Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 19;70(Pt 12):o1268–o1269. doi: 10.1107/S1600536814024775

Crystal structure of (Z)-3-{3-(4-chloro­phen­yl)-2-[(4-chloro­phen­yl)imino]-2,3-di­hydro­thia­zol-4-yl}-2H-chromen-2-one

M Kayalvizhi a, G Vasuki a,*, R Raj Kumar b, V Rajeswar Rao b
PMCID: PMC4257461  PMID: 25553038

Abstract

In the title compound, C24H14Cl2N2O2S, the 2H-chromene ring system is approximately planar, with a maximum deviation of 0.025 (2) Å. The thia­zole ring is almost planar, with an r.m.s. deviation of 0.0022 Å, and makes a dihedral angle of 58.52 (7)° with the chromene ring system. The chromene ring system is inclined at angles of 58.3 (1) and 55.39 (9)° with respect to the two chloro­phenyl rings. The two chloro­phenyl rings show significant deviation from coplanarity, with a dihedral angle between them of 47.69 (8)°. The crystal structure features C—H⋯Cl inter­actions extending in (100) and propagating along the a-axis direction and weak π–π inter­actions [centroid–centroid separation = 3.867 (2) Å].

Keywords: crystal structure, 2H-chromen-2-one, bioactivity, hydrogen bonding, π–π inter­actions

Related literature  

For the bioactivity of coumarin, see: Yusufzai et al. (2012). For related structures, see: Arshad, Osman, Chan et al. (2010); Arshad, Osman, Lam et al. (2010a ,b ). For synthetic chemistry, medicinal chemistry, photochemistry and solid-state chemistry applications of coumarin derivatives, see: Chopra et al. (2009). For the synthesis, see: Raj Kumar & Rajeswar Rao (2014).graphic file with name e-70-o1268-scheme1.jpg

Experimental  

Crystal data  

  • C24H14Cl2N2O2S

  • M r = 465.33

  • Monoclinic, Inline graphic

  • a = 9.1491 (7) Å

  • b = 10.3099 (8) Å

  • c = 11.9347 (10) Å

  • β = 111.587 (2)°

  • V = 1046.80 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.44 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.897, T max = 1.000

  • 15409 measured reflections

  • 5549 independent reflections

  • 4070 reflections with I > 2σ(I)

  • R int = 0.024

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.075

  • S = 1.03

  • 5549 reflections

  • 280 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.20 e Å−3

  • Absolute structure: Flack x determined using 1604 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)

  • Absolute structure parameter: −0.004 (19)

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global, 206R. DOI: 10.1107/S1600536814024775/zs2320sup1.cif

e-70-o1268-sup1.cif (464.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024775/zs2320Isup2.hkl

e-70-o1268-Isup2.hkl (304.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024775/zs2320Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536814024775/zs2320Isup4.cml

. DOI: 10.1107/S1600536814024775/zs2320fig1.tif

The mol­ecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 50% probability level.

a . DOI: 10.1107/S1600536814024775/zs2320fig2.tif

Crystal packing of the title compound in the unit cell, viewed along the a axis, showing C—H⋯Cl inter­actions as dashed lines.

. DOI: 10.1107/S1600536814024775/zs2320fig3.tif

The partial packing of the title compound, showing the π–π inter­actions.

CCDC reference: 1027667

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Sophisticated Analytical Instrument Facility, IITM, Chennai 600 036, Tamilnadu, India, for the data collection.

supplementary crystallographic information

S1. Comment

Compounds containing the coumarin moiety exhibit useful and diverse biological activities (Yusufzai et al., 2012). Coumarins are an important class of organic compounds and have been extensively studied. Such molecules of vast structural diversity find useful applications in several areas of synthetic chemistry, medicinal chemistry and photochemistry. The formation of [2 + 2] cycloaddition products upon irradiation of coumarin and its derivatives has contributed immensely to the area of solid-state chemistry. Several substituted coumarin derivatives find applications in the dye industry and in the area of laser dyes based on the fact that such compounds show state dependent variations in their static dipole moments. The geometry and molecular packing patterns of several coumarins derivatives have been studied to evaluate the features of non-covalent interactions (Chopra et al., 2009). Some of the coumarin derivatives have been found to be useful in photochemotherapy, antitumour, anti-HIV therapy, anti-bacterial, anticoagulant, anti-fungal, cytotoxic activities, free radical scavengers and enzyme inhibiting agents. The related compounds whose structures have been solved by X-ray are 3-{2-[2-(diphenylmethylene)hydrazinyl]thiazol-4-yl}-2H-chromen-2-one (Arshad, Osman, Chan et al., 2010), (Z)-3-(2-{2-[1-(4-hydroxyphenyl)ethylidene]hydrazin-1-yl}-1,3-thiazol-4-yl)-2H-chromen-2-one (Arshad, Osman, Lam et al., 2010a) and 3-{2-[2-(2-fluororbenzylidene)hydrazinyl]-1,3-thiazol-4-yl}-2H-chromen-2-one (Arshad, Osman, Lam et al., 2010b). The title compound, C24H14Cl2N2O2S, (Fig. 1), is a new derivative of dihydrothiazoyl coumarin. We present herein its crystal structure.

