A −0.2016 0.4387 0.5193 0.075*
H2B −0.3333 0.4926 0.4567 0.075*
H2C −0.3106 0.5021 0.5709 0.075*
C3 −0.1069 (3) 0.6088 (3) 0.4301 (3) 0.0325 (9)
C4 −0.1248 (4) 0.5507 (3) 0.3408 (3) 0.0578 (13)
H4A −0.0819 0.5860 0.2916 0.087*
H4B −0.2266 0.5406 0.3187 0.087*
H4C −0.0776 0.4872 0.3529 0.087*
C5 −0.0309 (3) 0.6901 (3) 0.4548 (2) 0.0273 (8)
C6 0.0632 (4) 0.7501 (3) 0.4023 (3) 0.0421 (10)
H6A 0.0681 0.7205 0.3396 0.063*
H6B 0.1591 0.7528 0.4391 0.063*
H6C 0.0244 0.8165 0.3935 0.063*
C7 0.0058 (3) 0.8007 (2) 0.5986 (3) 0.0301 (8)
H7A −0.0400 0.8098 0.6559 0.045*
H7B −0.0113 0.8584 0.5573 0.045*
H7C 0.1087 0.7918 0.6174 0.045*
C8 −0.4618 (3) 0.8033 (2) 0.5325 (2) 0.0238 (8)
C9 −0.5003 (4) 0.6902 (2) 0.3929 (3) 0.0320 (9)
H9A −0.5329 0.6440 0.4382 0.048*
H9B −0.4286 0.6586 0.3597 0.048*
H9C −0.5816 0.7106 0.3460 0.048*
C10 −0.3462 (3) 0.8419 (2) 0.4094 (2) 0.0229 (8)
C11 −0.3028 (3) 0.8309 (3) 0.3134 (2) 0.0285 (8)
H11A −0.2349 0.8828 0.3034 0.043*
H11B −0.3870 0.8358 0.2644 0.043*
H11C −0.2576 0.7669 0.3088 0.043*
C12 −0.3132 (3) 0.9106 (2) 0.4776 (2) 0.0248 (8)
C13 −0.2251 (3) 1.0006 (2) 0.4780 (3) 0.0314 (8)
H13A −0.1750 1.0005 0.4220 0.047*
H13B −0.1553 1.0023 0.5365 0.047*
H13C −0.2868 1.0583 0.4759 0.047*
C14 −0.3773 (4) 0.9387 (3) 0.6430 (3) 0.0350 (9)
H14A −0.4383 0.9969 0.6336 0.052*
H14B −0.2784 0.9587 0.6638 0.052*
H14C −0.4095 0.8967 0.6919 0.052*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0284 (2) 0.0310 (3) 0.0266 (2) −0.0035 (2) 0.00511 (17) 0.0040 (2)
Cl1 0.0260 (4) 0.0266 (5) 0.0307 (5) −0.0004 (4) 0.0067 (4) 0.0052 (4)
S1 0.0254 (5) 0.0805 (9) 0.0295 (5) −0.0085 (5) 0.0023 (4) 0.0173 (6)
S2 0.0249 (4) 0.0367 (6) 0.0314 (5) −0.0010 (4) 0.0059 (4) 0.0092 (4)
N1 0.0220 (14) 0.0205 (16) 0.049 (2) −0.0061 (13) −0.0017 (14) 0.0012 (15)
N2 0.0190 (13) 0.0205 (15) 0.0247 (16) −0.0006 (11) 0.0024 (11) −0.0018 (12)
N3 0.0215 (14) 0.0216 (16) 0.0239 (16) −0.0023 (12) 0.0021 (11) 0.0001 (12)
N4 0.0237 (14) 0.0258 (17) 0.0246 (16) −0.0023 (12) 0.0045 (12) −0.0019 (13)
C1 0.0163 (15) 0.028 (2) 0.034 (2) −0.0002 (14) 0.0005 (14) 0.0082 (17)
C2 0.031 (2) 0.027 (2) 0.087 (4) −0.0087 (18) −0.008 (2) 0.009 (2)
C3 0.0194 (17) 0.038 (2) 0.039 (2) 0.0031 (16) 0.0017 (16) −0.0098 (18)
C4 0.035 (2) 0.073 (3) 0.063 (3) 0.001 (2) 0.000 (2) −0.041 (3)
C5 0.0221 (17) 0.035 (2) 0.025 (2) 0.0030 (15) 0.0012 (14) 0.0000 (16)
C6 0.037 (2) 0.062 (3) 0.028 (2) −0.009 (2) 0.0079 (17) 0.005 (2)
C7 0.0293 (18) 0.026 (2) 0.034 (2) −0.0014 (16) 0.0013 (16) −0.0028 (17)
C8 0.0200 (16) 0.0241 (19) 0.027 (2) 0.0005 (14) 0.0007 (14) 0.0051 (15)
C9 0.034 (2) 0.026 (2) 0.036 (2) −0.0061 (16) 0.0028 (16) −0.0009 (17)
C10 0.0211 (16) 0.023 (2) 0.0247 (19) 0.0016 (14) 0.0031 (14) 0.0060 (15)
C11 0.0272 (18) 0.033 (2) 0.024 (2) −0.0006 (15) 0.0008 (15) 0.0046 (16)
C12 0.0262 (17) 0.0231 (19) 0.026 (2) −0.0001 (15) 0.0047 (15) 0.0043 (16)
C13 0.0283 (18) 0.028 (2) 0.037 (2) −0.0005 (16) 0.0021 (16) −0.0017 (17)
C14 0.033 (2) 0.042 (2) 0.030 (2) −0.0038 (17) 0.0078 (17) −0.0098 (18)

Geometric parameters (Å, º)

Cu1—S2 2.2270 (10) C4—H4C 0.9800
Cu1—Cl1 2.2287 (9) C5—C6 1.486 (5)
Cu1—S1 2.2662 (10) C6—H6A 0.9800
S1—C1 1.704 (4) C6—H6B 0.9800
S2—C8 1.721 (3) C6—H6C 0.9800
N1—C1 1.354 (4) C7—H7A 0.9800
N1—C3 1.395 (4) C7—H7B 0.9800
N1—C2 1.451 (4) C7—H7C 0.9800
N2—C1 1.348 (4) C9—H9A 0.9800
N2—C5 1.388 (4) C9—H9B 0.9800
N2—C7 1.452 (4) C9—H9C 0.9800
N3—C8 1.349 (4) C10—C12 1.349 (5)
N3—C10 1.395 (4) C10—C11 1.480 (4)
N3—C9 1.456 (4) C11—H11A 0.9800
N4—C8 1.339 (4) C11—H11B 0.9800
N4—C12 1.402 (4) C11—H11C 0.9800
N4—C14 1.449 (4) C12—C13 1.486 (4)
C2—H2A 0.9800 C13—H13A 0.9800
C2—H2B 0.9800 C13—H13B 0.9800
C2—H2C 0.9800 C13—H13C 0.9800
C3—C5 1.342 (5) C14—H14A 0.9800
C3—C4 1.479 (5) C14—H14B 0.9800
C4—H4A 0.9800 C14—H14C 0.9800
C4—H4B 0.9800
S2—Cu1—Cl1 124.42 (4) H6A—C6—H6C 109.5
S2—Cu1—S1 121.51 (4) H6B—C6—H6C 109.5
Cl1—Cu1—S1 113.80 (4) N2—C7—H7A 109.5
C1—S1—Cu1 109.23 (11) N2—C7—H7B 109.5
C8—S2—Cu1 102.52 (11) H7A—C7—H7B 109.5
C1—N1—C3 109.8 (3) N2—C7—H7C 109.5
C1—N1—C2 124.6 (3) H7A—C7—H7C 109.5
C3—N1—C2 125.5 (3) H7B—C7—H7C 109.5
C1—N2—C5 110.2 (3) N4—C8—N3 106.5 (3)
C1—N2—C7 125.3 (3) N4—C8—S2 127.2 (3)
C5—N2—C7 124.5 (3) N3—C8—S2 126.3 (3)
C8—N3—C10 110.1 (3) N3—C9—H9A 109.5
C8—N3—C9 125.1 (3) N3—C9—H9B 109.5
C10—N3—C9 124.8 (3) H9A—C9—H9B 109.5
C8—N4—C12 110.0 (3) N3—C9—H9C 109.5
C8—N4—C14 125.3 (3) H9A—C9—H9C 109.5
C12—N4—C14 124.7 (3) H9B—C9—H9C 109.5
N2—C1—N1 105.9 (3) C12—C10—N3 106.8 (3)
N2—C1—S1 126.6 (3) C12—C10—C11 131.2 (3)
N1—C1—S1 127.4 (3) N3—C10—C11 122.0 (3)
N1—C2—H2A 109.5 C10—C11—H11A 109.5
N1—C2—H2B 109.5 C10—C11—H11B 109.5
H2A—C2—H2B 109.5 H11A—C11—H11B 109.5
N1—C2—H2C 109.5 C10—C11—H11C 109.5
H2A—C2—H2C 109.5 H11A—C11—H11C 109.5
H2B—C2—H2C 109.5 H11B—C11—H11C 109.5
C5—C3—N1 106.9 (3) C10—C12—N4 106.7 (3)
C5—C3—C4 131.0 (4) C10—C12—C13 130.6 (3)
N1—C3—C4 122.1 (3) N4—C12—C13 122.7 (3)
C3—C4—H4A 109.5 C12—C13—H13A 109.5
C3—C4—H4B 109.5 C12—C13—H13B 109.5
H4A—C4—H4B 109.5 H13A—C13—H13B 109.5
C3—C4—H4C 109.5 C12—C13—H13C 109.5
H4A—C4—H4C 109.5 H13A—C13—H13C 109.5
H4B—C4—H4C 109.5 H13B—C13—H13C 109.5
C3—C5—N2 107.1 (3) N4—C14—H14A 109.5
C3—C5—C6 131.7 (3) N4—C14—H14B 109.5
N2—C5—C6 121.2 (3) H14A—C14—H14B 109.5
C5—C6—H6A 109.5 N4—C14—H14C 109.5
C5—C6—H6B 109.5 H14A—C14—H14C 109.5
H6A—C6—H6B 109.5 H14B—C14—H14C 109.5
C5—C6—H6C 109.5
S2—Cu1—S1—C1 −58.01 (14) C1—N2—C5—C6 −179.5 (3)
Cl1—Cu1—S1—C1 127.70 (13) C7—N2—C5—C6 2.5 (5)
Cl1—Cu1—S2—C8 −168.08 (12) C12—N4—C8—N3 0.4 (3)
S1—Cu1—S2—C8 18.26 (13) C14—N4—C8—N3 −178.3 (3)
C5—N2—C1—N1 −0.3 (3) C12—N4—C8—S2 −178.0 (2)
C7—N2—C1—N1 177.8 (3) C14—N4—C8—S2 3.3 (5)
C5—N2—C1—S1 175.2 (2) C10—N3—C8—N4 −0.4 (3)
C7—N2—C1—S1 −6.7 (5) C9—N3—C8—N4 −179.6 (3)
C3—N1—C1—N2 −0.1 (4) C10—N3—C8—S2 177.9 (2)
C2—N1—C1—N2 177.1 (3) C9—N3—C8—S2 −1.2 (5)
C3—N1—C1—S1 −175.6 (2) Cu1—S2—C8—N4 −94.7 (3)
C2—N1—C1—S1 1.7 (5) Cu1—S2—C8—N3 87.3 (3)
Cu1—S1—C1—N2 130.1 (3) C8—N3—C10—C12 0.3 (4)
Cu1—S1—C1—N1 −55.3 (3) C9—N3—C10—C12 179.5 (3)
C1—N1—C3—C5 0.5 (4) C8—N3—C10—C11 −179.0 (3)
C2—N1—C3—C5 −176.7 (3) C9—N3—C10—C11 0.1 (5)
C1—N1—C3—C4 −179.4 (3) N3—C10—C12—N4 0.0 (3)
C2—N1—C3—C4 3.4 (5) C11—C10—C12—N4 179.2 (3)
N1—C3—C5—N2 −0.6 (4) N3—C10—C12—C13 −177.2 (3)
C4—C3—C5—N2 179.2 (4) C11—C10—C12—C13 2.1 (6)
N1—C3—C5—C6 179.4 (3) C8—N4—C12—C10 −0.2 (4)
C4—C3—C5—C6 −0.7 (7) C14—N4—C12—C10 178.5 (3)
C1—N2—C5—C3 0.6 (4) C8—N4—C12—C13 177.2 (3)
C7—N2—C5—C3 −177.5 (3) C14—N4—C12—C13 −4.1 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C2—H2C···S1 0.98 2.74 3.217 (4) 110
C4—H4B···Cl1i 0.98 2.75 3.717 (4) 170
C7—H7A···S1 0.98 2.73 3.209 (3) 110
C9—H9A···S2 0.98 2.77 3.211 (4) 108
C11—H11A···Cl1ii 0.98 2.76 3.721 (3) 165
C14—H14B···Cl1iii 0.98 2.80 3.782 (4) 176
C14—H14C···S2 0.98 2.77 3.223 (4) 109

Symmetry codes: (i) −x−1, −y+1, −z+1; (ii) x+1/2, −y+3/2, z−1/2; (iii) −x−1/2, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZQ2228).

References

  1. Bhabak, K. P. & Mugesh, G. (2010). Chem. Eur. J. 16, 1175–1185. [DOI] [PubMed]
  2. Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Devillanova, F. A., Verani, G., Battaglia, L. P. & Bonamartini Corradi, A. (1980). Transition Met. Chem. 5, 362–364.
  4. Kimani, M. M., Bayse, C. A. & Brumaghim, J. L. (2011). Dalton Trans. 40, 3711–3723. [DOI] [PubMed]
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yamashita, Y. & Yamashita, M. (2010). J. Biol. Chem. 285, 18134–18138. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814024404/zq2228sup1.cif

e-70-0m397-sup1.cif (20.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024404/zq2228Isup2.hkl

e-70-0m397-Isup2.hkl (210.9KB, hkl)

. DOI: 10.1107/S1600536814024404/zq2228fig1.tif

Mol­ecular structure of the title compound with anisotropic displacement parameters drawn at the 50% probability level.

CCDC reference: 1032971

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES