Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 15;70(Pt 12):o1254–o1255. doi: 10.1107/S1600536814024581

Crystal structure of 4-(3-carb­oxy­pro­pan­amido)-2-hy­droxy­benzoic acid mono­hydrate

Muhammad Nawaz Tahir a,*, Muhammad Naeem Ahmed b, Arshad Farooq Butt c, Hazoor Ahmad Shad d
PMCID: PMC4257440  PMID: 25553029

Abstract

In the title hydrate, C11H11NO6·H2O, the organic mol­ecule is approximately planar (r.m.s. deviation for the non-H atoms = 0.129 Å) and an intra­molecular O—H⋯O hydrogen bond closes an S(6) ring. In the crystal, the benzoic acid group participates in an O—H⋯O hydrogen bond to the water mol­ecule and accepts a similar bond from another water mol­ecule. The other –CO2H group forms a carb­oxy­lic acid inversion dimer, thereby forming an R 2 2(8) loop. These bonds, along with N—H⋯O and C—H⋯O inter­actions, generate a three-dimensional network.

Keywords: crystal structure, 2-hy­droxy­benzoic acid, hydrate, hydrogen bonding

Related literature  

For related structures, see: Gowda et al. (2009, 2011); Jia et al. (2012); Saraswathi et al. (2011).graphic file with name e-70-o1254-scheme1.jpg

Experimental  

Crystal data  

  • C11H11NO6·H2O

  • M r = 271.22

  • Monoclinic, Inline graphic

  • a = 25.2516 (19) Å

  • b = 8.4656 (5) Å

  • c = 12.4732 (10) Å

  • β = 117.446 (3)°

  • V = 2366.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 296 K

  • 0.28 × 0.24 × 0.16 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.964, T max = 0.983

  • 9402 measured reflections

  • 2556 independent reflections

  • 1738 reflections with I > 2σ(I)

  • R int = 0.038

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.122

  • S = 1.02

  • 2556 reflections

  • 181 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 2012) and PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814024581/hb7310sup1.cif

e-70-o1254-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024581/hb7310Isup2.hkl

e-70-o1254-Isup2.hkl (140.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024581/hb7310Isup3.cml

. DOI: 10.1107/S1600536814024581/hb7310fig1.tif

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

PLATON . DOI: 10.1107/S1600536814024581/hb7310fig2.tif

The partial packing (PLATON; Spek, 2009), which shows that mol­ecules form dimers which are inter­linked to three-dimensional polymeric network.

CCDC reference: 1033346

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O1H1O7 0.82 1.81 2.605(2) 163
O3H3O2 0.82 1.89 2.6099(19) 146
O5H5O6i 0.82 1.80 2.618(2) 174
N1H1AO3ii 0.86 2.18 3.035(2) 173
C10H10BO5iii 0.97 2.53 3.424(3) 153
O7H7AO4iv 0.78(3) 2.15(3) 2.854(2) 151(3)
O7H7BO2v 0.72(3) 2.17(3) 2.827(2) 152(3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan.

supplementary crystallographic information

S1. Comment

The title compound (I), (Fig. 1) has been synthesized as a potential ligand for forming different metal complexes.

The crystal structures of N-Phenylsuccinamic acid (Gowda et al., 2011), 4-((4-Chlorophenyl)amino)-4-oxobutanoic acid (Gowda et al., 2009), 3-[(4-methylphenyl)carbamoyl]propanoic acid (Saraswathi et al., 2011) and 4-[(2-Carboxyethyl)amino]benzoic acid monohydrate (Jia et al., 2012) have been published which are related to the title compound (I).

In (I) the moieties of 4-aminosalicylic acid A (C1—C7/N1/O1/O2/O3) and propanal B (C8—C10/O4) are planar with r.m.s. deviation of 0.0440 and 0.0122 Å, respectively. The dihedral angle between A/B is 5.729 (129)°. The carboxylate moiety C (C11/O5/O6) is of course planar. The dihedral angle between B/C is 13.446 (351)°. In (I), S(6) ring motif is present due to H-bonding of O—H···O type (Table 1, Fig. 2). The molecules are dimerized due to H-bondings of O—H···O type (Table 1, Fig. 2) from carboxyl groups formed from succinic anhydride. The dimers are further interlinked due to N—H···O, O—H···O bondings of water molecules and carboxyl group of aminoacid moiety. The molecules are stabilized in the form of three dimensional polymeric network.

S2. Experimental

Equimolar quantities of 4-aminosalicylic acid and succenic anhydride were stirred in ethylacetate for 4 h. The resulting mixture with white precipitate was placed to dry for 48 h. A colourless plate was selected for data collection.

S3. Refinement

The coordinates of H7A and H7B of water were refined. The H-atoms were positioned geometrically (O–H = 0.82, N–H = 0.86, C–H = 0.93–0.97 Å) and refined as riding with Uiso(H) = xUeq(C, N, O), where x = 1.5 for hydroxy & x = 1.2 for other H-atoms.

Figures

Fig. 1.

Fig. 1.

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The partial packing (PLATON; Spek, 2009), which shows that molecules form dimers which are interlinked to three-dimensional polymeric network.

Crystal data

C11H11NO6·H2O F(000) = 1136
Mr = 271.22 Dx = 1.523 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 25.2516 (19) Å Cell parameters from 1738 reflections
b = 8.4656 (5) Å θ = 2.6–27.0°
c = 12.4732 (10) Å µ = 0.13 mm1
β = 117.446 (3)° T = 296 K
V = 2366.3 (3) Å3 Plate, colourless
Z = 8 0.28 × 0.24 × 0.16 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2556 independent reflections
Radiation source: fine-focus sealed tube 1738 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.038
Detector resolution: 7.80 pixels mm-1 θmax = 27.0°, θmin = 2.6°
ω scans h = −32→32
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −10→10
Tmin = 0.964, Tmax = 0.983 l = −15→15
9402 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.9039P] where P = (Fo2 + 2Fc2)/3
2556 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.25 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.45356 (6) −0.2827 (2) 0.78347 (15) 0.0561 (5)
H1 0.4765 −0.3404 0.8379 0.084*
O2 0.39232 (6) −0.35291 (17) 0.85809 (13) 0.0452 (4)
O3 0.28556 (6) −0.22986 (16) 0.76254 (12) 0.0378 (4)
H3 0.3133 −0.2845 0.8098 0.057*
O4 0.14489 (7) 0.0630 (2) 0.42736 (15) 0.0607 (5)
O5 −0.01362 (6) 0.3599 (2) 0.08989 (17) 0.0658 (6)
H5 −0.0287 0.4249 0.0352 0.099*
O6 0.06897 (6) 0.43838 (18) 0.08601 (14) 0.0494 (4)
N1 0.22758 (6) 0.07905 (19) 0.40306 (14) 0.0340 (4)
H1A 0.2411 0.1192 0.3571 0.041*
C1 0.40152 (9) −0.2813 (2) 0.78284 (18) 0.0347 (5)
C2 0.35583 (8) −0.1892 (2) 0.68505 (17) 0.0301 (4)
C3 0.29976 (8) −0.1667 (2) 0.67907 (16) 0.0281 (4)
C4 0.25635 (8) −0.0780 (2) 0.58744 (16) 0.0292 (4)
H4 0.2194 −0.0624 0.5852 0.035*
C5 0.26845 (8) −0.0126 (2) 0.49906 (17) 0.0288 (4)
C6 0.32402 (9) −0.0373 (2) 0.50317 (19) 0.0378 (5)
H6 0.3320 0.0051 0.4433 0.045*
C7 0.36652 (9) −0.1230 (2) 0.59436 (19) 0.0383 (5)
H7 0.4035 −0.1379 0.5964 0.046*
C8 0.17030 (9) 0.1135 (2) 0.37201 (19) 0.0364 (5)
C9 0.13998 (9) 0.2187 (2) 0.26307 (18) 0.0381 (5)
H9A 0.1433 0.1717 0.1955 0.046*
H9B 0.1600 0.3203 0.2800 0.046*
C10 0.07507 (9) 0.2429 (2) 0.22904 (19) 0.0412 (5)
H10A 0.0548 0.1417 0.2065 0.049*
H10B 0.0720 0.2808 0.2993 0.049*
C11 0.04396 (9) 0.3559 (2) 0.12818 (18) 0.0367 (5)
O7 0.54172 (8) −0.4497 (2) 0.94112 (17) 0.0565 (5)
H7A 0.5638 (13) −0.464 (3) 0.914 (3) 0.085*
H7B 0.5480 (14) −0.501 (4) 0.991 (3) 0.085*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0331 (8) 0.0803 (12) 0.0558 (11) 0.0224 (8) 0.0212 (8) 0.0336 (9)
O2 0.0410 (9) 0.0564 (9) 0.0380 (9) 0.0118 (7) 0.0181 (7) 0.0180 (7)
O3 0.0376 (8) 0.0478 (8) 0.0336 (8) 0.0106 (7) 0.0213 (7) 0.0120 (6)
O4 0.0362 (9) 0.0880 (12) 0.0641 (11) 0.0175 (8) 0.0284 (8) 0.0389 (10)
O5 0.0295 (9) 0.0899 (14) 0.0719 (13) 0.0136 (8) 0.0181 (9) 0.0463 (10)
O6 0.0346 (8) 0.0602 (10) 0.0530 (10) 0.0090 (7) 0.0199 (8) 0.0229 (8)
N1 0.0254 (9) 0.0424 (9) 0.0339 (10) 0.0059 (7) 0.0133 (8) 0.0122 (8)
C1 0.0309 (11) 0.0383 (11) 0.0343 (11) 0.0058 (9) 0.0147 (9) 0.0034 (9)
C2 0.0281 (10) 0.0325 (10) 0.0283 (10) 0.0038 (8) 0.0118 (8) 0.0032 (8)
C3 0.0316 (10) 0.0289 (9) 0.0257 (10) −0.0002 (8) 0.0148 (8) −0.0014 (8)
C4 0.0235 (10) 0.0335 (10) 0.0313 (11) 0.0024 (8) 0.0133 (9) −0.0013 (8)
C5 0.0255 (10) 0.0290 (10) 0.0294 (10) 0.0022 (8) 0.0105 (8) 0.0018 (8)
C6 0.0328 (11) 0.0473 (12) 0.0385 (12) 0.0067 (9) 0.0207 (10) 0.0135 (10)
C7 0.0295 (11) 0.0479 (12) 0.0421 (12) 0.0088 (9) 0.0203 (10) 0.0128 (10)
C8 0.0335 (11) 0.0388 (11) 0.0385 (12) 0.0020 (9) 0.0180 (10) 0.0058 (9)
C9 0.0335 (11) 0.0411 (11) 0.0379 (12) 0.0055 (9) 0.0149 (10) 0.0085 (9)
C10 0.0325 (11) 0.0482 (13) 0.0416 (12) 0.0067 (10) 0.0159 (10) 0.0106 (10)
C11 0.0295 (11) 0.0424 (12) 0.0371 (12) 0.0045 (9) 0.0143 (10) 0.0039 (9)
O7 0.0420 (10) 0.0775 (13) 0.0557 (11) 0.0260 (9) 0.0273 (9) 0.0329 (9)

Geometric parameters (Å, º)

O1—C1 1.310 (2) C4—C5 1.388 (3)
O1—H1 0.8200 C4—H4 0.9300
O2—C1 1.226 (2) C5—C6 1.396 (3)
O3—C3 1.357 (2) C6—C7 1.359 (3)
O3—H3 0.8200 C6—H6 0.9300
O4—C8 1.217 (2) C7—H7 0.9300
O5—C11 1.305 (2) C8—C9 1.505 (3)
O5—H5 0.8200 C9—C10 1.506 (3)
O6—C11 1.212 (2) C9—H9A 0.9700
N1—C8 1.346 (2) C9—H9B 0.9700
N1—C5 1.400 (2) C10—C11 1.485 (3)
N1—H1A 0.8600 C10—H10A 0.9700
C1—C2 1.459 (3) C10—H10B 0.9700
C2—C7 1.396 (3) O7—H7A 0.78 (3)
C2—C3 1.396 (3) O7—H7B 0.72 (3)
C3—C4 1.385 (3)
C1—O1—H1 109.5 C5—C6—H6 119.9
C3—O3—H3 109.5 C6—C7—C2 121.31 (18)
C11—O5—H5 109.5 C6—C7—H7 119.3
C8—N1—C5 129.57 (16) C2—C7—H7 119.3
C8—N1—H1A 115.2 O4—C8—N1 122.57 (19)
C5—N1—H1A 115.2 O4—C8—C9 122.59 (18)
O2—C1—O1 122.28 (18) N1—C8—C9 114.84 (17)
O2—C1—C2 123.24 (18) C8—C9—C10 111.69 (17)
O1—C1—C2 114.48 (17) C8—C9—H9A 109.3
C7—C2—C3 118.18 (17) C10—C9—H9A 109.3
C7—C2—C1 121.20 (17) C8—C9—H9B 109.3
C3—C2—C1 120.62 (17) C10—C9—H9B 109.3
O3—C3—C4 117.26 (16) H9A—C9—H9B 107.9
O3—C3—C2 121.68 (16) C11—C10—C9 114.12 (17)
C4—C3—C2 121.05 (16) C11—C10—H10A 108.7
C3—C4—C5 119.45 (17) C9—C10—H10A 108.7
C3—C4—H4 120.3 C11—C10—H10B 108.7
C5—C4—H4 120.3 C9—C10—H10B 108.7
C4—C5—C6 119.77 (17) H10A—C10—H10B 107.6
C4—C5—N1 123.71 (16) O6—C11—O5 122.79 (19)
C6—C5—N1 116.52 (17) O6—C11—C10 124.11 (18)
C7—C6—C5 120.22 (18) O5—C11—C10 113.09 (18)
C7—C6—H6 119.9 H7A—O7—H7B 111 (3)
O2—C1—C2—C7 −173.4 (2) C8—N1—C5—C6 175.30 (19)
O1—C1—C2—C7 6.1 (3) C4—C5—C6—C7 −1.0 (3)
O2—C1—C2—C3 5.8 (3) N1—C5—C6—C7 179.09 (18)
O1—C1—C2—C3 −174.74 (18) C5—C6—C7—C2 0.5 (3)
C7—C2—C3—O3 178.72 (17) C3—C2—C7—C6 0.8 (3)
C1—C2—C3—O3 −0.5 (3) C1—C2—C7—C6 180.0 (2)
C7—C2—C3—C4 −1.6 (3) C5—N1—C8—O4 −1.2 (4)
C1—C2—C3—C4 179.23 (17) C5—N1—C8—C9 179.15 (18)
O3—C3—C4—C5 −179.20 (16) O4—C8—C9—C10 −3.5 (3)
C2—C3—C4—C5 1.1 (3) N1—C8—C9—C10 176.14 (17)
C3—C4—C5—C6 0.2 (3) C8—C9—C10—C11 175.35 (17)
C3—C4—C5—N1 −179.88 (17) C9—C10—C11—O6 −9.3 (3)
C8—N1—C5—C4 −4.6 (3) C9—C10—C11—O5 171.72 (19)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1···O7 0.82 1.81 2.605 (2) 163
O3—H3···O2 0.82 1.89 2.6099 (19) 146
O5—H5···O6i 0.82 1.80 2.618 (2) 174
N1—H1A···O3ii 0.86 2.18 3.035 (2) 173
C10—H10B···O5iii 0.97 2.53 3.424 (3) 153
O7—H7A···O4iv 0.78 (3) 2.15 (3) 2.854 (2) 151 (3)
O7—H7B···O2v 0.72 (3) 2.17 (3) 2.827 (2) 152 (3)

Symmetry codes: (i) −x, −y+1, −z; (ii) x, −y, z−1/2; (iii) −x, y, −z+1/2; (iv) x+1/2, −y−1/2, z+1/2; (v) −x+1, −y−1, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HB7310).

References

  1. Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o1827. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2011). Acta Cryst. E67, o249. [DOI] [PMC free article] [PubMed]
  6. Jia, C., Chen, S. & Yuan, W. (2012). Acta Cryst. E68, o1098. [DOI] [PMC free article] [PubMed]
  7. Saraswathi, B. S., Foro, S., Gowda, B. T. & Fuess, H. (2011). Acta Cryst. E67, o227. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814024581/hb7310sup1.cif

e-70-o1254-sup1.cif (21.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024581/hb7310Isup2.hkl

e-70-o1254-Isup2.hkl (140.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024581/hb7310Isup3.cml

. DOI: 10.1107/S1600536814024581/hb7310fig1.tif

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

PLATON . DOI: 10.1107/S1600536814024581/hb7310fig2.tif

The partial packing (PLATON; Spek, 2009), which shows that mol­ecules form dimers which are inter­linked to three-dimensional polymeric network.

CCDC reference: 1033346

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES