A novel two-dimensional→ three-dimensional CuII coordination polymer based on the 1,1′-(1,4-butane-1,4-diyl)bis(1H-imidazole) ligand, containing one crystallographically unique CuII centre has been synthesized under hydrothermal conditions.
Keywords: crystal structure; CuII complex; 1,1′-(1,4-butane-1,4-diyl)bis(1H-imidazole); three-dimensional coordination polymer
Abstract
A novel two-dimensional→three-dimensional CuII coordination polymer, {[Cu2(C10H14N4)5](NO3)4·4H2O}n, based on the 1,1′-(butane-1,4-diyl)bis(1H-imidazole) (biim) ligand and containing one crystallographically unique CuII atom, has been synthesized under hydrothermal conditions. The CuII atom is coordinated by five N atoms from biim ligands, one of which has crystallographically imposed inversion symmetry, giving rise to a slightly distorted CuN5 square-pyramidal geometry. The CuII cations are linked by biim ligands to give a 44 layer; the layers are further bridged by biim ligands, generating a double sheet with a thickness of 14.61 Å. The sheet features rhombic Cu4(biim)4 windows built up from four CuII centers and four biim ligands with dimensions of 14.11 × 14.07 Å2. Each window of a layer is penetrated directly by the biim ligand of the adjacent net, giving a two-dimensional→three-dimensional entangled framework.
Chemical context
In the past decade, entangled systems of metal–organic frameworks (MOFs) have attracted great attention because of their undisputed aesthetic topological structures, fascinating properties and applications, such as molecular machines and sensor devices, and potential biological applications (Carlucci et al., 2003a ▶; Bu et al., 2004 ▶; Batten & Robson, 1998 ▶; Perry et al., 2007 ▶; Yang et al., 2012 ▶; Baburin et al., 2005 ▶; Blatov et al., 2004 ▶). Currently, many chemists are making great contributions to this field, and a number of compounds with entangled framework structures have been synthesized and characterized, which are based on N-donor ligands due to their diversity in coordination modes and their versatile conformations (Murphy et al., 2005 ▶; Wu et al., 2011a ▶; Yang et al., 2008 ▶; Zhang et al., 2013 ▶). However, the controlled synthesis of crystals with entangled framework structures is still a significant challenge, although many entangled coordination compounds of this sort have already been obtained (Carlucci et al., 2003b ▶; Batten, 2001 ▶; Wu et al., 2011b ▶). According to previous literature, the construction of MOFs mainly depends on the nature of the organic ligands, metal ions, the temperature, the pH value, and so on (James, 2003 ▶; Chen et al., 2010 ▶; Ma et al., 2004 ▶).
Recently, 1,1′-(1,4-butanediyl)bis(imidazole) and carboxylate ligands have frequently been employed in the construction of coordination compounds due to their flexible character, and coordination compounds displaying different structural motifs have been reported (Wen et al., 2005 ▶; Chen et al., 2009 ▶; Dong et al., 2007 ▶). However, the syntheses of complexes based on inorganic ions have been scarcely been reported.
It is interesting to note that the CuII complexes based on inorganic counter-ions and the biim ligand, [Cu(biim)2(H2O)]Cl2·5H2O (II), [Cu(biim)2(H2O)](NO3)2·H2O (III) and [Cu(biim)2]SO4·8H2O (IV), were synthesized at room temperature (Ma et al., 2004 ▶). In (II), (III) and (IV), the CuII cations are bridged by biim ligands, forming infinite 44 networks that contain 44-membered rings. It is worth mentioning that no interpenetration occurs in (II) and (III), while in (IV), two 44 networks are interpenetrated in a parallel fashion, forming a two-dimensional →two-dimensional sheet. In the present work, we describe the synthesis and structure of one such entangled CuII complex, the title compound (I), [Cu2(C10H14N4)5](NO3)4·4H2O, which exhibits a novel two-dimensional→three-dimensional polymeric structure, and which was prepared under hydrothermal conditions instead of at room temperature.
Structural commentary
The structure of compound, (I) (Fig. 1 ▶), contains one CuII, two and one half biim ligands, two nitrate ions and two water molecules per asymmetric unit. The CuII cation is five-coordinated and exhibits a distorted CuN5 square-pyramidal coordination geometry from the biim ligands (Table 1 ▶). The cis basal N—Cu—N bond angles range from 88.42 (15) to 90.72 (15)°, and the apical bond angles from 92.02 (14) to 101.23 (15)°.
Figure 1.
The molecular entities in the structure of the title compound, with anisotropic displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) x, −y + , z −
; (ii) x, −y +
, z +
; (iii) −x + 1, −y + 1, −z + 1.]
Table 1. Selected geometric parameters (, ).
Cu1N1i | 2.012(4) | Cu1N4 | 2.043(4) |
Cu1N8ii | 2.013(4) | Cu1N9 | 2.220(4) |
Cu1N5 | 2.019(4) | ||
N1iCu1N8ii | 161.25(15) | N5Cu1N4 | 170.05(15) |
N1iCu1N5 | 90.72(15) | N1iCu1N9 | 97.52(15) |
N8iiCu1N5 | 88.42(15) | N8iiCu1N9 | 101.23(15) |
N1iCu1N4 | 88.91(15) | N5Cu1N9 | 92.02(14) |
N8iiCu1N4 | 88.74(15) | N4Cu1N9 | 97.89(15) |
Symmetry codes: (i) ; (ii)
.
Topological features
The CuII cations are linked by biim ligands, giving a 44 layer; the layers are further bridged by biim ligands at nearly vertical directions, generating a double sheet with a thickness of 14.61 Å (Fig. 2 ▶). The sheet exhibits Cu4(biim)4 windows built up from four CuII atoms and four biim ligands with dimensions of 14.11 × 14.07 Å2. From a topological viewpoint, the sheet reveals a 5-connected topology, in which the Cu atom acts as a 5-connected node and the biim ligand is regarded as a linker. Considering the composition, the Schläfli symbol of the two-dimensional network can be defined as 48.62 (Fig. 3 ▶).
Figure 2.
The two-dimensional double layer with large windows in (I).
Figure 3.
The topology of the two-dimensional layer in (I).
It is noteworthy that every Cu4(biim)4 unit of each layer is threaded through simultaneously by the biim ligand from an adjacent layer in a parallel fashion, forming a two-dimensional→three-dimensional entangled framework, as highlighted in Fig. 4 ▶. All sheets are identical, and all the Cu4(biim)4 windows are equivalent. As far as we know, so far only a few examples of two-dimensional→three-dimensional entangled structures have been observed: the networks in these are mainly focused on 44 and 63 topologies. Two-dimensional→three-dimensional entangled frameworks with 48.62 topology have scarcely been reported.
Figure 4.
The two-dimensional→three-dimensional framework in (I).
It should be pointed out that although the starting materials used for syntheses of (I) and the related compound (III) are the same, their complex structures are entirely different (Ma et al., 2004 ▶). The structure of (III) can be symbolized as a 44 net, and has no interpenetration. Although it is hard to propose definitive reasons as to why compounds (I) and (III) adopt different configurations, it can be speculated that pH values and temperature may exert an important influence on the resulting architectures.
Synthesis and crystallization
A mixture of biim (0.057 g, 0.3 mmol), Cu(NO3)2·3H2O (0.048 g, 0.2 mmol) and water (15 ml) was mixed and stirred at room temperature for 10 min. The mixture was adjusted with 1 M HNO3 to pH ≃ 5 and then sealed in a 25 ml Teflon-lined autoclave and heated at 443 K for three days. Then the mixture was cooled to room temperature, and black–blue crystals of (I) were obtained in 56% yield based on CuII. Elemental analysis, found: C 42.85, N 24.14, H 5.56%; calculated for C25H39CuN12O8 (M r = 699.22): C 42.94, N 24.04, H 5.62%.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 2 ▶. All H atoms bonded to C atoms were positioned geometrically and refined as riding atoms,with C—H distances of 0.93 (aromatic) or 0.96 Å (CH2) with U iso(H) = 1.2U eq(C). H atoms bonded to O atoms were located from difference maps, refined with O—H = 0.84 (1) and H⋯H = 1.40 (1) Å and with U iso(H) = 1.5U eq(O). One NO3 group was highly disordered and could not be modelled successfully (geometries, adp’s). After using the SQUEEZE (Spek, 2014 ▶) routine of PLATON (Spek, 2009 ▶), refinement converged smoothly.
Table 2. Experimental details.
Crystal data | |
Chemical formula | [Cu2(C10H14N4)5](NO3)44H2O |
M r | 1398.44 |
Crystal system, space group | Orthorhombic, P b c a |
Temperature (K) | 293 |
a, b, c () | 20.034(4), 13.057(3), 24.979(5) |
V (3) | 6534(2) |
Z | 4 |
Radiation type | Mo K |
(mm1) | 0.73 |
Crystal size (mm) | 0.21 0.17 0.14 |
Data collection | |
Diffractometer | Oxford Diffraction Gemini R Ultra |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012 ▶) |
T min, T max | 0.859, 0.911 |
No. of measured, independent and observed [I > 2(I)] reflections | 48000, 5763, 3398 |
R int | 0.111 |
(sin /)max (1) | 0.595 |
Refinement | |
R[F 2 > 2(F 2)], wR(F 2), S | 0.060, 0.172, 1.03 |
No. of reflections | 5763 |
No. of parameters | 391 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
max, min (e 3) | 0.34, 0.39 |
Supplementary Material
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814024477/fk2083sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024477/fk2083Isup2.hkl
CCDC reference: 1033141
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors thank the Heilongjiang Provincial Education Department for support under the project ‘The structures and luminescent properties of d 10 metal ions incorporating N-containing neutral ligands’ (serial No. 12515210).
supplementary crystallographic information
Crystal data
[Cu2(C10H14N4)5](NO3)4·4H2O | F(000) = 2928 |
Mr = 1398.44 | Dx = 1.422 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | θ = 3.0–25° |
a = 20.034 (4) Å | µ = 0.73 mm−1 |
b = 13.057 (3) Å | T = 293 K |
c = 24.979 (5) Å | Block, blue |
V = 6534 (2) Å3 | 0.21 × 0.17 × 0.14 mm |
Z = 4 |
Data collection
Oxford Diffraction Gemini R Ultra diffractometer | 5763 independent reflections |
Radiation source: fine-focus sealed tube | 3398 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.111 |
Detector resolution: 10.0 pixels mm-1 | θmax = 25.0°, θmin = 3.0° |
ω scan | h = −23→23 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | k = −15→15 |
Tmin = 0.859, Tmax = 0.911 | l = −29→29 |
48000 measured reflections |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.060 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.172 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0868P)2] where P = (Fo2 + 2Fc2)/3 |
5763 reflections | (Δ/σ)max = 0.001 |
391 parameters | Δρmax = 0.34 e Å−3 |
4 restraints | Δρmin = −0.39 e Å−3 |
Special details
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.85764 (3) | 0.50167 (4) | 0.55687 (2) | 0.03364 (19) | |
C1 | 0.9175 (3) | 0.1747 (4) | 0.1200 (2) | 0.0512 (14) | |
H1 | 0.9487 | 0.1890 | 0.0934 | 0.061* | |
C2 | 0.9112 (3) | 0.2278 (4) | 0.1654 (2) | 0.0526 (14) | |
H2 | 0.9368 | 0.2834 | 0.1763 | 0.063* | |
C3 | 0.8368 (2) | 0.1055 (3) | 0.16238 (18) | 0.0409 (12) | |
H3 | 0.8012 | 0.0633 | 0.1717 | 0.049* | |
C4 | 0.8320 (3) | 0.2147 (4) | 0.2448 (2) | 0.0496 (13) | |
H4A | 0.7958 | 0.1689 | 0.2543 | 0.060* | |
H4B | 0.8140 | 0.2835 | 0.2422 | 0.060* | |
C5 | 0.8852 (3) | 0.2117 (4) | 0.28812 (19) | 0.0447 (12) | |
H5A | 0.9216 | 0.2571 | 0.2785 | 0.054* | |
H5B | 0.9029 | 0.1428 | 0.2911 | 0.054* | |
C6 | 0.8558 (3) | 0.2446 (4) | 0.34183 (19) | 0.0478 (13) | |
H6A | 0.8360 | 0.3120 | 0.3382 | 0.057* | |
H6B | 0.8208 | 0.1971 | 0.3521 | 0.057* | |
C7 | 0.9083 (3) | 0.2472 (4) | 0.3846 (2) | 0.0516 (14) | |
H7A | 0.9273 | 0.1792 | 0.3884 | 0.062* | |
H7B | 0.9437 | 0.2930 | 0.3735 | 0.062* | |
C8 | 0.8921 (2) | 0.3729 (3) | 0.45896 (19) | 0.0380 (11) | |
H8 | 0.9178 | 0.4248 | 0.4439 | 0.046* | |
C9 | 0.8414 (3) | 0.2265 (4) | 0.4708 (2) | 0.0478 (13) | |
H9 | 0.8256 | 0.1602 | 0.4659 | 0.057* | |
C10 | 0.8286 (2) | 0.2885 (4) | 0.5121 (2) | 0.0452 (12) | |
H10 | 0.8021 | 0.2715 | 0.5414 | 0.054* | |
C11 | 0.9033 (2) | 0.6239 (3) | 0.65298 (18) | 0.0375 (11) | |
H11 | 0.9263 | 0.5687 | 0.6677 | 0.045* | |
C12 | 0.8446 (3) | 0.7176 (4) | 0.6003 (2) | 0.0508 (14) | |
H12 | 0.8189 | 0.7388 | 0.5713 | 0.061* | |
C13 | 0.8606 (3) | 0.7759 (4) | 0.6433 (2) | 0.0522 (14) | |
H13 | 0.8487 | 0.8439 | 0.6490 | 0.063* | |
C14 | 0.9217 (3) | 0.7440 (4) | 0.7300 (2) | 0.0511 (13) | |
H14A | 0.9475 | 0.8067 | 0.7273 | 0.061* | |
H14B | 0.9510 | 0.6907 | 0.7433 | 0.061* | |
C15 | 0.8656 (3) | 0.7597 (4) | 0.76881 (19) | 0.0476 (13) | |
H15A | 0.8372 | 0.6995 | 0.7691 | 0.057* | |
H15B | 0.8388 | 0.8177 | 0.7576 | 0.057* | |
C16 | 0.8926 (3) | 0.7786 (4) | 0.82474 (19) | 0.0475 (13) | |
H16A | 0.9177 | 0.7192 | 0.8365 | 0.057* | |
H16B | 0.9227 | 0.8368 | 0.8241 | 0.057* | |
C17 | 0.8365 (3) | 0.7994 (4) | 0.86372 (19) | 0.0472 (13) | |
H25A | 0.8095 | 0.8558 | 0.8506 | 0.057* | |
H25B | 0.8081 | 0.7394 | 0.8663 | 0.057* | |
C18 | 0.8399 (2) | 0.8982 (3) | 0.95009 (17) | 0.0382 (11) | |
H17 | 0.8033 | 0.9395 | 0.9425 | 0.046* | |
C19 | 0.9223 (3) | 0.8289 (4) | 0.99014 (19) | 0.0454 (12) | |
H18 | 0.9542 | 0.8132 | 1.0160 | 0.054* | |
C20 | 0.9157 (3) | 0.7798 (4) | 0.9423 (2) | 0.0468 (13) | |
H19 | 0.9417 | 0.7263 | 0.9294 | 0.056* | |
C21 | 0.7128 (2) | 0.5565 (4) | 0.6069 (2) | 0.0452 (12) | |
H21 | 0.7321 | 0.5919 | 0.6353 | 0.054* | |
C22 | 0.6471 (3) | 0.5383 (4) | 0.6015 (2) | 0.0475 (12) | |
H22 | 0.6133 | 0.5582 | 0.6249 | 0.057* | |
C23 | 0.7012 (2) | 0.4723 (4) | 0.5336 (2) | 0.0436 (12) | |
H20 | 0.7100 | 0.4384 | 0.5016 | 0.052* | |
C24 | 0.5780 (3) | 0.4428 (4) | 0.5328 (2) | 0.0567 (15) | |
H23A | 0.5548 | 0.4057 | 0.5608 | 0.068* | |
H23B | 0.5889 | 0.3943 | 0.5047 | 0.068* | |
C25 | 0.5322 (2) | 0.5232 (4) | 0.5104 (2) | 0.0510 (14) | |
H24A | 0.5546 | 0.5591 | 0.4816 | 0.061* | |
H24B | 0.5218 | 0.5727 | 0.5382 | 0.061* | |
N1 | 0.87215 (18) | 0.0969 (3) | 0.11766 (14) | 0.0363 (9) | |
N2 | 0.8596 (2) | 0.1840 (3) | 0.19254 (15) | 0.0426 (10) | |
N3 | 0.8827 (2) | 0.2808 (3) | 0.43685 (15) | 0.0400 (10) | |
N4 | 0.86013 (19) | 0.3808 (3) | 0.50499 (14) | 0.0386 (9) | |
N5 | 0.87252 (18) | 0.6217 (3) | 0.60642 (14) | 0.0368 (9) | |
N6 | 0.8974 (2) | 0.7152 (3) | 0.67632 (16) | 0.0430 (10) | |
N7 | 0.86318 (19) | 0.8252 (3) | 0.91747 (15) | 0.0406 (9) | |
N8 | 0.8757 (2) | 0.9042 (3) | 0.99470 (15) | 0.0402 (9) | |
N9 | 0.74755 (19) | 0.5150 (3) | 0.56425 (15) | 0.0408 (10) | |
N10 | 0.63959 (19) | 0.4843 (3) | 0.55460 (17) | 0.0460 (10) | |
N11 | 0.9485 (4) | 0.4798 (4) | 0.2707 (3) | 0.0834 (19) | |
O1 | 0.9319 (4) | 0.4666 (4) | 0.3186 (3) | 0.139 (3) | |
O2 | 1.0051 (3) | 0.5040 (5) | 0.2616 (3) | 0.121 (2) | |
O1W | 0.7338 (3) | −0.0160 (5) | 0.2453 (2) | 0.1075 (18) | |
O3 | 0.9069 (3) | 0.4732 (5) | 0.2355 (3) | 0.129 (2) | |
O2W | 0.4859 (3) | 0.5308 (6) | 0.6429 (3) | 0.130 (2) | |
H1A | 0.6939 (16) | 0.002 (8) | 0.248 (4) | 0.195* | |
H2A | 0.499 (6) | 0.534 (10) | 0.6748 (17) | 0.195* | |
H1B | 0.754 (4) | −0.021 (8) | 0.275 (2) | 0.195* | |
H2B | 0.436 (6) | 0.534 (8) | 0.629 (4) | 0.195* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0493 (3) | 0.0356 (3) | 0.0161 (3) | 0.0011 (3) | −0.0011 (2) | 0.0008 (2) |
C1 | 0.059 (3) | 0.062 (3) | 0.032 (3) | −0.021 (3) | 0.006 (2) | 0.001 (3) |
C2 | 0.073 (4) | 0.051 (3) | 0.034 (3) | −0.024 (3) | −0.001 (3) | −0.005 (2) |
C3 | 0.052 (3) | 0.043 (3) | 0.028 (3) | −0.007 (2) | −0.001 (2) | −0.005 (2) |
C4 | 0.060 (3) | 0.058 (3) | 0.031 (3) | 0.004 (3) | −0.004 (2) | −0.022 (2) |
C5 | 0.056 (3) | 0.050 (3) | 0.028 (3) | 0.005 (2) | 0.000 (2) | −0.013 (2) |
C6 | 0.062 (3) | 0.054 (3) | 0.028 (3) | 0.005 (3) | 0.004 (2) | −0.010 (2) |
C7 | 0.063 (3) | 0.061 (3) | 0.030 (3) | 0.010 (3) | 0.003 (2) | −0.009 (3) |
C8 | 0.042 (3) | 0.039 (3) | 0.033 (3) | −0.004 (2) | 0.004 (2) | 0.003 (2) |
C9 | 0.067 (4) | 0.039 (3) | 0.037 (3) | −0.004 (2) | 0.004 (3) | 0.000 (2) |
C10 | 0.058 (3) | 0.047 (3) | 0.031 (3) | −0.007 (3) | 0.008 (2) | −0.003 (2) |
C11 | 0.049 (3) | 0.041 (3) | 0.023 (3) | 0.007 (2) | 0.002 (2) | −0.008 (2) |
C12 | 0.082 (4) | 0.044 (3) | 0.026 (3) | 0.008 (3) | −0.005 (3) | 0.004 (2) |
C13 | 0.086 (4) | 0.036 (3) | 0.034 (3) | 0.009 (3) | 0.003 (3) | −0.007 (2) |
C14 | 0.062 (3) | 0.061 (3) | 0.030 (3) | −0.003 (3) | −0.002 (2) | −0.018 (3) |
C15 | 0.063 (3) | 0.050 (3) | 0.029 (3) | 0.000 (3) | −0.002 (2) | −0.008 (2) |
C16 | 0.060 (3) | 0.057 (3) | 0.025 (3) | −0.006 (3) | −0.001 (2) | −0.008 (2) |
C17 | 0.060 (3) | 0.059 (3) | 0.023 (3) | 0.005 (3) | −0.005 (2) | −0.013 (2) |
C18 | 0.055 (3) | 0.036 (2) | 0.024 (3) | 0.009 (2) | −0.001 (2) | −0.007 (2) |
C19 | 0.056 (3) | 0.053 (3) | 0.027 (3) | 0.003 (3) | −0.001 (2) | 0.003 (2) |
C20 | 0.054 (3) | 0.051 (3) | 0.035 (3) | 0.015 (3) | 0.007 (2) | −0.007 (2) |
C21 | 0.047 (3) | 0.056 (3) | 0.033 (3) | 0.009 (2) | −0.003 (2) | −0.009 (2) |
C22 | 0.052 (3) | 0.044 (3) | 0.046 (3) | 0.007 (2) | 0.005 (3) | −0.004 (2) |
C23 | 0.044 (3) | 0.052 (3) | 0.035 (3) | 0.005 (2) | −0.005 (2) | −0.006 (2) |
C24 | 0.051 (3) | 0.048 (3) | 0.071 (4) | 0.001 (3) | −0.018 (3) | 0.003 (3) |
C25 | 0.047 (3) | 0.054 (3) | 0.052 (3) | −0.001 (2) | −0.003 (3) | 0.004 (3) |
N1 | 0.051 (2) | 0.040 (2) | 0.018 (2) | −0.0064 (18) | −0.0005 (17) | −0.0011 (16) |
N2 | 0.058 (3) | 0.046 (2) | 0.025 (2) | 0.001 (2) | −0.001 (2) | −0.0066 (18) |
N3 | 0.051 (2) | 0.043 (2) | 0.026 (2) | 0.0048 (19) | −0.0063 (19) | −0.0080 (18) |
N4 | 0.057 (2) | 0.038 (2) | 0.021 (2) | 0.0000 (19) | 0.0043 (18) | −0.0002 (16) |
N5 | 0.052 (2) | 0.038 (2) | 0.020 (2) | 0.0028 (18) | 0.0003 (17) | 0.0011 (16) |
N6 | 0.058 (3) | 0.046 (2) | 0.025 (2) | −0.007 (2) | 0.0028 (19) | −0.0071 (19) |
N7 | 0.057 (3) | 0.042 (2) | 0.023 (2) | 0.007 (2) | 0.0022 (19) | −0.0060 (18) |
N8 | 0.059 (3) | 0.039 (2) | 0.023 (2) | 0.0006 (19) | −0.0003 (19) | −0.0015 (17) |
N9 | 0.050 (2) | 0.044 (2) | 0.028 (2) | 0.0029 (18) | −0.0026 (18) | −0.0014 (18) |
N10 | 0.045 (2) | 0.042 (2) | 0.051 (3) | 0.0019 (19) | −0.006 (2) | 0.0033 (19) |
N11 | 0.097 (5) | 0.040 (3) | 0.113 (6) | −0.006 (3) | −0.007 (5) | 0.009 (3) |
O1 | 0.203 (7) | 0.086 (4) | 0.129 (6) | −0.018 (4) | 0.037 (5) | 0.018 (4) |
O2 | 0.081 (4) | 0.153 (5) | 0.131 (6) | −0.001 (4) | −0.011 (4) | 0.041 (4) |
O1W | 0.117 (5) | 0.129 (5) | 0.076 (4) | −0.022 (4) | 0.011 (3) | 0.013 (4) |
O3 | 0.101 (5) | 0.131 (5) | 0.154 (6) | −0.012 (3) | −0.042 (4) | −0.014 (4) |
O2W | 0.102 (4) | 0.177 (6) | 0.110 (5) | −0.019 (4) | 0.031 (4) | −0.007 (5) |
Geometric parameters (Å, º)
Cu1—N1i | 2.012 (4) | C14—H14A | 0.9700 |
Cu1—N8ii | 2.013 (4) | C14—H14B | 0.9700 |
Cu1—N5 | 2.019 (4) | C15—C16 | 1.519 (6) |
Cu1—N4 | 2.043 (4) | C15—H15A | 0.9700 |
Cu1—N9 | 2.220 (4) | C15—H15B | 0.9700 |
C1—C2 | 1.337 (7) | C16—C17 | 1.512 (7) |
C1—N1 | 1.364 (6) | C16—H16A | 0.9700 |
C1—H1 | 0.9300 | C16—H16B | 0.9700 |
C2—N2 | 1.360 (6) | C17—N7 | 1.484 (6) |
C2—H2 | 0.9300 | C17—H25A | 0.9700 |
C3—N1 | 1.328 (6) | C17—H25B | 0.9700 |
C3—N2 | 1.353 (6) | C18—N8 | 1.327 (6) |
C3—H3 | 0.9300 | C18—N7 | 1.338 (5) |
C4—N2 | 1.472 (6) | C18—H17 | 0.9300 |
C4—C5 | 1.519 (7) | C19—N8 | 1.361 (6) |
C4—H4A | 0.9700 | C19—C20 | 1.362 (7) |
C4—H4B | 0.9700 | C19—H18 | 0.9300 |
C5—C6 | 1.527 (6) | C20—N7 | 1.358 (6) |
C5—H5A | 0.9700 | C20—H19 | 0.9300 |
C5—H5B | 0.9700 | C21—C22 | 1.345 (7) |
C6—C7 | 1.500 (7) | C21—N9 | 1.384 (6) |
C6—H6A | 0.9700 | C21—H21 | 0.9300 |
C6—H6B | 0.9700 | C22—N10 | 1.375 (6) |
C7—N3 | 1.469 (6) | C22—H22 | 0.9300 |
C7—H7A | 0.9700 | C23—N9 | 1.327 (6) |
C7—H7B | 0.9700 | C23—N10 | 1.351 (6) |
C8—N4 | 1.320 (5) | C23—H20 | 0.9300 |
C8—N3 | 1.337 (6) | C24—N10 | 1.453 (6) |
C8—H8 | 0.9300 | C24—C25 | 1.503 (7) |
C9—C10 | 1.336 (6) | C24—H23A | 0.9700 |
C9—N3 | 1.381 (6) | C24—H23B | 0.9700 |
C9—H9 | 0.9300 | C25—C25iii | 1.518 (9) |
C10—N4 | 1.373 (6) | C25—H24A | 0.9700 |
C10—H10 | 0.9300 | C25—H24B | 0.9700 |
C11—N5 | 1.317 (5) | N1—Cu1iv | 2.012 (4) |
C11—N6 | 1.333 (5) | N8—Cu1v | 2.013 (4) |
C11—H11 | 0.9300 | N11—O2 | 1.200 (8) |
C12—C13 | 1.354 (7) | N11—O3 | 1.213 (8) |
C12—N5 | 1.380 (6) | N11—O1 | 1.254 (8) |
C12—H12 | 0.9300 | O1W—H1A | 0.839 (10) |
C13—N6 | 1.362 (6) | O1W—H1B | 0.839 (10) |
C13—H13 | 0.9300 | O2W—H2A | 0.842 (10) |
C14—N6 | 1.475 (6) | O2W—H2B | 1.06 (11) |
C14—C15 | 1.499 (7) | ||
N1i—Cu1—N8ii | 161.25 (15) | C15—C16—H16A | 109.5 |
N1i—Cu1—N5 | 90.72 (15) | C17—C16—H16B | 109.5 |
N8ii—Cu1—N5 | 88.42 (15) | C15—C16—H16B | 109.5 |
N1i—Cu1—N4 | 88.91 (15) | H16A—C16—H16B | 108.1 |
N8ii—Cu1—N4 | 88.74 (15) | N7—C17—C16 | 110.8 (4) |
N5—Cu1—N4 | 170.05 (15) | N7—C17—H25A | 109.5 |
N1i—Cu1—N9 | 97.52 (15) | C16—C17—H25A | 109.5 |
N8ii—Cu1—N9 | 101.23 (15) | N7—C17—H25B | 109.5 |
N5—Cu1—N9 | 92.02 (14) | C16—C17—H25B | 109.5 |
N4—Cu1—N9 | 97.89 (15) | H25A—C17—H25B | 108.1 |
C2—C1—N1 | 111.0 (4) | N8—C18—N7 | 111.4 (4) |
C2—C1—H1 | 124.5 | N8—C18—H17 | 124.3 |
N1—C1—H1 | 124.5 | N7—C18—H17 | 124.3 |
C1—C2—N2 | 106.1 (4) | N8—C19—C20 | 110.2 (4) |
C1—C2—H2 | 126.9 | N8—C19—H18 | 124.9 |
N2—C2—H2 | 126.9 | C20—C19—H18 | 124.9 |
N1—C3—N2 | 110.6 (4) | N7—C20—C19 | 105.7 (4) |
N1—C3—H3 | 124.7 | N7—C20—H19 | 127.1 |
N2—C3—H3 | 124.7 | C19—C20—H19 | 127.1 |
N2—C4—C5 | 111.2 (4) | C22—C21—N9 | 110.2 (4) |
N2—C4—H4A | 109.4 | C22—C21—H21 | 124.9 |
C5—C4—H4A | 109.4 | N9—C21—H21 | 124.9 |
N2—C4—H4B | 109.4 | C21—C22—N10 | 106.5 (4) |
C5—C4—H4B | 109.4 | C21—C22—H22 | 126.8 |
H4A—C4—H4B | 108.0 | N10—C22—H22 | 126.8 |
C4—C5—C6 | 110.4 (4) | N9—C23—N10 | 111.5 (4) |
C4—C5—H5A | 109.6 | N9—C23—H20 | 124.3 |
C6—C5—H5A | 109.6 | N10—C23—H20 | 124.3 |
C4—C5—H5B | 109.6 | N10—C24—C25 | 113.4 (4) |
C6—C5—H5B | 109.6 | N10—C24—H23A | 108.9 |
H5A—C5—H5B | 108.1 | C25—C24—H23A | 108.9 |
C7—C6—C5 | 111.2 (4) | N10—C24—H23B | 108.9 |
C7—C6—H6A | 109.4 | C25—C24—H23B | 108.9 |
C5—C6—H6A | 109.4 | H23A—C24—H23B | 107.7 |
C7—C6—H6B | 109.4 | C24—C25—C25iii | 111.6 (5) |
C5—C6—H6B | 109.4 | C24—C25—H24A | 109.3 |
H6A—C6—H6B | 108.0 | C25iii—C25—H24A | 109.3 |
N3—C7—C6 | 113.3 (4) | C24—C25—H24B | 109.3 |
N3—C7—H7A | 108.9 | C25iii—C25—H24B | 109.3 |
C6—C7—H7A | 108.9 | H24A—C25—H24B | 108.0 |
N3—C7—H7B | 108.9 | C3—N1—C1 | 104.9 (4) |
C6—C7—H7B | 108.9 | C3—N1—Cu1iv | 127.7 (3) |
H7A—C7—H7B | 107.7 | C1—N1—Cu1iv | 127.2 (3) |
N4—C8—N3 | 111.2 (4) | C3—N2—C2 | 107.3 (4) |
N4—C8—H8 | 124.4 | C3—N2—C4 | 124.9 (4) |
N3—C8—H8 | 124.4 | C2—N2—C4 | 127.7 (4) |
C10—C9—N3 | 106.2 (4) | C8—N3—C9 | 107.0 (4) |
C10—C9—H9 | 126.9 | C8—N3—C7 | 126.0 (4) |
N3—C9—H9 | 126.9 | C9—N3—C7 | 126.9 (4) |
C9—C10—N4 | 110.0 (4) | C8—N4—C10 | 105.5 (4) |
C9—C10—H10 | 125.0 | C8—N4—Cu1 | 128.7 (3) |
N4—C10—H10 | 125.0 | C10—N4—Cu1 | 125.8 (3) |
N5—C11—N6 | 111.3 (4) | C11—N5—C12 | 105.6 (4) |
N5—C11—H11 | 124.3 | C11—N5—Cu1 | 128.9 (3) |
N6—C11—H11 | 124.3 | C12—N5—Cu1 | 125.2 (3) |
C13—C12—N5 | 109.1 (4) | C11—N6—C13 | 107.7 (4) |
C13—C12—H12 | 125.5 | C11—N6—C14 | 126.6 (4) |
N5—C12—H12 | 125.5 | C13—N6—C14 | 125.6 (4) |
C12—C13—N6 | 106.3 (4) | C18—N7—C20 | 107.6 (4) |
C12—C13—H13 | 126.8 | C18—N7—C17 | 125.9 (4) |
N6—C13—H13 | 126.8 | C20—N7—C17 | 126.5 (4) |
N6—C14—C15 | 112.0 (4) | C18—N8—C19 | 104.9 (4) |
N6—C14—H14A | 109.2 | C18—N8—Cu1v | 125.9 (3) |
C15—C14—H14A | 109.2 | C19—N8—Cu1v | 129.0 (3) |
N6—C14—H14B | 109.2 | C23—N9—C21 | 104.9 (4) |
C15—C14—H14B | 109.2 | C23—N9—Cu1 | 127.9 (3) |
H14A—C14—H14B | 107.9 | C21—N9—Cu1 | 126.5 (3) |
C14—C15—C16 | 110.5 (4) | C23—N10—C22 | 107.0 (4) |
C14—C15—H15A | 109.6 | C23—N10—C24 | 125.9 (5) |
C16—C15—H15A | 109.6 | C22—N10—C24 | 127.1 (4) |
C14—C15—H15B | 109.6 | O2—N11—O3 | 122.1 (9) |
C16—C15—H15B | 109.6 | O2—N11—O1 | 117.9 (8) |
H15A—C15—H15B | 108.1 | O3—N11—O1 | 120.0 (9) |
C17—C16—C15 | 110.9 (4) | H1A—O1W—H1B | 113 (2) |
C17—C16—H16A | 109.5 | H2A—O2W—H2B | 127 (10) |
N1—C1—C2—N2 | −1.1 (6) | C13—C12—N5—Cu1 | 174.6 (3) |
N2—C4—C5—C6 | 179.5 (4) | N1i—Cu1—N5—C11 | 20.7 (4) |
C4—C5—C6—C7 | −177.2 (4) | N8ii—Cu1—N5—C11 | −140.6 (4) |
C5—C6—C7—N3 | 178.6 (4) | N4—Cu1—N5—C11 | −67.1 (10) |
N3—C9—C10—N4 | 0.6 (6) | N9—Cu1—N5—C11 | 118.3 (4) |
N5—C12—C13—N6 | −1.1 (6) | N1i—Cu1—N5—C12 | −151.1 (4) |
N6—C14—C15—C16 | 174.3 (4) | N8ii—Cu1—N5—C12 | 47.6 (4) |
C14—C15—C16—C17 | 177.3 (4) | N4—Cu1—N5—C12 | 121.1 (8) |
C15—C16—C17—N7 | −176.0 (4) | N9—Cu1—N5—C12 | −53.6 (4) |
N8—C19—C20—N7 | −0.9 (6) | N5—C11—N6—C13 | 0.1 (6) |
N9—C21—C22—N10 | 0.0 (6) | N5—C11—N6—C14 | 176.0 (4) |
N10—C24—C25—C25iii | −178.5 (6) | C12—C13—N6—C11 | 0.6 (6) |
N2—C3—N1—C1 | −1.4 (5) | C12—C13—N6—C14 | −175.3 (4) |
N2—C3—N1—Cu1iv | −176.9 (3) | C15—C14—N6—C11 | −109.5 (6) |
C2—C1—N1—C3 | 1.5 (6) | C15—C14—N6—C13 | 65.6 (6) |
C2—C1—N1—Cu1iv | 177.1 (4) | N8—C18—N7—C20 | 1.3 (5) |
N1—C3—N2—C2 | 0.7 (5) | N8—C18—N7—C17 | −178.3 (4) |
N1—C3—N2—C4 | −179.7 (4) | C19—C20—N7—C18 | −0.2 (5) |
C1—C2—N2—C3 | 0.2 (6) | C19—C20—N7—C17 | 179.4 (4) |
C1—C2—N2—C4 | −179.3 (5) | C16—C17—N7—C18 | 138.9 (5) |
C5—C4—N2—C3 | 122.3 (5) | C16—C17—N7—C20 | −40.6 (7) |
C5—C4—N2—C2 | −58.3 (7) | N7—C18—N8—C19 | −1.8 (5) |
N4—C8—N3—C9 | 0.7 (5) | N7—C18—N8—Cu1v | −177.4 (3) |
N4—C8—N3—C7 | 177.0 (4) | C20—C19—N8—C18 | 1.7 (5) |
C10—C9—N3—C8 | −0.8 (5) | C20—C19—N8—Cu1v | 177.1 (3) |
C10—C9—N3—C7 | −177.1 (4) | N10—C23—N9—C21 | −0.2 (5) |
C6—C7—N3—C8 | −104.1 (6) | N10—C23—N9—Cu1 | 170.6 (3) |
C6—C7—N3—C9 | 71.6 (6) | C22—C21—N9—C23 | 0.2 (6) |
N3—C8—N4—C10 | −0.3 (5) | C22—C21—N9—Cu1 | −170.9 (3) |
N3—C8—N4—Cu1 | 178.7 (3) | N1i—Cu1—N9—C23 | −103.9 (4) |
C9—C10—N4—C8 | −0.2 (6) | N8ii—Cu1—N9—C23 | 76.3 (4) |
C9—C10—N4—Cu1 | −179.3 (3) | N5—Cu1—N9—C23 | 165.1 (4) |
N1i—Cu1—N4—C8 | −134.7 (4) | N4—Cu1—N9—C23 | −14.0 (4) |
N8ii—Cu1—N4—C8 | 26.7 (4) | N1i—Cu1—N9—C21 | 65.1 (4) |
N5—Cu1—N4—C8 | −46.8 (11) | N8ii—Cu1—N9—C21 | −114.7 (4) |
N9—Cu1—N4—C8 | 127.8 (4) | N5—Cu1—N9—C21 | −25.9 (4) |
N1i—Cu1—N4—C10 | 44.1 (4) | N4—Cu1—N9—C21 | 155.0 (4) |
N8ii—Cu1—N4—C10 | −154.5 (4) | N9—C23—N10—C22 | 0.2 (6) |
N5—Cu1—N4—C10 | 132.1 (8) | N9—C23—N10—C24 | −176.7 (4) |
N9—Cu1—N4—C10 | −53.3 (4) | C21—C22—N10—C23 | −0.1 (5) |
N6—C11—N5—C12 | −0.8 (5) | C21—C22—N10—C24 | 176.8 (4) |
N6—C11—N5—Cu1 | −173.9 (3) | C25—C24—N10—C23 | −110.7 (6) |
C13—C12—N5—C11 | 1.2 (6) | C25—C24—N10—C22 | 73.0 (7) |
Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) x, −y+1/2, z−1/2; (v) x, −y+3/2, z+1/2.
References
- Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Baburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2005). J. Solid State Chem. 178, 2452–2474.
- Batten, S. R. (2001). CrystEngComm, 3, 67–73.
- Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. [DOI] [PubMed]
- Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 377–395.
- Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192–195. [DOI] [PubMed]
- Carlucci, L., Ciani, G. & Proserpio, D. M. (2003a). Coord. Chem. Rev. 246, 247–289.
- Carlucci, L., Ciani, G. & Proserpio, D. M. (2003b). CrystEngComm, 5, 269–279.
- Chen, P., Batten, S. R., Qi, Y. & Zheng, J.-M. (2009). Cryst. Growth Des. 9, 2456–2761.
- Chen, L., Xu, G.-J., Shao, K.-Z., Zhao, Y.-H., Yang, G.-S., Lan, Y.-Q., Wang, X.-L., Xu, H.-B. & Su, Z.-M. (2010). CrystEngComm, 12, 2157–2165.
- Dong, B., Peng, J., Gómez-García, C. J., Benmansour, S., Jia, H. & Hu, N. (2007). Inorg. Chem. 46, 5933–5941. [DOI] [PubMed]
- James, S. L. (2003). Chem. Soc. Rev. 32, 276–288.
- Ma, J.-F., Yang, J., Zheng, G.-L., Li, L., Zhang, Y.-M., Li, F.-F. & Liu, J.-F. (2004). Polyhedron, 23, 553–559.
- Murphy, D. L., Malachowski, M. R., Campana, C. F. & Cohen, S. M. (2005). Chem. Commun. pp. 5506–5508. [DOI] [PubMed]
- Perry, J. J., Kravtsov, V. Ch., McManus, G. J. & Zaworotko, M. J. (2007). J. Am. Chem. Soc. 129, 10076–10077. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Spek, A. L. (2014). Acta Cryst. C70. Submitted [LN3172]. [Google Scholar]
- Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161–7170. [DOI] [PubMed]
- Wu, H., Liu, H.-Y., Liu, Y.-Y., Yang, J., Liu, B. & Ma, J.-F. (2011a). Chem. Commun 47, 1818–1820. [DOI] [PubMed]
- Wu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. (2011b). J. Am. Chem. Soc. 133, 11406–11409. [DOI] [PubMed]
- Yang, J., Ma, J.-F. & Batten, S. R. (2012). Chem. Commun. 48, 7899–7912. [DOI] [PubMed]
- Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. [DOI] [PubMed]
- Zhang, Z., Ma, J.-F., Liu, Y.-Y., Kan, W.-Q. & Yang, J. (2013). CrystEngComm, 15, 2009–2018.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814024477/fk2083sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024477/fk2083Isup2.hkl
CCDC reference: 1033141
Additional supporting information: crystallographic information; 3D view; checkCIF report