The 2H-chromene (O1/C1–C9/O2) ring system is approximately planar, with the maximum deviation of -0.025 (2) Å at atom O1. The thiazole ring (S1/N1/C10–C12) is almost planar with a r.m.s. deviation of 0.0022 Å and makes a dihedral angle of 58.52 (7)° with the chromene ring. The chromene ring system is inclined at angles of 58.3 (1)° and 55.39 (9)° with respect to the two chlorophenyl rings (C13–C18/Cl1) and (C19–C24/Cl2), respectively. The two chlorophenyl rings show significant deviation from coplanarity, with a dihedral angle between the two planes of 47.69 (8)°. The sum of bond angles around N1 [359.79 (5)°] indicates that atom N exhibits sp2 hybridization. Torsion angles C1—C2—C10—N1 = -58.5 (4)° and C10—N1—C22—C23 = -51.8 (4)° indicate that the chromene ring and the chlorophenyl ring are substituted synclinally to the thiazole ring at atoms C2 and C22, respectively. The torsion angle C22—N1—C12—N2 [6.4 (4)°] indicates that the two chlorophenyl rings have a Z-configuration across the N1—C12 bond. In the crystal, a short intermolecular C3—H···Cli contact is observed [3.282 (3) Å] [symmetry code: (i) x, y - 1, z] together with second longer C23—H···Cl1ii contact is observed between C23 and Cl1ii [3.547 (3) Å] [symmetry code: x + 1, y, z + 1] (Fig. 2). Inter-ring π—π stacking interactions between the symmetry related C4–C9 ring (centroid Cg3) and the C13–C18iii ring (centroid Cg4), with Cg3···Cg4 = 3.867 (2) Å (symmetry code: (iii) x + 1, y, z + 1) further stabilize the crystal structure (Fig. 3).

S2. Experimental

The compound was synthesized according to the published procedure (Raj Kumar & Rajeswar Rao, 2014).

S3. Refinement

All the H atoms were positioned geometrically and treated as riding on their parent atoms: C—H = 0.93 Å, with Uiso(H) = 1.2Ueq(C). Although of no relevance in this achiral stucture, the Flack factor obtained (Parsons et al., 2013) was -0.004 (19).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound in the unit cell, viewed along the a axis, showing C—H···Cl interactions as dashed lines.

Fig. 3.

Fig. 3.

The partial packing of the title compound, showing the π–π interactions.

Crystal data

C24H14Cl2N2O2S F(000) = 476
Mr = 465.33 Dx = 1.476 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 9.1491 (7) Å Cell parameters from 5853 reflections
b = 10.3099 (8) Å θ = 4.8–29.9°
c = 11.9347 (10) Å µ = 0.44 mm1
β = 111.587 (2)° T = 296 K
V = 1046.80 (14) Å3 Block, colourless
Z = 2 0.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 5549 independent reflections
Radiation source: fine-focus sealed tube 4070 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.024
ω and φ scans θmax = 30.2°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −12→12
Tmin = 0.897, Tmax = 1.000 k = −13→14
15409 measured reflections l = −16→16

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0251P)2 + 0.1767P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.075 (Δ/σ)max < 0.001
S = 1.03 Δρmax = 0.17 e Å3
5549 reflections Δρmin = −0.20 e Å3
280 parameters Absolute structure: Flack x determined using 1604 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraint Absolute structure parameter: −0.004 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.73427 (9) 0.67172 (10) 1.28483 (6) 0.0611 (2)
Cl2 0.07802 (15) 0.15926 (9) 0.32829 (9) 0.0911 (3)
S1 0.42551 (10) 0.84490 (8) 0.71595 (7) 0.0526 (2)
O1 0.2030 (2) 0.7096 (2) 0.17243 (18) 0.0552 (6)
O2 0.3924 (2) 0.6405 (2) 0.33588 (19) 0.0611 (6)
N1 0.3118 (2) 0.6598 (2) 0.56482 (18) 0.0408 (5)
N2 0.4358 (3) 0.5837 (2) 0.7613 (2) 0.0536 (7)
C1 0.2735 (3) 0.7030 (3) 0.2954 (2) 0.0438 (7)
C2 0.1989 (3) 0.7740 (3) 0.3656 (2) 0.0366 (6)
C3 0.0669 (3) 0.8415 (3) 0.3101 (2) 0.0386 (6)
H3 0.0194 0.8846 0.3562 0.046*
C4 −0.0030 (3) 0.8489 (3) 0.1811 (2) 0.0392 (6)
C5 −0.1396 (4) 0.9181 (3) 0.1185 (3) 0.0511 (8)
H5 −0.1912 0.9631 0.1607 0.061*
C6 −0.1983 (4) 0.9202 (4) −0.0050 (3) 0.0606 (9)
H6 −0.2893 0.9667 −0.0465 0.073*
C7 −0.1228 (4) 0.8536 (4) −0.0675 (3) 0.0690 (10)
H7 −0.1631 0.8562 −0.1513 0.083*
C8 0.0110 (4) 0.7834 (4) −0.0087 (3) 0.0645 (9)
H8 0.0611 0.7378 −0.0515 0.077*
C9 0.0692 (3) 0.7822 (3) 0.1157 (2) 0.0452 (7)
C10 0.2782 (3) 0.7744 (3) 0.4978 (2) 0.0379 (6)
C11 0.3305 (4) 0.8795 (3) 0.5646 (3) 0.0462 (7)
H11 0.3174 0.9632 0.5333 0.055*
C12 0.3931 (3) 0.6762 (3) 0.6869 (2) 0.0428 (6)
C13 0.5081 (3) 0.6096 (3) 0.8852 (3) 0.0453 (7)
C14 0.6503 (4) 0.5525 (3) 0.9501 (3) 0.0551 (8)
H14 0.6992 0.5005 0.9106 0.066*
C15 0.7211 (4) 0.5712 (3) 1.0723 (3) 0.0559 (9)
H15 0.8178 0.5330 1.1149 0.067*
C16 0.6480 (3) 0.6468 (3) 1.1310 (2) 0.0422 (6)
C17 0.5071 (3) 0.7039 (3) 1.0692 (3) 0.0531 (8)
H17 0.4584 0.7554 1.1092 0.064*
C18 0.4369 (3) 0.6845 (4) 0.9460 (3) 0.0556 (8)
H18 0.3402 0.7227 0.9036 0.067*
C19 0.1469 (4) 0.3047 (3) 0.4032 (3) 0.0506 (8)
C20 0.3036 (4) 0.3174 (3) 0.4712 (3) 0.0536 (8)
H20 0.3723 0.2485 0.4792 0.064*
C21 0.3576 (4) 0.4336 (3) 0.5275 (3) 0.0492 (8)
H21 0.4636 0.4437 0.5745 0.059*
C22 0.2553 (3) 0.5348 (3) 0.5145 (2) 0.0377 (6)
C23 0.0977 (3) 0.5194 (3) 0.4499 (3) 0.0443 (7)
H23 0.0285 0.5871 0.4448 0.053*
C24 0.0419 (4) 0.4032 (3) 0.3925 (3) 0.0527 (8)
H24 −0.0645 0.3920 0.3476 0.063*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0589 (4) 0.0805 (6) 0.0361 (4) −0.0094 (4) 0.0086 (3) 0.0030 (4)
Cl2 0.1509 (9) 0.0438 (4) 0.0690 (6) −0.0333 (6) 0.0292 (6) −0.0135 (5)
S1 0.0634 (5) 0.0460 (4) 0.0382 (4) −0.0074 (4) 0.0069 (3) −0.0095 (3)
O1 0.0514 (11) 0.0756 (15) 0.0401 (11) 0.0026 (11) 0.0187 (10) −0.0100 (10)
O2 0.0481 (12) 0.0787 (17) 0.0577 (13) 0.0119 (12) 0.0209 (10) −0.0019 (12)
N1 0.0441 (12) 0.0374 (11) 0.0330 (11) −0.0043 (11) 0.0050 (9) −0.0020 (11)
N2 0.0641 (17) 0.0458 (15) 0.0380 (13) −0.0036 (12) 0.0037 (12) −0.0006 (11)
C1 0.0427 (15) 0.0492 (16) 0.0404 (15) −0.0036 (14) 0.0162 (13) −0.0047 (13)
C2 0.0404 (15) 0.0341 (13) 0.0357 (14) −0.0053 (12) 0.0144 (12) −0.0038 (11)
C3 0.0476 (15) 0.0300 (12) 0.0390 (14) −0.0045 (13) 0.0170 (12) −0.0054 (12)
C4 0.0445 (14) 0.0337 (13) 0.0367 (13) −0.0076 (13) 0.0117 (12) −0.0020 (12)
C5 0.0561 (19) 0.0434 (16) 0.0460 (17) 0.0003 (14) 0.0096 (15) 0.0001 (14)
C6 0.063 (2) 0.058 (2) 0.0460 (18) 0.0005 (17) 0.0026 (16) 0.0053 (16)
C7 0.078 (2) 0.082 (2) 0.0355 (16) −0.005 (2) 0.0079 (17) 0.0021 (19)
C8 0.066 (2) 0.088 (3) 0.0402 (17) −0.007 (2) 0.0208 (16) −0.0091 (18)
C9 0.0461 (16) 0.0518 (17) 0.0372 (15) −0.0077 (14) 0.0146 (13) −0.0026 (13)
C10 0.0371 (14) 0.0396 (15) 0.0352 (14) −0.0007 (12) 0.0112 (12) −0.0027 (12)
C11 0.0566 (19) 0.0402 (17) 0.0398 (16) −0.0039 (13) 0.0154 (14) −0.0043 (12)
C12 0.0399 (13) 0.0471 (17) 0.0370 (14) −0.0047 (14) 0.0090 (11) −0.0071 (14)
C13 0.0475 (16) 0.0430 (15) 0.0381 (15) −0.0052 (13) 0.0069 (13) 0.0019 (13)
C14 0.066 (2) 0.0477 (17) 0.0456 (17) 0.0145 (16) 0.0142 (16) 0.0030 (14)
C15 0.0490 (18) 0.061 (2) 0.0464 (18) 0.0120 (15) 0.0039 (15) 0.0077 (15)
C16 0.0402 (14) 0.0489 (16) 0.0332 (13) −0.0061 (13) 0.0086 (11) 0.0064 (13)
C17 0.0462 (16) 0.072 (2) 0.0430 (16) 0.0079 (16) 0.0182 (13) 0.0052 (15)
C18 0.0384 (14) 0.081 (2) 0.0429 (16) 0.0096 (17) 0.0095 (13) 0.0070 (18)
C19 0.079 (2) 0.0358 (15) 0.0362 (15) −0.0115 (15) 0.0207 (15) −0.0025 (12)
C20 0.072 (2) 0.0378 (17) 0.0506 (18) 0.0081 (14) 0.0218 (17) 0.0017 (13)
C21 0.0434 (17) 0.0474 (18) 0.0496 (18) 0.0029 (14) 0.0089 (14) −0.0011 (14)
C22 0.0441 (16) 0.0356 (14) 0.0315 (13) −0.0028 (12) 0.0118 (12) −0.0021 (11)
C23 0.0390 (15) 0.0445 (17) 0.0459 (16) −0.0006 (12) 0.0114 (13) −0.0011 (13)
C24 0.0486 (17) 0.0565 (19) 0.0447 (17) −0.0186 (16) 0.0075 (14) 0.0003 (15)

Geometric parameters (Å, º)

Cl1—C16 1.731 (3) C8—C9 1.380 (4)
Cl2—C19 1.741 (3) C8—H8 0.9300
S1—C11 1.729 (3) C10—C11 1.326 (4)
S1—C12 1.777 (3) C11—H11 0.9300
O1—C1 1.371 (3) C13—C18 1.376 (4)
O1—C9 1.382 (4) C13—C14 1.378 (4)
O2—C1 1.203 (3) C14—C15 1.374 (4)
N1—C12 1.381 (3) C14—H14 0.9300
N1—C10 1.396 (4) C15—C16 1.375 (4)
N1—C22 1.436 (3) C15—H15 0.9300
N2—C12 1.263 (4) C16—C17 1.362 (4)
N2—C13 1.406 (4) C17—C18 1.386 (4)
C1—C2 1.457 (4) C17—H17 0.9300
C2—C3 1.339 (4) C18—H18 0.9300
C2—C10 1.474 (4) C19—C20 1.369 (5)
C3—C4 1.435 (3) C19—C24 1.371 (5)
C3—H3 0.9300 C20—C21 1.373 (4)
C4—C9 1.378 (4) C20—H20 0.9300
C4—C5 1.394 (4) C21—C22 1.371 (4)
C5—C6 1.371 (4) C21—H21 0.9300
C5—H5 0.9300 C22—C23 1.371 (4)
C6—C7 1.372 (5) C23—C24 1.381 (4)
C6—H6 0.9300 C23—H23 0.9300
C7—C8 1.372 (5) C24—H24 0.9300
C7—H7 0.9300
C11—S1—C12 90.84 (13) N2—C12—N1 123.8 (3)
C1—O1—C9 122.3 (2) N2—C12—S1 128.0 (2)
C12—N1—C10 114.9 (2) N1—C12—S1 108.2 (2)
C12—N1—C22 121.5 (2) C18—C13—C14 118.4 (3)
C10—N1—C22 123.41 (19) C18—C13—N2 122.1 (3)
C12—N2—C13 120.0 (3) C14—C13—N2 119.4 (3)
O2—C1—O1 117.1 (3) C15—C14—C13 121.0 (3)
O2—C1—C2 125.8 (3) C15—C14—H14 119.5
O1—C1—C2 117.1 (2) C13—C14—H14 119.5
C3—C2—C1 120.3 (2) C14—C15—C16 119.5 (3)
C3—C2—C10 121.8 (2) C14—C15—H15 120.2
C1—C2—C10 117.8 (2) C16—C15—H15 120.2
C2—C3—C4 121.5 (3) C17—C16—C15 120.7 (3)
C2—C3—H3 119.2 C17—C16—Cl1 118.8 (2)
C4—C3—H3 119.2 C15—C16—Cl1 120.5 (2)
C9—C4—C5 118.3 (3) C16—C17—C18 119.2 (3)
C9—C4—C3 117.6 (2) C16—C17—H17 120.4
C5—C4—C3 124.1 (3) C18—C17—H17 120.4
C6—C5—C4 120.2 (3) C13—C18—C17 121.1 (3)
C6—C5—H5 119.9 C13—C18—H18 119.5
C4—C5—H5 119.9 C17—C18—H18 119.5
C5—C6—C7 120.0 (3) C20—C19—C24 121.9 (3)
C5—C6—H6 120.0 C20—C19—Cl2 119.3 (3)
C7—C6—H6 120.0 C24—C19—Cl2 118.7 (3)
C6—C7—C8 121.2 (3) C19—C20—C21 118.9 (3)
C6—C7—H7 119.4 C19—C20—H20 120.5
C8—C7—H7 119.4 C21—C20—H20 120.5
C7—C8—C9 118.3 (3) C22—C21—C20 120.0 (3)
C7—C8—H8 120.9 C22—C21—H21 120.0
C9—C8—H8 120.9 C20—C21—H21 120.0
C4—C9—C8 122.0 (3) C23—C22—C21 120.6 (3)
C4—C9—O1 121.1 (2) C23—C22—N1 118.7 (2)
C8—C9—O1 117.0 (3) C21—C22—N1 120.7 (2)
C11—C10—N1 113.1 (2) C22—C23—C24 120.0 (3)
C11—C10—C2 124.9 (3) C22—C23—H23 120.0
N1—C10—C2 121.9 (2) C24—C23—H23 120.0
C10—C11—S1 113.0 (2) C19—C24—C23 118.5 (3)
C10—C11—H11 123.5 C19—C24—H24 120.7
S1—C11—H11 123.5 C23—C24—H24 120.7
C9—O1—C1—O2 −177.6 (3) C13—N2—C12—N1 −175.3 (3)
C9—O1—C1—C2 1.5 (4) C13—N2—C12—S1 5.4 (4)
O2—C1—C2—C3 179.3 (3) C10—N1—C12—N2 −178.8 (3)
O1—C1—C2—C3 0.3 (4) C22—N1—C12—N2 6.4 (4)
O2—C1—C2—C10 2.7 (4) C10—N1—C12—S1 0.5 (3)
O1—C1—C2—C10 −176.4 (2) C22—N1—C12—S1 −174.3 (2)
C1—C2—C3—C4 −1.5 (4) C11—S1—C12—N2 178.9 (3)
C10—C2—C3—C4 175.0 (2) C11—S1—C12—N1 −0.4 (2)
C2—C3—C4—C9 1.0 (4) C12—N2—C13—C18 56.7 (4)
C2—C3—C4—C5 −179.7 (3) C12—N2—C13—C14 −127.2 (3)
C9—C4—C5—C6 −0.7 (4) C18—C13—C14—C15 −1.0 (5)
C3—C4—C5—C6 179.9 (3) N2—C13—C14—C15 −177.2 (3)
C4—C5—C6—C7 0.2 (5) C13—C14—C15—C16 0.8 (5)
C5—C6—C7—C8 0.5 (6) C14—C15—C16—C17 −0.5 (5)
C6—C7—C8—C9 −0.6 (6) C14—C15—C16—Cl1 179.9 (3)
C5—C4—C9—C8 0.6 (4) C15—C16—C17—C18 0.4 (5)
C3—C4—C9—C8 −180.0 (3) Cl1—C16—C17—C18 −180.0 (3)
C5—C4—C9—O1 −178.6 (3) C14—C13—C18—C17 0.9 (5)
C3—C4—C9—O1 0.8 (4) N2—C13—C18—C17 177.0 (3)
C7—C8—C9—C4 0.1 (5) C16—C17—C18—C13 −0.6 (5)
C7—C8—C9—O1 179.3 (3) C24—C19—C20—C21 −1.9 (5)
C1—O1—C9—C4 −2.0 (4) Cl2—C19—C20—C21 178.3 (2)
C1—O1—C9—C8 178.7 (3) C19—C20—C21—C22 −0.4 (5)
C12—N1—C10—C11 −0.4 (3) C20—C21—C22—C23 3.0 (5)
C22—N1—C10—C11 174.3 (3) C20—C21—C22—N1 −175.1 (3)
C12—N1—C10—C2 177.1 (2) C12—N1—C22—C23 122.6 (3)
C22—N1—C10—C2 −8.2 (4) C10—N1—C22—C23 −51.8 (4)
C3—C2—C10—C11 −58.0 (4) C12—N1—C22—C21 −59.4 (4)
C1—C2—C10—C11 118.6 (3) C10—N1—C22—C21 126.3 (3)
C3—C2—C10—N1 124.9 (3) C21—C22—C23—C24 −3.2 (4)
C1—C2—C10—N1 −58.5 (4) N1—C22—C23—C24 174.9 (3)
N1—C10—C11—S1 0.0 (3) C20—C19—C24—C23 1.7 (5)
C2—C10—C11—S1 −177.3 (2) Cl2—C19—C24—C23 −178.6 (2)
C12—S1—C11—C10 0.2 (3) C22—C23—C24—C19 0.9 (4)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2320).

References

  1. Arshad, A., Osman, H., Chan, K. L., Yeap, C. S. & Fun, H.-K. (2010). Acta Cryst. E66, o1788–o1789. [DOI] [PMC free article] [PubMed]
  2. Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010a). Acta Cryst. E66, o1632–o1633. [DOI] [PMC free article] [PubMed]
  3. Arshad, A., Osman, H., Lam, C. K., Quah, C. K. & Fun, H.-K. (2010b). Acta Cryst. E66, o1446–o1447. [DOI] [PMC free article] [PubMed]
  4. Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2004). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Chopra, D., Choudhury, A. R., Venugopala, K. N., Govender, T., Kruger, H. G., Maguire, G. E. M. & Guru Row, T. N. (2009). Acta Cryst. E65, o3047–o3048. [DOI] [PMC free article] [PubMed]
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  9. Raj Kumar, R. & Rajeswar Rao, V. (2014). Synth. Commun. 44, 1301–1306.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Yusufzai, S. K., Osman, H., Rahim, A. S. A., Arshad, S. & Razak, I. A. (2012). Acta Cryst. E68, o2416–o2417. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global, 206R. DOI: 10.1107/S1600536814024775/zs2320sup1.cif

e-70-o1268-sup1.cif (464.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024775/zs2320Isup2.hkl

e-70-o1268-Isup2.hkl (304.1KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024775/zs2320Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536814024775/zs2320Isup4.cml

. DOI: 10.1107/S1600536814024775/zs2320fig1.tif

The mol­ecular structure of the title compound showing atom numbering, with displacement ellipsoids drawn at the 50% probability level.

a . DOI: 10.1107/S1600536814024775/zs2320fig2.tif

Crystal packing of the title compound in the unit cell, viewed along the a axis, showing C—H⋯Cl inter­actions as dashed lines.

. DOI: 10.1107/S1600536814024775/zs2320fig3.tif

The partial packing of the title compound, showing the π–π inter­actions.

CCDC reference: 1027667

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES