Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 15;70(Pt 12):503–506. doi: 10.1107/S1600536814024477

Crystal structure of a CuII complex with a bridging ligand: poly[[penta­kis­[μ2-1,1′-(butane-1,4-di­yl)bis­(1H-imidazole)-κ2 N 3:N 3′]dicopper(II)] tetranitrate tetra­hydrate]

Fayuan Wu a,*, Mengxiang Shang a, Shihua Li a, Yu Zhao a
PMCID: PMC4257462  PMID: 25552977

A novel two-dimensional→ three-dimensional CuII coordination polymer based on the 1,1′-(1,4-butane-1,4-di­yl)bis­(1H-imidazole) ligand, containing one crystallographically unique CuII centre has been synthesized under hydro­thermal conditions.

Keywords: crystal structure; CuII complex; 1,1′-(1,4-butane-1,4-di­yl)bis­(1H-imidazole); three-dimensional coordination polymer

Abstract

A novel two-dimensional→three-dimensional CuII coordination polymer, {[Cu2(C10H14N4)5](NO3)4·4H2O}n, based on the 1,1′-(butane-1,4-di­yl)bis­(1H-imidazole) (biim) ligand and containing one crystallographically unique CuII atom, has been synthesized under hydro­thermal conditions. The CuII atom is coordinated by five N atoms from biim ligands, one of which has crystallographically imposed inversion symmetry, giving rise to a slightly distorted CuN5 square-pyramidal geometry. The CuII cations are linked by biim ligands to give a 44 layer; the layers are further bridged by biim ligands, generating a double sheet with a thickness of 14.61 Å. The sheet features rhombic Cu4(biim)4 windows built up from four CuII centers and four biim ligands with dimensions of 14.11 × 14.07 Å2. Each window of a layer is penetrated directly by the biim ligand of the adjacent net, giving a two-dimensional→three-dimensional entangled framework.

Chemical context  

In the past decade, entangled systems of metal–organic frameworks (MOFs) have attracted great attention because of their undisputed aesthetic topological structures, fascinating properties and applications, such as mol­ecular machines and sensor devices, and potential biological applications (Carlucci et al., 2003a ; Bu et al., 2004; Batten & Robson, 1998; Perry et al., 2007; Yang et al., 2012; Baburin et al., 2005; Blatov et al., 2004). Currently, many chemists are making great contrib­utions to this field, and a number of compounds with entangled framework structures have been synthesized and characterized, which are based on N-donor ligands due to their diversity in coord­ination modes and their versatile conformations (Murphy et al., 2005; Wu et al., 2011a ; Yang et al., 2008; Zhang et al., 2013). However, the controlled synthesis of crystals with entangled framework structures is still a significant challenge, although many entangled coordination compounds of this sort have already been obtained (Carlucci et al., 2003b ; Batten, 2001; Wu et al., 2011b ). According to previous literature, the construction of MOFs mainly depends on the nature of the organic ligands, metal ions, the temperature, the pH value, and so on (James, 2003; Chen et al., 2010; Ma et al., 2004).

Recently, 1,1′-(1,4-butanedi­yl)bis­(imidazole) and carboxyl­ate ligands have frequently been employed in the construction of coordination compounds due to their flexible character, and coordination compounds displaying different structural motifs have been reported (Wen et al., 2005; Chen et al., 2009; Dong et al., 2007). However, the syntheses of complexes based on inorganic ions have been scarcely been reported.

It is inter­esting to note that the CuII complexes based on inorganic counter-ions and the biim ligand, [Cu(biim)2(H2O)]Cl2·5H2O (II), [Cu(biim)2(H2O)](NO3)2·H2O (III) and [Cu(biim)2]SO4·8H2O (IV), were synthesized at room temperature (Ma et al., 2004). In (II), (III) and (IV), the CuII cations are bridged by biim ligands, forming infinite 44 networks that contain 44-membered rings. It is worth mentioning that no inter­penetration occurs in (II) and (III), while in (IV), two 44 networks are inter­penetrated in a parallel fashion, forming a two-dimensional →two-dimensional sheet. In the present work, we describe the synthesis and structure of one such entangled CuII complex, the title compound (I), [Cu2(C10H14N4)5](NO3)4·4H2O, which exhibits a novel two-dimensional→three-dimensional polymeric structure, and which was prepared under hydro­thermal conditions instead of at room temperature. graphic file with name e-70-00503-scheme1.jpg

Structural commentary  

The structure of compound, (I) (Fig. 1), contains one CuII, two and one half biim ligands, two nitrate ions and two water mol­ecules per asymmetric unit. The CuII cation is five-coordinated and exhibits a distorted CuN5 square-pyramidal coordination geometry from the biim ligands (Table 1). The cis basal N—Cu—N bond angles range from 88.42 (15) to 90.72 (15)°, and the apical bond angles from 92.02 (14) to 101.23 (15)°.

Figure 1.

Figure 1

The molecular entities in the structure of the title compound, with anisotropic displacement ellipsoids drawn at the 30% probability level. H atoms are omitted for clarity. [Symmetry codes: (i) x, −y + Inline graphic, z − Inline graphic; (ii) x, −y + Inline graphic, z + Inline graphic; (iii) −x + 1, −y + 1, −z + 1.]

Table 1. Selected geometric parameters (, ).

Cu1N1i 2.012(4) Cu1N4 2.043(4)
Cu1N8ii 2.013(4) Cu1N9 2.220(4)
Cu1N5 2.019(4)    
       
N1iCu1N8ii 161.25(15) N5Cu1N4 170.05(15)
N1iCu1N5 90.72(15) N1iCu1N9 97.52(15)
N8iiCu1N5 88.42(15) N8iiCu1N9 101.23(15)
N1iCu1N4 88.91(15) N5Cu1N9 92.02(14)
N8iiCu1N4 88.74(15) N4Cu1N9 97.89(15)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Topological features  

The CuII cations are linked by biim ligands, giving a 44 layer; the layers are further bridged by biim ligands at nearly vertical directions, generating a double sheet with a thickness of 14.61 Å (Fig. 2). The sheet exhibits Cu4(biim)4 windows built up from four CuII atoms and four biim ligands with dimensions of 14.11 × 14.07 Å2. From a topological viewpoint, the sheet reveals a 5-connected topology, in which the Cu atom acts as a 5-connected node and the biim ligand is regarded as a linker. Considering the composition, the Schläfli symbol of the two-dimensional network can be defined as 48.62 (Fig. 3).

Figure 2.

Figure 2

The two-dimensional double layer with large windows in (I).

Figure 3.

Figure 3

The topology of the two-dimensional layer in (I).

It is noteworthy that every Cu4(biim)4 unit of each layer is threaded through simultaneously by the biim ligand from an adjacent layer in a parallel fashion, forming a two-dimen­sional→three-dimensional entangled framework, as highlighted in Fig. 4. All sheets are identical, and all the Cu4(biim)4 windows are equivalent. As far as we know, so far only a few examples of two-dimensional→three-dimensional entangled structures have been observed: the networks in these are mainly focused on 44 and 63 topologies. Two-dimensional→three-dimensional entangled frameworks with 48.62 topology have scarcely been reported.

Figure 4.

Figure 4

The two-dimensional→three-dimensional framework in (I).

It should be pointed out that although the starting materials used for syntheses of (I) and the related compound (III) are the same, their complex structures are entirely different (Ma et al., 2004). The structure of (III) can be symbolized as a 44 net, and has no inter­penetration. Although it is hard to propose definitive reasons as to why compounds (I) and (III) adopt different configurations, it can be speculated that pH values and temperature may exert an important influence on the resulting architectures.

Synthesis and crystallization  

A mixture of biim (0.057 g, 0.3 mmol), Cu(NO3)2·3H2O (0.048 g, 0.2 mmol) and water (15 ml) was mixed and stirred at room temperature for 10 min. The mixture was adjusted with 1 M HNO3 to pH ≃ 5 and then sealed in a 25 ml Teflon-lined autoclave and heated at 443 K for three days. Then the mixture was cooled to room temperature, and black–blue crystals of (I) were obtained in 56% yield based on CuII. Elemental analysis, found: C 42.85, N 24.14, H 5.56%; calculated for C25H39CuN12O8 (M r = 699.22): C 42.94, N 24.04, H 5.62%.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All H atoms bonded to C atoms were positioned geometrically and refined as riding atoms,with C—H distances of 0.93 (aromatic) or 0.96 Å (CH2) with U iso(H) = 1.2U eq(C). H atoms bonded to O atoms were located from difference maps, refined with O—H = 0.84 (1) and H⋯H = 1.40 (1) Å and with U iso(H) = 1.5U eq(O). One NO3 group was highly disordered and could not be modelled successfully (geometries, adp’s). After using the SQUEEZE (Spek, 2014) routine of PLATON (Spek, 2009), refinement converged smoothly.

Table 2. Experimental details.

Crystal data
Chemical formula [Cu2(C10H14N4)5](NO3)44H2O
M r 1398.44
Crystal system, space group Orthorhombic, P b c a
Temperature (K) 293
a, b, c () 20.034(4), 13.057(3), 24.979(5)
V (3) 6534(2)
Z 4
Radiation type Mo K
(mm1) 0.73
Crystal size (mm) 0.21 0.17 0.14
 
Data collection
Diffractometer Oxford Diffraction Gemini R Ultra
Absorption correction Multi-scan (CrysAlis PRO; Agilent, 2012)
T min, T max 0.859, 0.911
No. of measured, independent and observed [I > 2(I)] reflections 48000, 5763, 3398
R int 0.111
(sin /)max (1) 0.595
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.060, 0.172, 1.03
No. of reflections 5763
No. of parameters 391
No. of restraints 4
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.34, 0.39

Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814024477/fk2083sup1.cif

e-70-00503-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024477/fk2083Isup2.hkl

e-70-00503-Isup2.hkl (276.5KB, hkl)

CCDC reference: 1033141

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Heilongjiang Provincial Education Department for support under the project ‘The structures and luminescent properties of d 10 metal ions incorporating N-containing neutral ligands’ (serial No. 12515210).

supplementary crystallographic information

Crystal data

[Cu2(C10H14N4)5](NO3)4·4H2O F(000) = 2928
Mr = 1398.44 Dx = 1.422 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab θ = 3.0–25°
a = 20.034 (4) Å µ = 0.73 mm1
b = 13.057 (3) Å T = 293 K
c = 24.979 (5) Å Block, blue
V = 6534 (2) Å3 0.21 × 0.17 × 0.14 mm
Z = 4

Data collection

Oxford Diffraction Gemini R Ultra diffractometer 5763 independent reflections
Radiation source: fine-focus sealed tube 3398 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.111
Detector resolution: 10.0 pixels mm-1 θmax = 25.0°, θmin = 3.0°
ω scan h = −23→23
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −15→15
Tmin = 0.859, Tmax = 0.911 l = −29→29
48000 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.172 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0868P)2] where P = (Fo2 + 2Fc2)/3
5763 reflections (Δ/σ)max = 0.001
391 parameters Δρmax = 0.34 e Å3
4 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.85764 (3) 0.50167 (4) 0.55687 (2) 0.03364 (19)
C1 0.9175 (3) 0.1747 (4) 0.1200 (2) 0.0512 (14)
H1 0.9487 0.1890 0.0934 0.061*
C2 0.9112 (3) 0.2278 (4) 0.1654 (2) 0.0526 (14)
H2 0.9368 0.2834 0.1763 0.063*
C3 0.8368 (2) 0.1055 (3) 0.16238 (18) 0.0409 (12)
H3 0.8012 0.0633 0.1717 0.049*
C4 0.8320 (3) 0.2147 (4) 0.2448 (2) 0.0496 (13)
H4A 0.7958 0.1689 0.2543 0.060*
H4B 0.8140 0.2835 0.2422 0.060*
C5 0.8852 (3) 0.2117 (4) 0.28812 (19) 0.0447 (12)
H5A 0.9216 0.2571 0.2785 0.054*
H5B 0.9029 0.1428 0.2911 0.054*
C6 0.8558 (3) 0.2446 (4) 0.34183 (19) 0.0478 (13)
H6A 0.8360 0.3120 0.3382 0.057*
H6B 0.8208 0.1971 0.3521 0.057*
C7 0.9083 (3) 0.2472 (4) 0.3846 (2) 0.0516 (14)
H7A 0.9273 0.1792 0.3884 0.062*
H7B 0.9437 0.2930 0.3735 0.062*
C8 0.8921 (2) 0.3729 (3) 0.45896 (19) 0.0380 (11)
H8 0.9178 0.4248 0.4439 0.046*
C9 0.8414 (3) 0.2265 (4) 0.4708 (2) 0.0478 (13)
H9 0.8256 0.1602 0.4659 0.057*
C10 0.8286 (2) 0.2885 (4) 0.5121 (2) 0.0452 (12)
H10 0.8021 0.2715 0.5414 0.054*
C11 0.9033 (2) 0.6239 (3) 0.65298 (18) 0.0375 (11)
H11 0.9263 0.5687 0.6677 0.045*
C12 0.8446 (3) 0.7176 (4) 0.6003 (2) 0.0508 (14)
H12 0.8189 0.7388 0.5713 0.061*
C13 0.8606 (3) 0.7759 (4) 0.6433 (2) 0.0522 (14)
H13 0.8487 0.8439 0.6490 0.063*
C14 0.9217 (3) 0.7440 (4) 0.7300 (2) 0.0511 (13)
H14A 0.9475 0.8067 0.7273 0.061*
H14B 0.9510 0.6907 0.7433 0.061*
C15 0.8656 (3) 0.7597 (4) 0.76881 (19) 0.0476 (13)
H15A 0.8372 0.6995 0.7691 0.057*
H15B 0.8388 0.8177 0.7576 0.057*
C16 0.8926 (3) 0.7786 (4) 0.82474 (19) 0.0475 (13)
H16A 0.9177 0.7192 0.8365 0.057*
H16B 0.9227 0.8368 0.8241 0.057*
C17 0.8365 (3) 0.7994 (4) 0.86372 (19) 0.0472 (13)
H25A 0.8095 0.8558 0.8506 0.057*
H25B 0.8081 0.7394 0.8663 0.057*
C18 0.8399 (2) 0.8982 (3) 0.95009 (17) 0.0382 (11)
H17 0.8033 0.9395 0.9425 0.046*
C19 0.9223 (3) 0.8289 (4) 0.99014 (19) 0.0454 (12)
H18 0.9542 0.8132 1.0160 0.054*
C20 0.9157 (3) 0.7798 (4) 0.9423 (2) 0.0468 (13)
H19 0.9417 0.7263 0.9294 0.056*
C21 0.7128 (2) 0.5565 (4) 0.6069 (2) 0.0452 (12)
H21 0.7321 0.5919 0.6353 0.054*
C22 0.6471 (3) 0.5383 (4) 0.6015 (2) 0.0475 (12)
H22 0.6133 0.5582 0.6249 0.057*
C23 0.7012 (2) 0.4723 (4) 0.5336 (2) 0.0436 (12)
H20 0.7100 0.4384 0.5016 0.052*
C24 0.5780 (3) 0.4428 (4) 0.5328 (2) 0.0567 (15)
H23A 0.5548 0.4057 0.5608 0.068*
H23B 0.5889 0.3943 0.5047 0.068*
C25 0.5322 (2) 0.5232 (4) 0.5104 (2) 0.0510 (14)
H24A 0.5546 0.5591 0.4816 0.061*
H24B 0.5218 0.5727 0.5382 0.061*
N1 0.87215 (18) 0.0969 (3) 0.11766 (14) 0.0363 (9)
N2 0.8596 (2) 0.1840 (3) 0.19254 (15) 0.0426 (10)
N3 0.8827 (2) 0.2808 (3) 0.43685 (15) 0.0400 (10)
N4 0.86013 (19) 0.3808 (3) 0.50499 (14) 0.0386 (9)
N5 0.87252 (18) 0.6217 (3) 0.60642 (14) 0.0368 (9)
N6 0.8974 (2) 0.7152 (3) 0.67632 (16) 0.0430 (10)
N7 0.86318 (19) 0.8252 (3) 0.91747 (15) 0.0406 (9)
N8 0.8757 (2) 0.9042 (3) 0.99470 (15) 0.0402 (9)
N9 0.74755 (19) 0.5150 (3) 0.56425 (15) 0.0408 (10)
N10 0.63959 (19) 0.4843 (3) 0.55460 (17) 0.0460 (10)
N11 0.9485 (4) 0.4798 (4) 0.2707 (3) 0.0834 (19)
O1 0.9319 (4) 0.4666 (4) 0.3186 (3) 0.139 (3)
O2 1.0051 (3) 0.5040 (5) 0.2616 (3) 0.121 (2)
O1W 0.7338 (3) −0.0160 (5) 0.2453 (2) 0.1075 (18)
O3 0.9069 (3) 0.4732 (5) 0.2355 (3) 0.129 (2)
O2W 0.4859 (3) 0.5308 (6) 0.6429 (3) 0.130 (2)
H1A 0.6939 (16) 0.002 (8) 0.248 (4) 0.195*
H2A 0.499 (6) 0.534 (10) 0.6748 (17) 0.195*
H1B 0.754 (4) −0.021 (8) 0.275 (2) 0.195*
H2B 0.436 (6) 0.534 (8) 0.629 (4) 0.195*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0493 (3) 0.0356 (3) 0.0161 (3) 0.0011 (3) −0.0011 (2) 0.0008 (2)
C1 0.059 (3) 0.062 (3) 0.032 (3) −0.021 (3) 0.006 (2) 0.001 (3)
C2 0.073 (4) 0.051 (3) 0.034 (3) −0.024 (3) −0.001 (3) −0.005 (2)
C3 0.052 (3) 0.043 (3) 0.028 (3) −0.007 (2) −0.001 (2) −0.005 (2)
C4 0.060 (3) 0.058 (3) 0.031 (3) 0.004 (3) −0.004 (2) −0.022 (2)
C5 0.056 (3) 0.050 (3) 0.028 (3) 0.005 (2) 0.000 (2) −0.013 (2)
C6 0.062 (3) 0.054 (3) 0.028 (3) 0.005 (3) 0.004 (2) −0.010 (2)
C7 0.063 (3) 0.061 (3) 0.030 (3) 0.010 (3) 0.003 (2) −0.009 (3)
C8 0.042 (3) 0.039 (3) 0.033 (3) −0.004 (2) 0.004 (2) 0.003 (2)
C9 0.067 (4) 0.039 (3) 0.037 (3) −0.004 (2) 0.004 (3) 0.000 (2)
C10 0.058 (3) 0.047 (3) 0.031 (3) −0.007 (3) 0.008 (2) −0.003 (2)
C11 0.049 (3) 0.041 (3) 0.023 (3) 0.007 (2) 0.002 (2) −0.008 (2)
C12 0.082 (4) 0.044 (3) 0.026 (3) 0.008 (3) −0.005 (3) 0.004 (2)
C13 0.086 (4) 0.036 (3) 0.034 (3) 0.009 (3) 0.003 (3) −0.007 (2)
C14 0.062 (3) 0.061 (3) 0.030 (3) −0.003 (3) −0.002 (2) −0.018 (3)
C15 0.063 (3) 0.050 (3) 0.029 (3) 0.000 (3) −0.002 (2) −0.008 (2)
C16 0.060 (3) 0.057 (3) 0.025 (3) −0.006 (3) −0.001 (2) −0.008 (2)
C17 0.060 (3) 0.059 (3) 0.023 (3) 0.005 (3) −0.005 (2) −0.013 (2)
C18 0.055 (3) 0.036 (2) 0.024 (3) 0.009 (2) −0.001 (2) −0.007 (2)
C19 0.056 (3) 0.053 (3) 0.027 (3) 0.003 (3) −0.001 (2) 0.003 (2)
C20 0.054 (3) 0.051 (3) 0.035 (3) 0.015 (3) 0.007 (2) −0.007 (2)
C21 0.047 (3) 0.056 (3) 0.033 (3) 0.009 (2) −0.003 (2) −0.009 (2)
C22 0.052 (3) 0.044 (3) 0.046 (3) 0.007 (2) 0.005 (3) −0.004 (2)
C23 0.044 (3) 0.052 (3) 0.035 (3) 0.005 (2) −0.005 (2) −0.006 (2)
C24 0.051 (3) 0.048 (3) 0.071 (4) 0.001 (3) −0.018 (3) 0.003 (3)
C25 0.047 (3) 0.054 (3) 0.052 (3) −0.001 (2) −0.003 (3) 0.004 (3)
N1 0.051 (2) 0.040 (2) 0.018 (2) −0.0064 (18) −0.0005 (17) −0.0011 (16)
N2 0.058 (3) 0.046 (2) 0.025 (2) 0.001 (2) −0.001 (2) −0.0066 (18)
N3 0.051 (2) 0.043 (2) 0.026 (2) 0.0048 (19) −0.0063 (19) −0.0080 (18)
N4 0.057 (2) 0.038 (2) 0.021 (2) 0.0000 (19) 0.0043 (18) −0.0002 (16)
N5 0.052 (2) 0.038 (2) 0.020 (2) 0.0028 (18) 0.0003 (17) 0.0011 (16)
N6 0.058 (3) 0.046 (2) 0.025 (2) −0.007 (2) 0.0028 (19) −0.0071 (19)
N7 0.057 (3) 0.042 (2) 0.023 (2) 0.007 (2) 0.0022 (19) −0.0060 (18)
N8 0.059 (3) 0.039 (2) 0.023 (2) 0.0006 (19) −0.0003 (19) −0.0015 (17)
N9 0.050 (2) 0.044 (2) 0.028 (2) 0.0029 (18) −0.0026 (18) −0.0014 (18)
N10 0.045 (2) 0.042 (2) 0.051 (3) 0.0019 (19) −0.006 (2) 0.0033 (19)
N11 0.097 (5) 0.040 (3) 0.113 (6) −0.006 (3) −0.007 (5) 0.009 (3)
O1 0.203 (7) 0.086 (4) 0.129 (6) −0.018 (4) 0.037 (5) 0.018 (4)
O2 0.081 (4) 0.153 (5) 0.131 (6) −0.001 (4) −0.011 (4) 0.041 (4)
O1W 0.117 (5) 0.129 (5) 0.076 (4) −0.022 (4) 0.011 (3) 0.013 (4)
O3 0.101 (5) 0.131 (5) 0.154 (6) −0.012 (3) −0.042 (4) −0.014 (4)
O2W 0.102 (4) 0.177 (6) 0.110 (5) −0.019 (4) 0.031 (4) −0.007 (5)

Geometric parameters (Å, º)

Cu1—N1i 2.012 (4) C14—H14A 0.9700
Cu1—N8ii 2.013 (4) C14—H14B 0.9700
Cu1—N5 2.019 (4) C15—C16 1.519 (6)
Cu1—N4 2.043 (4) C15—H15A 0.9700
Cu1—N9 2.220 (4) C15—H15B 0.9700
C1—C2 1.337 (7) C16—C17 1.512 (7)
C1—N1 1.364 (6) C16—H16A 0.9700
C1—H1 0.9300 C16—H16B 0.9700
C2—N2 1.360 (6) C17—N7 1.484 (6)
C2—H2 0.9300 C17—H25A 0.9700
C3—N1 1.328 (6) C17—H25B 0.9700
C3—N2 1.353 (6) C18—N8 1.327 (6)
C3—H3 0.9300 C18—N7 1.338 (5)
C4—N2 1.472 (6) C18—H17 0.9300
C4—C5 1.519 (7) C19—N8 1.361 (6)
C4—H4A 0.9700 C19—C20 1.362 (7)
C4—H4B 0.9700 C19—H18 0.9300
C5—C6 1.527 (6) C20—N7 1.358 (6)
C5—H5A 0.9700 C20—H19 0.9300
C5—H5B 0.9700 C21—C22 1.345 (7)
C6—C7 1.500 (7) C21—N9 1.384 (6)
C6—H6A 0.9700 C21—H21 0.9300
C6—H6B 0.9700 C22—N10 1.375 (6)
C7—N3 1.469 (6) C22—H22 0.9300
C7—H7A 0.9700 C23—N9 1.327 (6)
C7—H7B 0.9700 C23—N10 1.351 (6)
C8—N4 1.320 (5) C23—H20 0.9300
C8—N3 1.337 (6) C24—N10 1.453 (6)
C8—H8 0.9300 C24—C25 1.503 (7)
C9—C10 1.336 (6) C24—H23A 0.9700
C9—N3 1.381 (6) C24—H23B 0.9700
C9—H9 0.9300 C25—C25iii 1.518 (9)
C10—N4 1.373 (6) C25—H24A 0.9700
C10—H10 0.9300 C25—H24B 0.9700
C11—N5 1.317 (5) N1—Cu1iv 2.012 (4)
C11—N6 1.333 (5) N8—Cu1v 2.013 (4)
C11—H11 0.9300 N11—O2 1.200 (8)
C12—C13 1.354 (7) N11—O3 1.213 (8)
C12—N5 1.380 (6) N11—O1 1.254 (8)
C12—H12 0.9300 O1W—H1A 0.839 (10)
C13—N6 1.362 (6) O1W—H1B 0.839 (10)
C13—H13 0.9300 O2W—H2A 0.842 (10)
C14—N6 1.475 (6) O2W—H2B 1.06 (11)
C14—C15 1.499 (7)
N1i—Cu1—N8ii 161.25 (15) C15—C16—H16A 109.5
N1i—Cu1—N5 90.72 (15) C17—C16—H16B 109.5
N8ii—Cu1—N5 88.42 (15) C15—C16—H16B 109.5
N1i—Cu1—N4 88.91 (15) H16A—C16—H16B 108.1
N8ii—Cu1—N4 88.74 (15) N7—C17—C16 110.8 (4)
N5—Cu1—N4 170.05 (15) N7—C17—H25A 109.5
N1i—Cu1—N9 97.52 (15) C16—C17—H25A 109.5
N8ii—Cu1—N9 101.23 (15) N7—C17—H25B 109.5
N5—Cu1—N9 92.02 (14) C16—C17—H25B 109.5
N4—Cu1—N9 97.89 (15) H25A—C17—H25B 108.1
C2—C1—N1 111.0 (4) N8—C18—N7 111.4 (4)
C2—C1—H1 124.5 N8—C18—H17 124.3
N1—C1—H1 124.5 N7—C18—H17 124.3
C1—C2—N2 106.1 (4) N8—C19—C20 110.2 (4)
C1—C2—H2 126.9 N8—C19—H18 124.9
N2—C2—H2 126.9 C20—C19—H18 124.9
N1—C3—N2 110.6 (4) N7—C20—C19 105.7 (4)
N1—C3—H3 124.7 N7—C20—H19 127.1
N2—C3—H3 124.7 C19—C20—H19 127.1
N2—C4—C5 111.2 (4) C22—C21—N9 110.2 (4)
N2—C4—H4A 109.4 C22—C21—H21 124.9
C5—C4—H4A 109.4 N9—C21—H21 124.9
N2—C4—H4B 109.4 C21—C22—N10 106.5 (4)
C5—C4—H4B 109.4 C21—C22—H22 126.8
H4A—C4—H4B 108.0 N10—C22—H22 126.8
C4—C5—C6 110.4 (4) N9—C23—N10 111.5 (4)
C4—C5—H5A 109.6 N9—C23—H20 124.3
C6—C5—H5A 109.6 N10—C23—H20 124.3
C4—C5—H5B 109.6 N10—C24—C25 113.4 (4)
C6—C5—H5B 109.6 N10—C24—H23A 108.9
H5A—C5—H5B 108.1 C25—C24—H23A 108.9
C7—C6—C5 111.2 (4) N10—C24—H23B 108.9
C7—C6—H6A 109.4 C25—C24—H23B 108.9
C5—C6—H6A 109.4 H23A—C24—H23B 107.7
C7—C6—H6B 109.4 C24—C25—C25iii 111.6 (5)
C5—C6—H6B 109.4 C24—C25—H24A 109.3
H6A—C6—H6B 108.0 C25iii—C25—H24A 109.3
N3—C7—C6 113.3 (4) C24—C25—H24B 109.3
N3—C7—H7A 108.9 C25iii—C25—H24B 109.3
C6—C7—H7A 108.9 H24A—C25—H24B 108.0
N3—C7—H7B 108.9 C3—N1—C1 104.9 (4)
C6—C7—H7B 108.9 C3—N1—Cu1iv 127.7 (3)
H7A—C7—H7B 107.7 C1—N1—Cu1iv 127.2 (3)
N4—C8—N3 111.2 (4) C3—N2—C2 107.3 (4)
N4—C8—H8 124.4 C3—N2—C4 124.9 (4)
N3—C8—H8 124.4 C2—N2—C4 127.7 (4)
C10—C9—N3 106.2 (4) C8—N3—C9 107.0 (4)
C10—C9—H9 126.9 C8—N3—C7 126.0 (4)
N3—C9—H9 126.9 C9—N3—C7 126.9 (4)
C9—C10—N4 110.0 (4) C8—N4—C10 105.5 (4)
C9—C10—H10 125.0 C8—N4—Cu1 128.7 (3)
N4—C10—H10 125.0 C10—N4—Cu1 125.8 (3)
N5—C11—N6 111.3 (4) C11—N5—C12 105.6 (4)
N5—C11—H11 124.3 C11—N5—Cu1 128.9 (3)
N6—C11—H11 124.3 C12—N5—Cu1 125.2 (3)
C13—C12—N5 109.1 (4) C11—N6—C13 107.7 (4)
C13—C12—H12 125.5 C11—N6—C14 126.6 (4)
N5—C12—H12 125.5 C13—N6—C14 125.6 (4)
C12—C13—N6 106.3 (4) C18—N7—C20 107.6 (4)
C12—C13—H13 126.8 C18—N7—C17 125.9 (4)
N6—C13—H13 126.8 C20—N7—C17 126.5 (4)
N6—C14—C15 112.0 (4) C18—N8—C19 104.9 (4)
N6—C14—H14A 109.2 C18—N8—Cu1v 125.9 (3)
C15—C14—H14A 109.2 C19—N8—Cu1v 129.0 (3)
N6—C14—H14B 109.2 C23—N9—C21 104.9 (4)
C15—C14—H14B 109.2 C23—N9—Cu1 127.9 (3)
H14A—C14—H14B 107.9 C21—N9—Cu1 126.5 (3)
C14—C15—C16 110.5 (4) C23—N10—C22 107.0 (4)
C14—C15—H15A 109.6 C23—N10—C24 125.9 (5)
C16—C15—H15A 109.6 C22—N10—C24 127.1 (4)
C14—C15—H15B 109.6 O2—N11—O3 122.1 (9)
C16—C15—H15B 109.6 O2—N11—O1 117.9 (8)
H15A—C15—H15B 108.1 O3—N11—O1 120.0 (9)
C17—C16—C15 110.9 (4) H1A—O1W—H1B 113 (2)
C17—C16—H16A 109.5 H2A—O2W—H2B 127 (10)
N1—C1—C2—N2 −1.1 (6) C13—C12—N5—Cu1 174.6 (3)
N2—C4—C5—C6 179.5 (4) N1i—Cu1—N5—C11 20.7 (4)
C4—C5—C6—C7 −177.2 (4) N8ii—Cu1—N5—C11 −140.6 (4)
C5—C6—C7—N3 178.6 (4) N4—Cu1—N5—C11 −67.1 (10)
N3—C9—C10—N4 0.6 (6) N9—Cu1—N5—C11 118.3 (4)
N5—C12—C13—N6 −1.1 (6) N1i—Cu1—N5—C12 −151.1 (4)
N6—C14—C15—C16 174.3 (4) N8ii—Cu1—N5—C12 47.6 (4)
C14—C15—C16—C17 177.3 (4) N4—Cu1—N5—C12 121.1 (8)
C15—C16—C17—N7 −176.0 (4) N9—Cu1—N5—C12 −53.6 (4)
N8—C19—C20—N7 −0.9 (6) N5—C11—N6—C13 0.1 (6)
N9—C21—C22—N10 0.0 (6) N5—C11—N6—C14 176.0 (4)
N10—C24—C25—C25iii −178.5 (6) C12—C13—N6—C11 0.6 (6)
N2—C3—N1—C1 −1.4 (5) C12—C13—N6—C14 −175.3 (4)
N2—C3—N1—Cu1iv −176.9 (3) C15—C14—N6—C11 −109.5 (6)
C2—C1—N1—C3 1.5 (6) C15—C14—N6—C13 65.6 (6)
C2—C1—N1—Cu1iv 177.1 (4) N8—C18—N7—C20 1.3 (5)
N1—C3—N2—C2 0.7 (5) N8—C18—N7—C17 −178.3 (4)
N1—C3—N2—C4 −179.7 (4) C19—C20—N7—C18 −0.2 (5)
C1—C2—N2—C3 0.2 (6) C19—C20—N7—C17 179.4 (4)
C1—C2—N2—C4 −179.3 (5) C16—C17—N7—C18 138.9 (5)
C5—C4—N2—C3 122.3 (5) C16—C17—N7—C20 −40.6 (7)
C5—C4—N2—C2 −58.3 (7) N7—C18—N8—C19 −1.8 (5)
N4—C8—N3—C9 0.7 (5) N7—C18—N8—Cu1v −177.4 (3)
N4—C8—N3—C7 177.0 (4) C20—C19—N8—C18 1.7 (5)
C10—C9—N3—C8 −0.8 (5) C20—C19—N8—Cu1v 177.1 (3)
C10—C9—N3—C7 −177.1 (4) N10—C23—N9—C21 −0.2 (5)
C6—C7—N3—C8 −104.1 (6) N10—C23—N9—Cu1 170.6 (3)
C6—C7—N3—C9 71.6 (6) C22—C21—N9—C23 0.2 (6)
N3—C8—N4—C10 −0.3 (5) C22—C21—N9—Cu1 −170.9 (3)
N3—C8—N4—Cu1 178.7 (3) N1i—Cu1—N9—C23 −103.9 (4)
C9—C10—N4—C8 −0.2 (6) N8ii—Cu1—N9—C23 76.3 (4)
C9—C10—N4—Cu1 −179.3 (3) N5—Cu1—N9—C23 165.1 (4)
N1i—Cu1—N4—C8 −134.7 (4) N4—Cu1—N9—C23 −14.0 (4)
N8ii—Cu1—N4—C8 26.7 (4) N1i—Cu1—N9—C21 65.1 (4)
N5—Cu1—N4—C8 −46.8 (11) N8ii—Cu1—N9—C21 −114.7 (4)
N9—Cu1—N4—C8 127.8 (4) N5—Cu1—N9—C21 −25.9 (4)
N1i—Cu1—N4—C10 44.1 (4) N4—Cu1—N9—C21 155.0 (4)
N8ii—Cu1—N4—C10 −154.5 (4) N9—C23—N10—C22 0.2 (6)
N5—Cu1—N4—C10 132.1 (8) N9—C23—N10—C24 −176.7 (4)
N9—Cu1—N4—C10 −53.3 (4) C21—C22—N10—C23 −0.1 (5)
N6—C11—N5—C12 −0.8 (5) C21—C22—N10—C24 176.8 (4)
N6—C11—N5—Cu1 −173.9 (3) C25—C24—N10—C23 −110.7 (6)
C13—C12—N5—C11 1.2 (6) C25—C24—N10—C22 73.0 (7)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+1; (iv) x, −y+1/2, z−1/2; (v) x, −y+3/2, z+1/2.

References

  1. Agilent (2012). CrysAlis PRO. Agilent Technologies, Yarnton, England.
  2. Baburin, I. A., Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2005). J. Solid State Chem. 178, 2452–2474.
  3. Batten, S. R. (2001). CrystEngComm, 3, 67–73.
  4. Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494. [DOI] [PubMed]
  5. Blatov, V. A., Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). CrystEngComm, 6, 377–395.
  6. Bu, X. H., Tong, M. L., Chang, H. C., Kitagawa, S. & Batten, S. R. (2004). Angew. Chem. Int. Ed. 43, 192–195. [DOI] [PubMed]
  7. Carlucci, L., Ciani, G. & Proserpio, D. M. (2003a). Coord. Chem. Rev. 246, 247–289.
  8. Carlucci, L., Ciani, G. & Proserpio, D. M. (2003b). CrystEngComm, 5, 269–279.
  9. Chen, P., Batten, S. R., Qi, Y. & Zheng, J.-M. (2009). Cryst. Growth Des. 9, 2456–2761.
  10. Chen, L., Xu, G.-J., Shao, K.-Z., Zhao, Y.-H., Yang, G.-S., Lan, Y.-Q., Wang, X.-L., Xu, H.-B. & Su, Z.-M. (2010). CrystEngComm, 12, 2157–2165.
  11. Dong, B., Peng, J., Gómez-García, C. J., Benmansour, S., Jia, H. & Hu, N. (2007). Inorg. Chem. 46, 5933–5941. [DOI] [PubMed]
  12. James, S. L. (2003). Chem. Soc. Rev. 32, 276–288.
  13. Ma, J.-F., Yang, J., Zheng, G.-L., Li, L., Zhang, Y.-M., Li, F.-F. & Liu, J.-F. (2004). Polyhedron, 23, 553–559.
  14. Murphy, D. L., Malachowski, M. R., Campana, C. F. & Cohen, S. M. (2005). Chem. Commun. pp. 5506–5508. [DOI] [PubMed]
  15. Perry, J. J., Kravtsov, V. Ch., McManus, G. J. & Zaworotko, M. J. (2007). J. Am. Chem. Soc. 129, 10076–10077. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  18. Spek, A. L. (2014). Acta Cryst. C70. Submitted [LN3172]. [Google Scholar]
  19. Wen, L.-L., Dang, D.-B., Duan, C.-Y., Li, Y.-Z., Tian, Z.-F. & Meng, Q.-J. (2005). Inorg. Chem. 44, 7161–7170. [DOI] [PubMed]
  20. Wu, H., Liu, H.-Y., Liu, Y.-Y., Yang, J., Liu, B. & Ma, J.-F. (2011a). Chem. Commun 47, 1818–1820. [DOI] [PubMed]
  21. Wu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. (2011b). J. Am. Chem. Soc. 133, 11406–11409. [DOI] [PubMed]
  22. Yang, J., Ma, J.-F. & Batten, S. R. (2012). Chem. Commun. 48, 7899–7912. [DOI] [PubMed]
  23. Yang, J., Ma, J.-F., Batten, S. R. & Su, Z.-M. (2008). Chem. Commun. pp. 2233–2235. [DOI] [PubMed]
  24. Zhang, Z., Ma, J.-F., Liu, Y.-Y., Kan, W.-Q. & Yang, J. (2013). CrystEngComm, 15, 2009–2018.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814024477/fk2083sup1.cif

e-70-00503-sup1.cif (28.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024477/fk2083Isup2.hkl

e-70-00503-Isup2.hkl (276.5KB, hkl)

CCDC reference: 1033141

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES