Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Apr;67(4):716–719. doi: 10.1104/pp.67.4.716

Accumulation of Cyanophycin Granules as a Result of Phosphate Limitation in Agmenellum quadruplicatum1

S Edward Stevens Jr 1,2,2, Domenic A M Paone 1,2, David L Balkwill 1,2
PMCID: PMC425760  PMID: 16661742

Abstract

Phosphate-limited growth of the blue-green alga Agmenellum quadruplicatum resulted in the accumulation of cyanophycin granule polypeptide (CGP), which is a 1:1 co-polymer of aspartic acid and arginine. The progressive accumulation of CGP began after depletion of phosphate from the medium. CGP increased in concentration much faster than the increase in cell number. Electron microscopy indicated that both the number of cyanophycin granules per cell section and the diameter of each granule increased as phosphate starvation progressed. A marked decrease in the electron density of the inter-thylakoidal areas took place concurrently with the accumulation of CGP. At the same time a progessive decrease in the pigment concentration of cells and in the rate of nitrate uptake was observed. Thirty-two hours after phosphate depletion from the medium up to 28% of total cellular nitrogen was found in CGP.

Full text

PDF
716

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen M. M., Hutchison F., Weathers P. J. Cyanophycin granule polypeptide formation and degradation in the cyanobacterium Aphanocapsa 6308. J Bacteriol. 1980 Feb;141(2):687–693. doi: 10.1128/jb.141.2.687-693.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Allen M. M., Weathers P. J. Structure and composition of cyanophycin granules in the cyanobacterium Aphanocapsa 6308. J Bacteriol. 1980 Feb;141(2):959–962. doi: 10.1128/jb.141.2.959-962.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Balkwill D. L., Stevens S. E., Jr Effects of penicillin G on mesosome-like structures in Agmenellum quadruplicatum. Antimicrob Agents Chemother. 1980 Mar;17(3):506–509. doi: 10.1128/aac.17.3.506. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Batterton J. C., Van Baalen C. Phosphorus deficiency and phosphate uptake in the blue-green alga Anacystis nidulans. Can J Microbiol. 1968 Apr;14(4):341–348. doi: 10.1139/m68-056. [DOI] [PubMed] [Google Scholar]
  5. Jensen T. E., Sicko L. M. Phosphate metabolism in blue-green algae. I. Fine structure of the "polyphosphate overplus" phenomenon in Plectonema boryanum. Can J Microbiol. 1974 Sep;20(9):1235–1239. doi: 10.1139/m74-190. [DOI] [PubMed] [Google Scholar]
  6. KELLENBERGER E., RYTER A., SECHAUD J. Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol. 1958 Nov 25;4(6):671–678. doi: 10.1083/jcb.4.6.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kipe-Nolt J. A., Stevens S. E., Jr Effect of levulinic acid on pigment biosynthesis in Agmenellum quadruplicatum. J Bacteriol. 1979 Jan;137(1):146–152. doi: 10.1128/jb.137.1.146-152.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lang N. J., Fisher K. A. Variation in the fixation image of "structured granules" in Anabaena. Arch Mikrobiol. 1969;67(2):173–181. doi: 10.1007/BF00409683. [DOI] [PubMed] [Google Scholar]
  9. Lang N. J. The fine structure of blue-green algae. Annu Rev Microbiol. 1968;22:15–46. doi: 10.1146/annurev.mi.22.100168.000311. [DOI] [PubMed] [Google Scholar]
  10. Simon R. D. Cyanophycin Granules from the Blue-Green Alga Anabaena cylindrica: A Reserve Material Consisting of Copolymers of Aspartic Acid and Arginine. Proc Natl Acad Sci U S A. 1971 Feb;68(2):265–267. doi: 10.1073/pnas.68.2.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Simon R. D. Measurement of the cyanophycin granule polypeptide contained in the blue-green alga Anabaena cylindrica. J Bacteriol. 1973 Jun;114(3):1213–1216. doi: 10.1128/jb.114.3.1213-1216.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Simon R. D. The biosynthesis of multi-L-arginyl-poly(L-aspartic acid) in the filamentous cyanobacterium Anabaena cylindrica. Biochim Biophys Acta. 1976 Feb 13;422(2):407–418. doi: 10.1016/0005-2744(76)90151-0. [DOI] [PubMed] [Google Scholar]
  13. Simon R. D., Weathers P. Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochim Biophys Acta. 1976 Jan 20;420(1):165–176. doi: 10.1016/0005-2795(76)90355-x. [DOI] [PubMed] [Google Scholar]
  14. Spurr A. R. A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res. 1969 Jan;26(1):31–43. doi: 10.1016/s0022-5320(69)90033-1. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES