Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 May;67(5):882–886. doi: 10.1104/pp.67.5.882

Tunicamycin Inhibits Protein Glycosylation in Suspension Cultured Soybean Cells 1

Hidetaka Hori 1, Alan D Elbein 1
PMCID: PMC425794  PMID: 16661786

Abstract

Soybean cells in suspension culture incorporate [3H]mannose into dolichyl-phosphoryl-mannose and into lipid-linked oligosaccharides as well as into extracellular and cell wall macromolecules. Tunicamycin completely inhibited the formation of lipid-linked oligosaccharides at a concentration of 5 to 10 micrograms per milliliter, but it had no effect on the formation of dolichyl-phosphoryl-mannose. Tunicamycin did inhibit the incorporation of [3H]mannose into cell wall components and extracellular macromolecules, but even at 20 micrograms per milliliter of antibiotic there was still about 30% incorporation of mannose. The radioactivity in these macromolecules was localized in mannose (70%), rhamnose (20%), galactose (8%), and fucose (2%) in the absence of antibiotic. But when tunicamycin was added, very little radioactive mannose was found in cell wall or extracellular components. The incorporation of [3H]leucine into membrane components and [14C]proline into cell wall components by these suspension cultures was unaffected by tunicamycin. However, tunicamycin did inhibit the appearance of leucine-labeled extracellular macromolecules, probably because it prevented their secretion.

Full text

PDF
882

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ericson M. C., Delmer D. P. Glycoprotein synthesis in plants: I. Role of lipid intermediates. Plant Physiol. 1977 Mar;59(3):341–347. doi: 10.1104/pp.59.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ericson M. C., Gafford J. T., Elbein A. D. Tunicamycin inhibits GlcNAc-lipid formation in plants. J Biol Chem. 1977 Nov 10;252(21):7431–7433. [PubMed] [Google Scholar]
  3. Ericson M. C., Gafford J., Elbein A. D. Bacitracin Inhibits the Synthesis of Lipid-linked Saccharides and Glycoproteins in Plants. Plant Physiol. 1978 Sep;62(3):373–376. doi: 10.1104/pp.62.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Forsee W. T., Elbein A. D. Glycoprotein biosynthesis in plants. Demonstration of lipid-linked oligosaccharides of mannose and N-acetylglucosamine. J Biol Chem. 1975 Dec 25;250(24):9283–9293. [PubMed] [Google Scholar]
  5. James D. W., Elbein A. D. Effects of Several Tunicamycin-like Antibiotics on Glycoprotein Biosynthesis in Mung Beans and Suspension-cultured Soybean Cells. Plant Physiol. 1980 Mar;65(3):460–464. doi: 10.1104/pp.65.3.460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Kornfeld R., Kornfeld S. Comparative aspects of glycoprotein structure. Annu Rev Biochem. 1976;45:217–237. doi: 10.1146/annurev.bi.45.070176.001245. [DOI] [PubMed] [Google Scholar]
  7. Sharon N., Lis H. Comparative biochemistry of plant glycoproteins. Biochem Soc Trans. 1979 Aug;7(4):783–799. doi: 10.1042/bst0070783. [DOI] [PubMed] [Google Scholar]
  8. Struck D. K., Lennarz W. J. Evidence for the participation of saccharide-lipids in the synthesis of the oligosaccharide chain of ovalbumin. J Biol Chem. 1977 Feb 10;252(3):1007–1013. [PubMed] [Google Scholar]
  9. Takatsuki A., Arima K., Tamura G. Tunicamycin, a new antibiotic. I. Isolation and characterization of tunicamycin. J Antibiot (Tokyo) 1971 Apr;24(4):215–223. doi: 10.7164/antibiotics.24.215. [DOI] [PubMed] [Google Scholar]
  10. Waechter C. J., Harford J. B. Evidence for the enzymatic transfer of N-acetylglucosamine from UDP--N-acetylglucosamine into dolichol derivative and glycoproteins by calf brain membranes. Arch Biochem Biophys. 1977 May;181(1):185–198. doi: 10.1016/0003-9861(77)90497-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES