Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 29;70(Pt 12):593–595. doi: 10.1107/S1600536814025756

Crystal structure of dimethyl 3,3′-[(3-fluoro­phenyl)methyl­ene]bis­(1H-indole-2-carboxyl­ate)

Xin-Hua Lu a, Hong-Shun Sun b,*, Jin Hu a
PMCID: PMC4257463  PMID: 25553001

In the title compound, the two indole ring systems are approximately perpendicular to one another, making a dihedral angle of 87.8 (5)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers, which are further linked by N—H⋯O hydrogen bonds into supra­molecular chains propagating along the b-axis direction.

Keywords: crystal structure, indole, MRI contrast agent, N—H⋯O hydrogen bonds, C—H⋯π inter­actions

Abstract

In the title compound, C27H21FN2O4, the mean planes of the two indole ring systems (r.m.s. deviations = 0.0166 and 0.0086 Å) are approximately perpendic­ular to one another, making a dihedral angle of 87.8 (5)°; the fluorobenzene ring is twisted with respect to the mean planes of the two indole ring systems at 82.7 (5) and 85.5 (3)°. In the crystal, pairs of N—H⋯O hydrogen bonds link the mol­ecules into the inversion dimers, which are further linked by N—H⋯O hydrogen bonds into supra­molecular chains propagating along the b-axis direction. Weak C—H⋯π inter­actions are observed between neighbouring chains.

Chemical context  

The indole unit forms the basis for general bis­(indoly)methanes, which are widely present in bioactive metabolites of numerous compounds isolated from natural sources (Poter et al., 1977; Sundberg, 1996). In addition, bis­(indoly)methanes are important anti­biotics in the field of pharmaceuticals and the precursor of bioactive metabolites of terrestrial and marine origin (Chang et al., 1999; Ge et al., 1999). The title compound is one of the bis­(indoly)methane derivatives used as a precursor for MRI contrast agents (Ni, 2008). In recent years, we have reported the synthesis and crystal structures of some similar compounds (Sun et al., 2012, 2013, 2014; Li et al., 2014). Now we report herein on another bis­(indoly)methane compound.graphic file with name e-70-00593-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The two indole ring systems are nearly perpendicular to each other [dihedral angle = 87.8 (5)°] while the benzene ring (C22–C27) is twisted to the N1/C2–C9 and N2/C12–C19 indole ring systems by dihedral angles of 82.7 (5) and 85.5 (3)°, respectively. The carboxyl groups are approximately co-planar with the attached indole ring systems, the dihedral angles between the carboxyl groups and the mean planes of the attached indole ring systems being 9.6 (3) and 9.6 (4)°.

Figure 1.

Figure 1

The mol­ecular structure of the title mol­ecule with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Supra­molecular features  

In the crystal, pairs of N1—H1A⋯O3i [symmetry code: (i) −x, 1 − y, −z] hydrogen bonds link the mol­ecules into inversion dimmers, which are further linked by N2—H2A⋯O2ii [symmetry code: (ii) x, 1 + y, z] hydrogen bonds into supra­molecular chains propagating along the b-axis direction (Table 1 and Fig. 2). Weak C—H⋯π inter­actions are also observed between neighbouring chains (Table 1).

Table 1. Hydrogen-bond geometry (, ).

Cg4 is the centroid of the C13C18 ring.

DHA DH HA D A DHA
N1H1AO3i 0.86 2.06 2.913(3) 170
N2H2AO2ii 0.86 2.15 2.948(3) 155
C6H6A Cg4iii 0.93 2.75 3.645(4) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 2.

Figure 2

A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.

Database survey  

Several similar structures have been reported previously, viz. diethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2012), dimethyl 3,3′-(phenyl­methyl­ene)bis­(1H-indole-2-carboxyl­ate) (Sun et al., 2013), dimethyl 3,3′-[(4-chloro­phen­yl) methyl­ene]bis­(1H-indole-2-carboxyl­ate) (Li et al., 2014) and dimethyl 3,3′-[(3-nitro­phen­yl)methyl­ene]bis­(1H-indole-2-carboxyl­ate) ethanol monosolvate (Sun et al., 2014). In those structures, the two indole ring systems are also nearly perpendicular to each other, the dihedral angles being 82.0 (5), 84.5 (5), 79.5 (4) and 89.3 (5)°, respectively.

Synthesis and crystallization  

Methyl indole-2-carboxyl­ate (17.5 g, 100 mmol) was dissolved in 200 ml methanol; commercially available 3-fluoro­benz­aldehyde (6.2 g, 50 mmol) was added and the mixture was heated to reflux temperature. Concentrated HCl (3.7 ml) was added and the reaction was left for 1 h. After cooling, the white product was filtered off and washed thoroughly with methanol. The reaction was monitored by TLC (CHCl3:hexane = 1:1). The yield was 92%. Single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were positioned geometrically with N—H = 0.86 and C—H = 0.93–0.98 Å, and constrained to ride on their parent atoms, with U iso(H) = xU eq(C,N), where x = 1.5 for methyl H atoms and 1.2 for the others.

Table 2. Experimental details.

Crystal data
Chemical formula C27H21FN2O4
M r 456.46
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c () 9.6980(19), 10.119(2), 12.875(3)
, , () 89.86(3), 83.10(3), 65.45(3)
V (3) 1139.4(4)
Z 2
Radiation type Mo K
(mm1) 0.10
Crystal size (mm) 0.30 0.20 0.10
 
Data collection
Diffractometer EnrafNonius CAD-4
Absorption correction scan (North et al., 1968)
T min, T max 0.972, 0.991
No. of measured, independent and observed [I > 2(I)] reflections 4453, 4183, 2587
R int 0.036
(sin /)max (1) 0.603
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.060, 0.163, 1.00
No. of reflections 4183
No. of parameters 307
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.72, 0.25

Computer programs: CAD-4 EXPRESS (EnrafNonius, 1994), XCAD4 (Harms Wocadlo, 1995) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814025756/xu5830sup1.cif

e-70-00593-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814025756/xu5830Isup2.hkl

e-70-00593-Isup2.hkl (205KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814025756/xu5830Isup3.cml

CCDC reference: 1036100

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Center of Testing and Analysis, Nanjing University, for support. Funding for this research was provided by Nanjing College of Chemical Technology, China (grant No. NHKY-2013–02).

supplementary crystallographic information

Crystal data

C27H21FN2O4 Z = 2
Mr = 456.46 F(000) = 476
Triclinic, P1 Dx = 1.331 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6980 (19) Å Cell parameters from 25 reflections
b = 10.119 (2) Å θ = 9–13°
c = 12.875 (3) Å µ = 0.10 mm1
α = 89.86 (3)° T = 293 K
β = 83.10 (3)° Block, colorless
γ = 65.45 (3)° 0.30 × 0.20 × 0.10 mm
V = 1139.4 (4) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 2587 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
Graphite monochromator θmax = 25.4°, θmin = 1.6°
ω/2θ scans h = 0→11
Absorption correction: ψ scan (North et al., 1968) k = −11→12
Tmin = 0.972, Tmax = 0.991 l = −15→15
4453 measured reflections 3 standard reflections every 200 reflections
4183 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.085P)2] where P = (Fo2 + 2Fc2)/3
4183 reflections (Δ/σ)max < 0.001
307 parameters Δρmax = 0.72 e Å3
1 restraint Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 −0.1052 (3) 0.5029 (2) 0.13830 (18) 0.0445 (6)
H1A −0.1408 0.4496 0.1090 0.053*
O1 0.3009 (2) 0.3113 (2) 0.08820 (18) 0.0586 (6)
C1 0.2144 (3) 0.5855 (3) 0.2059 (2) 0.0334 (6)
H1B 0.2859 0.5329 0.1441 0.040*
O2 0.1188 (3) 0.2409 (2) 0.05471 (17) 0.0555 (6)
N2 0.1837 (3) 0.9546 (2) 0.14191 (17) 0.0396 (6)
H2A 0.1767 1.0211 0.0985 0.048*
C2 0.0646 (3) 0.5803 (3) 0.1908 (2) 0.0341 (6)
O3 0.2455 (2) 0.6468 (2) −0.02476 (15) 0.0486 (5)
C3 −0.0884 (3) 0.6830 (3) 0.2299 (2) 0.0359 (6)
O4 0.1821 (3) 0.8813 (2) −0.05567 (15) 0.0529 (6)
C4 −0.1512 (3) 0.8120 (3) 0.2943 (2) 0.0439 (7)
H4A −0.0880 0.8485 0.3207 0.053*
F 0.6593 (3) 0.3395 (3) 0.38335 (19) 0.1028 (8)
C5 −0.3065 (4) 0.8827 (3) 0.3173 (2) 0.0522 (8)
H5B −0.3483 0.9676 0.3601 0.063*
C6 −0.4039 (4) 0.8314 (3) 0.2787 (3) 0.0545 (8)
H6A −0.5090 0.8841 0.2951 0.065*
C7 −0.3497 (4) 0.7059 (3) 0.2175 (3) 0.0518 (8)
H7A −0.4154 0.6715 0.1924 0.062*
C8 −0.1906 (3) 0.6313 (3) 0.1940 (2) 0.0394 (7)
C9 0.0469 (3) 0.4723 (3) 0.1365 (2) 0.0368 (6)
C10 0.1559 (4) 0.3315 (3) 0.0883 (2) 0.0416 (7)
C11 0.4154 (4) 0.1713 (4) 0.0498 (3) 0.0767 (11)
H11A 0.5149 0.1686 0.0529 0.115*
H11B 0.4049 0.1537 −0.0215 0.115*
H11C 0.4031 0.0977 0.0921 0.115*
C12 0.2062 (3) 0.7399 (3) 0.2047 (2) 0.0312 (6)
C13 0.1975 (3) 0.8347 (3) 0.2903 (2) 0.0331 (6)
C14 0.2017 (3) 0.8230 (3) 0.3985 (2) 0.0416 (7)
H14A 0.2120 0.7368 0.4295 0.050*
C15 0.1906 (4) 0.9398 (3) 0.4581 (2) 0.0517 (8)
H15A 0.1949 0.9317 0.5297 0.062*
C16 0.1728 (4) 1.0709 (3) 0.4134 (3) 0.0547 (9)
H16A 0.1632 1.1488 0.4563 0.066*
C17 0.1692 (4) 1.0876 (3) 0.3093 (2) 0.0489 (8)
H17A 0.1586 1.1748 0.2799 0.059*
C18 0.1821 (3) 0.9681 (3) 0.2474 (2) 0.0373 (7)
C19 0.1986 (3) 0.8161 (3) 0.1163 (2) 0.0339 (6)
C20 0.2100 (3) 0.7701 (3) 0.0063 (2) 0.0376 (7)
C21 0.1995 (4) 0.8471 (4) −0.1662 (2) 0.0666 (10)
H21A 0.1770 0.9343 −0.2036 0.100*
H21B 0.1303 0.8053 −0.1797 0.100*
H21C 0.3027 0.7788 −0.1891 0.100*
C22 0.2846 (3) 0.5040 (3) 0.2992 (2) 0.0367 (7)
C23 0.4402 (3) 0.4571 (3) 0.3005 (2) 0.0449 (7)
H23A 0.5000 0.4746 0.2449 0.054*
C24 0.5055 (4) 0.3846 (4) 0.3845 (3) 0.0548 (8)
C25 0.4234 (4) 0.3559 (4) 0.4673 (3) 0.0629 (10)
H25A 0.4706 0.3062 0.5232 0.076*
C26 0.2694 (4) 0.4020 (4) 0.4664 (3) 0.0639 (10)
H26A 0.2105 0.3844 0.5226 0.077*
C27 0.2007 (4) 0.4745 (3) 0.3822 (2) 0.0491 (8)
H27A 0.0963 0.5036 0.3820 0.059*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0524 (17) 0.0385 (13) 0.0546 (15) −0.0295 (12) −0.0120 (12) −0.0062 (11)
O1 0.0498 (14) 0.0351 (11) 0.0876 (17) −0.0160 (10) −0.0029 (12) −0.0176 (11)
C1 0.0389 (16) 0.0255 (13) 0.0378 (15) −0.0145 (12) −0.0079 (12) −0.0016 (11)
O2 0.0730 (16) 0.0339 (11) 0.0677 (14) −0.0277 (11) −0.0187 (12) −0.0071 (10)
N2 0.0548 (16) 0.0283 (11) 0.0403 (14) −0.0212 (11) −0.0092 (11) 0.0015 (10)
C2 0.0378 (16) 0.0297 (13) 0.0389 (15) −0.0173 (12) −0.0088 (12) −0.0001 (11)
O3 0.0655 (15) 0.0392 (11) 0.0468 (12) −0.0257 (10) −0.0143 (10) −0.0053 (9)
C3 0.0392 (16) 0.0349 (14) 0.0392 (15) −0.0200 (13) −0.0086 (12) 0.0029 (12)
O4 0.0744 (16) 0.0425 (11) 0.0401 (12) −0.0228 (11) −0.0075 (10) 0.0044 (9)
C4 0.0446 (19) 0.0390 (16) 0.0507 (18) −0.0197 (14) −0.0065 (14) −0.0108 (14)
F 0.0659 (15) 0.131 (2) 0.0963 (18) −0.0211 (15) −0.0317 (13) 0.0148 (15)
C5 0.0440 (19) 0.0439 (17) 0.063 (2) −0.0142 (15) 0.0002 (15) −0.0118 (15)
C6 0.0383 (19) 0.055 (2) 0.067 (2) −0.0171 (16) −0.0064 (16) 0.0020 (17)
C7 0.0432 (19) 0.0553 (19) 0.067 (2) −0.0292 (16) −0.0115 (16) 0.0039 (16)
C8 0.0422 (17) 0.0407 (16) 0.0422 (16) −0.0233 (14) −0.0094 (13) 0.0029 (13)
C9 0.0433 (17) 0.0332 (14) 0.0400 (16) −0.0205 (13) −0.0111 (13) 0.0015 (12)
C10 0.057 (2) 0.0320 (14) 0.0411 (16) −0.0232 (14) −0.0096 (14) 0.0026 (12)
C11 0.058 (2) 0.047 (2) 0.108 (3) −0.0091 (18) 0.003 (2) −0.020 (2)
C12 0.0289 (14) 0.0286 (13) 0.0399 (15) −0.0149 (11) −0.0085 (12) −0.0012 (11)
C13 0.0305 (15) 0.0307 (14) 0.0413 (16) −0.0156 (12) −0.0066 (12) −0.0027 (12)
C14 0.0461 (18) 0.0370 (15) 0.0437 (17) −0.0187 (14) −0.0076 (13) 0.0002 (13)
C15 0.064 (2) 0.0522 (19) 0.0421 (17) −0.0270 (17) −0.0089 (15) −0.0080 (15)
C16 0.067 (2) 0.0413 (17) 0.055 (2) −0.0216 (16) −0.0093 (16) −0.0156 (15)
C17 0.056 (2) 0.0346 (15) 0.058 (2) −0.0204 (15) −0.0095 (15) −0.0068 (14)
C18 0.0351 (16) 0.0317 (14) 0.0451 (17) −0.0133 (12) −0.0080 (13) −0.0043 (12)
C19 0.0376 (16) 0.0297 (13) 0.0384 (15) −0.0174 (12) −0.0070 (12) −0.0028 (12)
C20 0.0383 (17) 0.0363 (15) 0.0414 (16) −0.0180 (13) −0.0078 (13) −0.0015 (13)
C21 0.088 (3) 0.069 (2) 0.0409 (19) −0.031 (2) −0.0089 (18) 0.0063 (16)
C22 0.0415 (17) 0.0274 (13) 0.0429 (16) −0.0155 (12) −0.0075 (13) −0.0046 (12)
C23 0.0471 (19) 0.0438 (16) 0.0451 (18) −0.0196 (14) −0.0083 (14) 0.0030 (14)
C24 0.0472 (19) 0.0567 (19) 0.054 (2) −0.0121 (16) −0.0195 (16) 0.0022 (16)
C25 0.078 (3) 0.062 (2) 0.048 (2) −0.023 (2) −0.0242 (19) 0.0152 (16)
C26 0.075 (3) 0.072 (2) 0.052 (2) −0.037 (2) −0.0126 (18) 0.0107 (18)
C27 0.0469 (19) 0.0564 (19) 0.0498 (19) −0.0263 (16) −0.0105 (15) 0.0107 (15)

Geometric parameters (Å, º)

N1—C8 1.362 (3) C11—H11A 0.9600
N1—C9 1.373 (4) C11—H11B 0.9600
N1—H1A 0.8600 C11—H11C 0.9600
O1—C10 1.333 (4) C12—C19 1.365 (4)
O1—C11 1.431 (4) C12—C13 1.435 (3)
C1—C2 1.511 (4) C13—C14 1.402 (4)
C1—C22 1.520 (4) C13—C18 1.413 (4)
C1—C12 1.532 (3) C14—C15 1.370 (4)
C1—H1B 0.9800 C14—H14A 0.9300
O2—C10 1.213 (3) C15—C16 1.396 (4)
N2—C18 1.363 (3) C15—H15A 0.9300
N2—C19 1.385 (3) C16—C17 1.353 (4)
N2—H2A 0.8600 C16—H16A 0.9300
C2—C9 1.379 (3) C17—C18 1.403 (4)
C2—C3 1.440 (4) C17—H17A 0.9300
O3—C20 1.203 (3) C19—C20 1.469 (4)
C3—C4 1.409 (4) C21—H21A 0.9600
C3—C8 1.419 (4) C21—H21B 0.9600
O4—C20 1.330 (3) C21—H21C 0.9600
O4—C21 1.439 (3) C22—C27 1.373 (4)
C4—C5 1.366 (4) C22—C23 1.383 (4)
C4—H4A 0.9300 C23—C24 1.372 (4)
F—C24 1.364 (4) C23—H23A 0.9300
C5—C6 1.389 (4) C24—C25 1.357 (5)
C5—H5B 0.9300 C25—C26 1.370 (5)
C6—C7 1.364 (4) C25—H25A 0.9300
C6—H6A 0.9300 C26—C27 1.385 (4)
C7—C8 1.401 (4) C26—H26A 0.9300
C7—H7A 0.9300 C27—H27A 0.9300
C9—C10 1.458 (4)
C8—N1—C9 109.0 (2) C13—C12—C1 129.4 (2)
C8—N1—H1A 125.5 C14—C13—C18 118.0 (2)
C9—N1—H1A 125.5 C14—C13—C12 135.4 (2)
C10—O1—C11 116.3 (2) C18—C13—C12 106.6 (2)
C2—C1—C22 113.7 (2) C15—C14—C13 119.3 (3)
C2—C1—C12 112.9 (2) C15—C14—H14A 120.4
C22—C1—C12 112.7 (2) C13—C14—H14A 120.4
C2—C1—H1B 105.5 C14—C15—C16 121.3 (3)
C22—C1—H1B 105.5 C14—C15—H15A 119.4
C12—C1—H1B 105.5 C16—C15—H15A 119.4
C18—N2—C19 108.7 (2) C17—C16—C15 121.8 (3)
C18—N2—H2A 125.7 C17—C16—H16A 119.1
C19—N2—H2A 125.7 C15—C16—H16A 119.1
C9—C2—C3 105.3 (2) C16—C17—C18 117.3 (3)
C9—C2—C1 126.3 (2) C16—C17—H17A 121.3
C3—C2—C1 128.5 (2) C18—C17—H17A 121.3
C4—C3—C8 117.9 (3) N2—C18—C17 129.5 (3)
C4—C3—C2 134.8 (3) N2—C18—C13 108.2 (2)
C8—C3—C2 107.3 (2) C17—C18—C13 122.3 (3)
C20—O4—C21 116.2 (2) C12—C19—N2 109.8 (2)
C5—C4—C3 118.9 (3) C12—C19—C20 130.1 (2)
C5—C4—H4A 120.6 N2—C19—C20 120.1 (2)
C3—C4—H4A 120.6 O3—C20—O4 124.0 (2)
C4—C5—C6 121.9 (3) O3—C20—C19 124.5 (3)
C4—C5—H5B 119.0 O4—C20—C19 111.4 (2)
C6—C5—H5B 119.0 O4—C21—H21A 109.5
C7—C6—C5 121.8 (3) O4—C21—H21B 109.5
C7—C6—H6A 119.1 H21A—C21—H21B 109.5
C5—C6—H6A 119.1 O4—C21—H21C 109.5
C6—C7—C8 117.0 (3) H21A—C21—H21C 109.5
C6—C7—H7A 121.5 H21B—C21—H21C 109.5
C8—C7—H7A 121.5 C27—C22—C23 118.4 (3)
N1—C8—C7 129.8 (3) C27—C22—C1 123.0 (3)
N1—C8—C3 107.7 (2) C23—C22—C1 118.5 (3)
C7—C8—C3 122.5 (3) C24—C23—C22 119.4 (3)
N1—C9—C2 110.7 (2) C24—C23—H23A 120.3
N1—C9—C10 116.5 (2) C22—C23—H23A 120.3
C2—C9—C10 132.5 (3) C25—C24—F 119.4 (3)
O2—C10—O1 123.6 (3) C25—C24—C23 122.6 (3)
O2—C10—C9 123.6 (3) F—C24—C23 118.0 (3)
O1—C10—C9 112.8 (2) C24—C25—C26 118.2 (3)
O1—C11—H11A 109.5 C24—C25—H25A 120.9
O1—C11—H11B 109.5 C26—C25—H25A 120.9
H11A—C11—H11B 109.5 C25—C26—C27 120.4 (3)
O1—C11—H11C 109.5 C25—C26—H26A 119.8
H11A—C11—H11C 109.5 C27—C26—H26A 119.8
H11B—C11—H11C 109.5 C22—C27—C26 121.0 (3)
C19—C12—C13 106.8 (2) C22—C27—H27A 119.5
C19—C12—C1 123.7 (2) C26—C27—H27A 119.5
C22—C1—C2—C9 −86.0 (3) C1—C12—C13—C18 −176.2 (3)
C12—C1—C2—C9 143.9 (3) C18—C13—C14—C15 0.1 (4)
C22—C1—C2—C3 93.1 (3) C12—C13—C14—C15 179.7 (3)
C12—C1—C2—C3 −37.0 (4) C13—C14—C15—C16 1.0 (5)
C9—C2—C3—C4 176.4 (3) C14—C15—C16—C17 −1.5 (5)
C1—C2—C3—C4 −2.8 (5) C15—C16—C17—C18 0.8 (5)
C9—C2—C3—C8 −1.3 (3) C19—N2—C18—C17 180.0 (3)
C1—C2—C3—C8 179.4 (2) C19—N2—C18—C13 0.5 (3)
C8—C3—C4—C5 −1.4 (4) C16—C17—C18—N2 −179.1 (3)
C2—C3—C4—C5 −178.9 (3) C16—C17—C18—C13 0.3 (4)
C3—C4—C5—C6 −0.3 (5) C14—C13—C18—N2 178.7 (2)
C4—C5—C6—C7 1.4 (5) C12—C13—C18—N2 −0.9 (3)
C5—C6—C7—C8 −0.7 (5) C14—C13—C18—C17 −0.8 (4)
C9—N1—C8—C7 −179.6 (3) C12—C13—C18—C17 179.6 (3)
C9—N1—C8—C3 −0.7 (3) C13—C12—C19—N2 −0.7 (3)
C6—C7—C8—N1 177.7 (3) C1—C12—C19—N2 176.7 (2)
C6—C7—C8—C3 −1.1 (4) C13—C12—C19—C20 176.5 (3)
C4—C3—C8—N1 −176.9 (2) C1—C12—C19—C20 −6.1 (4)
C2—C3—C8—N1 1.3 (3) C18—N2—C19—C12 0.1 (3)
C4—C3—C8—C7 2.1 (4) C18—N2—C19—C20 −177.4 (2)
C2—C3—C8—C7 −179.7 (3) C21—O4—C20—O3 −1.2 (4)
C8—N1—C9—C2 −0.2 (3) C21—O4—C20—C19 176.3 (3)
C8—N1—C9—C10 174.5 (2) C12—C19—C20—O3 −8.5 (5)
C3—C2—C9—N1 0.9 (3) N2—C19—C20—O3 168.5 (3)
C1—C2—C9—N1 −179.8 (2) C12—C19—C20—O4 174.0 (3)
C3—C2—C9—C10 −172.5 (3) N2—C19—C20—O4 −9.0 (4)
C1—C2—C9—C10 6.7 (5) C2—C1—C22—C27 −22.3 (4)
C11—O1—C10—O2 −2.7 (4) C12—C1—C22—C27 107.9 (3)
C11—O1—C10—C9 175.3 (3) C2—C1—C22—C23 157.6 (2)
N1—C9—C10—O2 −3.0 (4) C12—C1—C22—C23 −72.3 (3)
C2—C9—C10—O2 170.1 (3) C27—C22—C23—C24 −0.8 (4)
N1—C9—C10—O1 179.0 (2) C1—C22—C23—C24 179.4 (2)
C2—C9—C10—O1 −7.9 (4) C22—C23—C24—C25 0.3 (5)
C2—C1—C12—C19 −72.7 (3) C22—C23—C24—F 179.9 (3)
C22—C1—C12—C19 156.8 (2) F—C24—C25—C26 −179.8 (3)
C2—C1—C12—C13 104.0 (3) C23—C24—C25—C26 −0.2 (5)
C22—C1—C12—C13 −26.5 (4) C24—C25—C26—C27 0.7 (5)
C19—C12—C13—C14 −178.6 (3) C23—C22—C27—C26 1.2 (4)
C1—C12—C13—C14 4.3 (5) C1—C22—C27—C26 −178.9 (3)
C19—C12—C13—C18 1.0 (3) C25—C26—C27—C22 −1.2 (5)

Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the C13–C18 ring.

D—H···A D—H H···A D···A D—H···A
N1—H1A···O3i 0.86 2.06 2.913 (3) 170
N2—H2A···O2ii 0.86 2.15 2.948 (3) 155
C6—H6A···Cg4iii 0.93 2.75 3.645 (4) 162

Symmetry codes: (i) −x, −y+1, −z; (ii) x, y+1, z; (iii) x−1, y, z.

References

  1. Chang, Y.-C., Riby, J., Chang, G. H. F., Peng, B., Firestone, G. & Bjeldanes, L. F. (1999). Biochem. Pharmacol. 58, 825–834. [DOI] [PubMed]
  2. Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  3. Ge, X., Fares, F. A. & Yannai, S. (1999). Anticancer Res. 19, 3199–3203. [PubMed]
  4. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  5. Li, Y., Sun, H., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 259–261. [DOI] [PMC free article] [PubMed]
  6. Ni, Y.-C. (2008). Curr. Med. Imaging Rev. 4, 96–112.
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Porter, J. K., Bacon, C. W., Robbins, J. D., Himmelsbach, D. S. & Higman, H. C. (1977). J. Agric. Food Chem. 25, 88–93. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sun, H.-S., Li, Y.-L., Jiang, H., Xu, N. & Xu, H. (2014). Acta Cryst. E70, 370–372. [DOI] [PMC free article] [PubMed]
  11. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2012). Acta Cryst. E68, o2764. [DOI] [PMC free article] [PubMed]
  12. Sun, H.-S., Li, Y.-L., Xu, N., Xu, H. & Zhang, J.-D. (2013). Acta Cryst. E69, o1516. [DOI] [PMC free article] [PubMed]
  13. Sundberg, R. J. (1996). The Chemistry of Indoles, p. 113. New York: Academic Press.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814025756/xu5830sup1.cif

e-70-00593-sup1.cif (23.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814025756/xu5830Isup2.hkl

e-70-00593-Isup2.hkl (205KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814025756/xu5830Isup3.cml

CCDC reference: 1036100

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES