Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 21;70(Pt 12):544–546. doi: 10.1107/S1600536814024982

Crystal structure of tetra­aqua­(5,5′-dimethyl-2,2′-bipyridyl-κ2 N,N′)iron(II) sulfate

Yamine Belamri a, Fatima Setifi a,*, Bojana M Francuski b, Sladjana B Novaković b, Setifi Zouaoui c,d
PMCID: PMC4257445  PMID: 25552988

In the crystal structure of the title compound, [Fe(dmbpy)(H2O)4][SO4], the charged components form an extensive hydrogen-bonding network. Eight O—H⋯O hydrogen bonds [d(O⋯H) < 2.00 Å], form a two-dimensional network parallel to the ab plane.

Keywords: crystal structure; 5,5′-dimethyl-2,2′-dipyrid­yl; tetra­aqua­iron(II) complex; sulfate; bi­pyridine ligand; hydrogen bonding; π–π inter­actions

Abstract

In the title compound, [Fe(C12H12N2)(H2O)4]SO4, the central FeII ion is coordinated by two N atoms from the 5,5′-dimethyl-2,2′-bi­pyridine ligand and four water O atoms in a distorted octa­hedral geometry. The Fe—O coordination bond lengths vary from 2.080 (3) to 2.110 (3) Å, while the two Fe—N coordination bonds have practically identical lengths [2.175 (3) and 2.177 (3) Å]. The chelating N—Fe—N angle of 75.6 (1)° shows the largest deviation from an ideal octa­hedral geometry; the other coordination angles deviate from ideal values by 0.1 (1) to 9.1 (1)°. O—H⋯O hydrogen bonding between the four aqua ligands of the cationic complex and four O-atom acceptors of the anion leads to the formation of layers parallel to the ab plane. Neighbouring layers further inter­act by means of C—H⋯O and π–π inter­actions involving the laterally positioned bi­pyridine rings. The perpen­dicular distance between π–π inter­acting rings is 3.365 (2) Å, with a centroid–centroid distance of 3.702 (3) Å.

Chemical context  

Coordination compounds containing polynitrile anions as ligands are of current inter­est for their magnetic properties and their rich architectures and topologies (Setifi et al., 2003; Gaamoune et al., 2010; Váhovská & Potočňák, 2012; Setifi, Setifi et al., 2013; Setifi, Domasevitsch et al., 2013; Potočňák et al., 2014). Given the crucial role of these anionic ligands, we are inter­ested in using them in combination with other chelating or bridging neutral co-ligands to explore their structural and electronic characteristics in the large field of mol­ecular materials exhibiting the spin crossover (SCO) phenomenon. In an attempt to prepare such a complex, we obtained the title compound, [Fe(dmbpy)(H2O)4]SO4, (I), where dmbpy is 5,5′-dimethyl-2,2′-bipyridyl. graphic file with name e-70-00544-scheme1.jpg

The crystal structures of several complexes with general formula [M(bpy)(H2O)4]2+ comprising bipyridine derivatives as ligands have been reported previously (Boonlue et al., 2012; Harvey et al., 1999; Kwak et al., 2007; Suarez et al., 2013; Xiao et al., 2003; Yang, 2009; Yu et al., 2007; Zhang et al., 2008; Zhao & Bai, 2009). This is the first complex of this type with FeII as the central ion.

Structural commentary  

A mol­ecular view of complex (I), together with the atom-numbering scheme is given in Fig. 1. The crystal structure of (I) consists of the cationic complex [Fe(dmbpy)(H2O)4]2+ and a free [SO4]2− counter-ion. The FeII atom is in a distorted octa­hedral coordination environment and the equatorial plane of the octa­hedron is formed by a pair of nitro­gen donors from the 5,5′-dimethyl-2,2′-bipyridyl ligand and two mol­ecules of water, while the axial sites are occupied by two other water mol­ecules. The equatorial donor atoms are nearly coplanar (r.m.s. deviation = 0.0062 Å), while the deviation of the Fe atom from the least-squares plane is somewhat larger [0.021 (2) Å]. The bi­pyridine chelating angle N1—Fe—N2 of 75.6 (1)° shows the most significant deviation from an ideal octa­hedral geometry. The other angular distortions from an ideal octa­hedral geometry are in the range 0.1 (1) to 9.1 (1)°. The S—O bond lengths [1.466 (3)–1.480 (3) Å] and O—S—O angles [108.8 (2)–109.9 (2)°] indicate a nearly ideal tetra­hedral geometry for the anion.

Figure 1.

Figure 1

The mol­ecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms. Hydrogen bonds are indicated by dashed lines.

Supra­molecular features  

Within the crystal packing, the charged components are connected by an extensive hydrogen-bonding network (Table 1). Each of the [Fe(dmbpy)(H2O)4]2+ cations engages all four coordinating water mol­ecules in hydrogen bonding to four [SO4]2− anions (Fig. 2 a). The anions surrounding the cationic unit are positioned at similar Fe⋯S distance of Inline graphic4.9 Å. On the other hand, each of the [SO4]2− anions appears surrounded with four cationic units, where its four O atoms engage as acceptors in bifurcated O—H⋯O hydrogen bonds towards neighbouring cations (Fig. 2 a). Such a mutual arrangement leads to the formation of a two-dimensional hydrogen-bonded network parallel to the ab plane (Fig. 2 b). Laterally arranged aromatic rings of the 5,5′-dimethyl-2,2′-bi­pyridine ligand in neighbouring layers inter­act by means of weak C—H⋯O and π–π inter­actions, forming the three-dimensional crystal packing (Table 1 and Fig. 3). The centroid–centroid distance for the latter inter­action is 3.702 (3) Å.

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
O5H1O5O4i 0.83 1.92 2.734(4) 165
O5H2O5O2ii 0.96 1.94 2.794(4) 147
O6H1O6O1 0.94 1.90 2.820(4) 167
O6H2O6O3iii 0.83 1.95 2.765(4) 165
O7H1O7O4ii 0.83 1.89 2.722(4) 175
O7H2O7O2 0.82 1.89 2.697(4) 167
O8H1O8O1iii 0.77 1.95 2.719(4) 175
O8H2O8O3i 0.89 1.91 2.792(5) 174
C4H4O4iv 0.93 2.54 3.232(5) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

(a) O—H⋯O inter­actions (dashed lines) connect the cations and anions into layers parallel to the ab plane. (b) View of a single layer down the a axis.

Figure 3.

Figure 3

(a) The bipyridine rings from neighbouring layers inter­act via C—H⋯O and π–π inter­actions. (b) Orthogonal projection of the central fragment.

Synthesis and crystallization  

The title compound, (I), was synthesized hydro­thermally from a mixture of iron(II) sulfate hepta­hydrate (28 mg, 0.1 mmol), 5,5′-dimethyl-2,2′-bipyridyl (18 mg, 0.1 mmol) and potassium tri­cyano­methanide KC(CN)3 (26 mg, 0.2 mmol) in water–ethanol (4:1 v/v, 20 ml). The mixture was transferred to a Teflon-lined autoclave and heated at 410 K for 3 d. The autoclave was then allowed to cool to ambient temperature. Red crystals of (I) were collected by filtration, washed with water and dried in air (yield 35%).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms bonded to C atoms were placed at geometrically calculated positions and refined using a riding model. C—H distances were fixed at 0.93 and 0.96 Å from aromatic and methyl C atoms, respectively. The U iso(H) values were equal to 1.2 and 1.5 times U eq of the corresponding C(sp 2) and C(sp 3) atoms. The H atoms of the four water mol­ecules were initially located in a difference Fourier map. During the refinement, these H atoms were allowed to ride on their parent O atoms and also to rotate about the corresponding Fe—O bonds. The U iso(H) values were set equal to 1.2 times U eq of the parent O atom. The reflections (100) and (002) were excluded from the refinement because they were nearly completely obscured by the beamstop.

Table 2. Experimental details.

Crystal data
Chemical formula [Fe(C12H12N2)(H2O)4]SO4
M r 408.21
Crystal system, space group Monoclinic, P21/c
Temperature (K) 293
a, b, c () 9.5790(7), 9.6190(9), 18.5500(12)
() 101.527(5)
V (3) 1674.7(2)
Z 4
Radiation type Mo K
(mm1) 1.07
Crystal size (mm) 0.28 0.14 0.09
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.792, 0.881
No. of measured, independent and observed [I > 2(I)] reflections 14477, 4868, 3305
R int 0.117
(sin /)max (1) 0.706
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.065, 0.196, 1.08
No. of reflections 4867
No. of parameters 223
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.84, 1.33

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814024982/vn2087sup1.cif

e-70-00544-sup1.cif (451.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024982/vn2087Isup2.hkl

e-70-00544-Isup2.hkl (266.9KB, hkl)

CCDC reference: 1034106

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Algerian Ministry of Higher Education and Scientific Research, the Algerian Directorate General for Scientific Research and Technological Development and Ferhat Abbas Sétif 1 University for financial support. The Ministry of Education and Science of the Republic of Serbia is also thanked for support of the work of BMF and SBN (project Nos. 172014 and 172035).

supplementary crystallographic information

Crystal data

[Fe(C12H12N2)(H2O)4]SO4 F(000) = 848
Mr = 408.21 Dx = 1.619 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4857 reflections
a = 9.5790 (7) Å θ = 2.2–29.9°
b = 9.6190 (9) Å µ = 1.07 mm1
c = 18.5500 (12) Å T = 293 K
β = 101.527 (5)° Block, red
V = 1674.7 (2) Å3 0.28 × 0.14 × 0.09 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 4868 independent reflections
Radiation source: fine-focus sealed tube 3305 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.117
ω–2θ scans θmax = 30.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −13→13
Tmin = 0.792, Tmax = 0.881 k = −13→13
14477 measured reflections l = −26→26

Refinement

Refinement on F2 223 parameters
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.065 w = 1/[σ2(Fo2) + (0.0821P)2 + 2.0315P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.196 (Δ/σ)max = 0.002
S = 1.08 Δρmax = 0.84 e Å3
4867 reflections Δρmin = −1.33 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Fe1 0.77171 (5) 0.13308 (6) 0.80535 (3) 0.02534 (17)
S1 0.75114 (9) −0.36313 (10) 0.75262 (5) 0.0251 (2)
O3 0.6693 (3) −0.4269 (3) 0.80282 (17) 0.0376 (7)
O1 0.6620 (3) −0.2600 (3) 0.70522 (17) 0.0364 (7)
O2 0.8783 (3) −0.2931 (3) 0.79546 (16) 0.0338 (6)
O4 0.7980 (3) −0.4722 (3) 0.70641 (16) 0.0347 (6)
O5 0.8418 (3) 0.2477 (3) 0.72229 (16) 0.0361 (7)
H1O5 0.8129 0.3296 0.7171 0.043*
H2O5 0.9194 0.2065 0.7043 0.043*
O6 0.6213 (3) 0.0261 (3) 0.72705 (17) 0.0399 (7)
H1O6 0.6389 −0.0652 0.7130 0.048*
H2O6 0.5378 0.0556 0.7195 0.048*
O7 0.9191 (3) −0.0166 (3) 0.7871 (2) 0.0489 (9)
H1O7 1.0046 −0.0016 0.7863 0.059*
H2O7 0.8929 −0.0981 0.7879 0.059*
O8 0.6224 (3) 0.2876 (4) 0.8109 (2) 0.0619 (11)
H1O8 0.5422 0.2701 0.8053 0.074*
H2O8 0.6333 0.3793 0.8107 0.074*
N1 0.7224 (4) 0.0244 (4) 0.90015 (19) 0.0340 (8)
N2 0.9173 (4) 0.2218 (4) 0.89908 (19) 0.0337 (8)
C1 0.6251 (5) −0.0763 (5) 0.8969 (3) 0.0390 (10)
H1 0.5747 −0.1028 0.8508 0.047*
C2 0.5945 (5) −0.1437 (5) 0.9581 (3) 0.0424 (10)
C3 0.6691 (6) −0.0975 (5) 1.0262 (3) 0.0452 (11)
H3 0.6497 −0.1362 1.0691 0.054*
C4 0.7709 (5) 0.0043 (5) 1.0307 (2) 0.0412 (10)
H4 0.8219 0.0327 1.0763 0.049*
C5 0.7973 (4) 0.0650 (5) 0.9666 (2) 0.0341 (9)
C6 0.9054 (4) 0.1741 (4) 0.9658 (2) 0.0316 (8)
C7 0.9931 (5) 0.2257 (5) 1.0288 (2) 0.0440 (11)
H7 0.9845 0.1926 1.0748 0.053*
C8 1.0931 (5) 0.3265 (5) 1.0230 (3) 0.0436 (11)
H8 1.1512 0.3617 1.0653 0.052*
C9 1.1071 (5) 0.3750 (5) 0.9549 (3) 0.0411 (10)
C10 1.0156 (5) 0.3184 (5) 0.8947 (2) 0.0381 (9)
H10 1.0231 0.3496 0.8482 0.046*
C11 0.4852 (6) −0.2566 (6) 0.9492 (3) 0.0594 (14)
H11A 0.3987 −0.2243 0.9184 0.089*
H11B 0.4670 −0.2817 0.9966 0.089*
H11C 0.5198 −0.3363 0.9270 0.089*
C12 1.2165 (5) 0.4814 (6) 0.9444 (3) 0.0553 (13)
H12A 1.2919 0.4366 0.9261 0.083*
H12B 1.2548 0.5249 0.9907 0.083*
H12C 1.1726 0.5504 0.9099 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0228 (3) 0.0200 (3) 0.0332 (3) 0.0001 (2) 0.00542 (19) 0.0011 (2)
S1 0.0219 (4) 0.0171 (4) 0.0374 (5) 0.0005 (3) 0.0084 (3) 0.0000 (4)
O3 0.0387 (16) 0.0309 (16) 0.0461 (17) −0.0077 (13) 0.0152 (13) 0.0018 (13)
O1 0.0323 (15) 0.0262 (15) 0.0500 (17) 0.0075 (12) 0.0067 (12) 0.0064 (13)
O2 0.0223 (12) 0.0289 (16) 0.0499 (17) −0.0067 (11) 0.0065 (11) −0.0046 (13)
O4 0.0371 (15) 0.0236 (14) 0.0455 (16) 0.0052 (12) 0.0135 (12) −0.0051 (12)
O5 0.0361 (15) 0.0212 (14) 0.0536 (18) −0.0039 (12) 0.0151 (13) 0.0065 (13)
O6 0.0266 (14) 0.0299 (16) 0.0601 (19) −0.0038 (12) 0.0013 (13) −0.0091 (15)
O7 0.0286 (15) 0.0234 (15) 0.098 (3) 0.0025 (12) 0.0207 (17) 0.0004 (17)
O8 0.0270 (16) 0.0275 (17) 0.134 (4) 0.0013 (13) 0.022 (2) 0.000 (2)
N1 0.0345 (17) 0.0336 (19) 0.0351 (18) 0.0003 (15) 0.0102 (14) 0.0042 (15)
N2 0.0352 (18) 0.0307 (18) 0.0336 (17) −0.0043 (14) 0.0033 (14) −0.0016 (14)
C1 0.039 (2) 0.036 (2) 0.042 (2) −0.0060 (19) 0.0111 (18) 0.0020 (19)
C2 0.045 (2) 0.035 (2) 0.051 (3) 0.001 (2) 0.017 (2) 0.009 (2)
C3 0.059 (3) 0.042 (3) 0.040 (2) 0.002 (2) 0.024 (2) 0.012 (2)
C4 0.050 (3) 0.043 (3) 0.033 (2) 0.003 (2) 0.0133 (19) 0.0032 (19)
C5 0.037 (2) 0.032 (2) 0.034 (2) 0.0064 (17) 0.0093 (16) 0.0015 (17)
C6 0.0318 (19) 0.030 (2) 0.034 (2) 0.0048 (16) 0.0078 (16) 0.0014 (16)
C7 0.049 (3) 0.047 (3) 0.034 (2) 0.002 (2) 0.0034 (19) −0.003 (2)
C8 0.044 (2) 0.040 (3) 0.044 (3) −0.005 (2) 0.0012 (19) −0.012 (2)
C9 0.040 (2) 0.035 (2) 0.047 (3) −0.0016 (19) 0.0050 (18) −0.005 (2)
C10 0.040 (2) 0.036 (2) 0.038 (2) −0.0048 (19) 0.0059 (17) 0.0020 (19)
C11 0.061 (3) 0.050 (3) 0.073 (4) −0.006 (3) 0.028 (3) 0.014 (3)
C12 0.042 (3) 0.051 (3) 0.069 (3) −0.017 (2) 0.003 (2) −0.007 (3)

Geometric parameters (Å, º)

Fe1—O8 2.080 (3) C1—H1 0.9300
Fe1—O7 2.091 (3) C2—C3 1.394 (7)
Fe1—O6 2.099 (3) C2—C11 1.494 (7)
Fe1—O5 2.110 (3) C3—C4 1.373 (7)
Fe1—N2 2.175 (3) C3—H3 0.9300
Fe1—N1 2.177 (3) C4—C5 1.392 (6)
S1—O3 1.466 (3) C4—H4 0.9300
S1—O2 1.477 (3) C5—C6 1.477 (6)
S1—O1 1.479 (3) C6—C7 1.388 (6)
S1—O4 1.480 (3) C7—C8 1.382 (7)
O5—H1O5 0.8346 C7—H7 0.9300
O5—H2O5 0.9588 C8—C9 1.379 (7)
O6—H1O6 0.9409 C8—H8 0.9300
O6—H2O6 0.8339 C9—C10 1.385 (6)
O7—H1O7 0.8346 C9—C12 1.504 (7)
O7—H2O7 0.8248 C10—H10 0.9300
O8—H1O8 0.7727 C11—H11A 0.9600
O8—H2O8 0.8889 C11—H11B 0.9600
N1—C1 1.337 (6) C11—H11C 0.9600
N1—C5 1.354 (5) C12—H12A 0.9600
N2—C10 1.336 (5) C12—H12B 0.9600
N2—C6 1.345 (5) C12—H12C 0.9600
C1—C2 1.389 (6)
O8—Fe1—O7 173.50 (16) C2—C1—H1 117.9
O8—Fe1—O6 90.06 (14) C1—C2—C3 116.0 (4)
O7—Fe1—O6 86.71 (13) C1—C2—C11 120.5 (5)
O8—Fe1—O5 89.18 (14) C3—C2—C11 123.6 (4)
O7—Fe1—O5 85.26 (13) C4—C3—C2 120.7 (4)
O6—Fe1—O5 91.46 (12) C4—C3—H3 119.6
O8—Fe1—N2 90.98 (15) C2—C3—H3 119.6
O7—Fe1—N2 93.10 (14) C3—C4—C5 119.7 (4)
O6—Fe1—N2 170.92 (13) C3—C4—H4 120.1
O5—Fe1—N2 97.58 (13) C5—C4—H4 120.1
O8—Fe1—N1 92.32 (15) N1—C5—C4 120.2 (4)
O7—Fe1—N1 93.60 (14) N1—C5—C6 116.1 (4)
O6—Fe1—N1 95.39 (13) C4—C5—C6 123.7 (4)
O5—Fe1—N1 172.99 (13) N2—C6—C7 120.3 (4)
N2—Fe1—N1 75.55 (14) N2—C6—C5 116.1 (4)
O3—S1—O2 109.72 (18) C7—C6—C5 123.6 (4)
O3—S1—O1 109.88 (18) C8—C7—C6 119.8 (4)
O2—S1—O1 109.25 (18) C8—C7—H7 120.1
O3—S1—O4 109.51 (18) C6—C7—H7 120.1
O2—S1—O4 108.76 (17) C9—C8—C7 120.3 (4)
O1—S1—O4 109.70 (18) C9—C8—H8 119.8
Fe1—O5—H1O5 115.4 C7—C8—H8 119.8
Fe1—O5—H2O5 114.8 C8—C9—C10 116.3 (4)
H1O5—O5—H2O5 127.9 C8—C9—C12 123.1 (4)
Fe1—O6—H1O6 120.9 C10—C9—C12 120.6 (4)
Fe1—O6—H2O6 116.9 N2—C10—C9 124.4 (4)
H1O6—O6—H2O6 119.3 N2—C10—H10 117.8
Fe1—O7—H1O7 125.5 C9—C10—H10 117.8
Fe1—O7—H2O7 115.7 C2—C11—H11A 109.5
H1O7—O7—H2O7 118.0 C2—C11—H11B 109.5
Fe1—O8—H1O8 120.9 H11A—C11—H11B 109.5
Fe1—O8—H2O8 128.8 C2—C11—H11C 109.5
H1O8—O8—H2O8 109.3 H11A—C11—H11C 109.5
C1—N1—C5 119.2 (4) H11B—C11—H11C 109.5
C1—N1—Fe1 125.0 (3) C9—C12—H12A 109.5
C5—N1—Fe1 115.8 (3) C9—C12—H12B 109.5
C10—N2—C6 118.9 (4) H12A—C12—H12B 109.5
C10—N2—Fe1 124.9 (3) C9—C12—H12C 109.5
C6—N2—Fe1 116.3 (3) H12A—C12—H12C 109.5
N1—C1—C2 124.1 (4) H12B—C12—H12C 109.5
N1—C1—H1 117.9

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H1O5···O4i 0.83 1.92 2.734 (4) 165
O5—H2O5···O2ii 0.96 1.94 2.794 (4) 147
O6—H1O6···O1 0.94 1.90 2.820 (4) 167
O6—H2O6···O3iii 0.83 1.95 2.765 (4) 165
O7—H1O7···O4ii 0.83 1.89 2.722 (4) 175
O7—H2O7···O2 0.82 1.89 2.697 (4) 167
O8—H1O8···O1iii 0.77 1.95 2.719 (4) 175
O8—H2O8···O3i 0.89 1.91 2.792 (5) 174
C4—H4···O4iv 0.93 2.54 3.232 (5) 132

Symmetry codes: (i) x, y+1, z; (ii) −x+2, y+1/2, −z+3/2; (iii) −x+1, y+1/2, −z+3/2; (iv) x, −y−1/2, z+1/2.

References

  1. Boonlue, S., Theppitak, C. & Chainok, K. (2012). Acta Cryst. E68, m908. [DOI] [PMC free article] [PubMed]
  2. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gaamoune, B., Setifi, Z., Beghidja, A., El-Ghozzi, M., Setifi, F. & Avignant, D. (2010). Acta Cryst. E66, m1044–m1045. [DOI] [PMC free article] [PubMed]
  5. Harvey, M., Baggio, S., Baggio, R. & Mombrú, A. (1999). Acta Cryst. C55, 1457–1460.
  6. Kwak, O. K., Min, K. S. & Kim, B. G. (2007). Acta Cryst. E63, m17–m19.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  8. Potočňák, I., Váhovská, L. & Herich, P. (2014). Acta Cryst. C70, 432–436. [DOI] [PubMed]
  9. Setifi, Z., Domasevitch, K. V., Setifi, F., Mach, P., Ng, S. W., Petříček, V. & Dušek, M. (2013). Acta Cryst. C69, 1351–1356. [DOI] [PubMed]
  10. Setifi, F., Ouahab, L., Golhen, S., Miyazaki, A., Enoki, A. & Yamada, J. I. (2003). C. R. Chim. 6, 309–316.
  11. Setifi, Z., Setifi, F., Ng, S. W., Oudahmane, A., El-Ghozzi, M. & Avignant, D. (2013). Acta Cryst. E69, m12–m13. [DOI] [PMC free article] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Suarez, S., Doctorovich, F., Harvey, M. A. & Baggio, R. (2013). Acta Cryst. C69, 351–355. [DOI] [PubMed]
  14. Váhovská, L. & Potočňák, I. (2012). Acta Cryst. E68, m1524–m1525. [DOI] [PMC free article] [PubMed]
  15. Xiao, H.-P., Shi, Z., Zhu, L.-G., Xu, R.-R. & Pang, W.-Q. (2003). Acta Cryst. C59, m82–m83. [DOI] [PubMed]
  16. Yang, H. (2009). Acta Cryst. E65, m1207. [DOI] [PMC free article] [PubMed]
  17. Yu, M., Liu, S.-X., Xie, L.-H., Cao, R.-G. & Ren, Y.-H. (2007). Acta Cryst. E63, m2110.
  18. Zhang, B.-Y., Nie, J.-J. & Xu, D.-J. (2008). Acta Cryst. E64, m1003–m1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Zhao, Q.-L. & Bai, H.-F. (2009). Acta Cryst. E65, m866. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814024982/vn2087sup1.cif

e-70-00544-sup1.cif (451.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024982/vn2087Isup2.hkl

e-70-00544-Isup2.hkl (266.9KB, hkl)

CCDC reference: 1034106

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES