Abstract
Freshly cut slices of potato tuber show an extensive loss of membrane lipid components which may be as great as 35% for phospholipids and 30% for glycolipids, in less than 15 minutes at 3 C. Phosphatidyl-choline, phosphatidyl-ethanolamine and mono- and di-galactosyl diglycerides comprise the bulk of the lipids that are degraded. Concomitantly, there is a pronounced loss of linoleic and linolenic acids. Whereas degradative events elicited by slicing proceed to a depth of at least 10 millimeters from the surface, phospholipid biosynthesis, as well as the development of the wound induced respiration and cyanide resistance on aging, are restricted to the superficial 1 millimeter.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Borchert R. Isoperoxidases as markers of the wound-induced differentiation pattern in potato tuber. Dev Biol. 1974 Feb;36(2):391–399. doi: 10.1016/0012-1606(74)90060-8. [DOI] [PubMed] [Google Scholar]
- Borchert R., McChesney J. D. Time course and localization of DNA synthesis during wound healing of potato tuber tissue. Dev Biol. 1973 Dec;35(2):293–301. doi: 10.1016/0012-1606(73)90025-0. [DOI] [PubMed] [Google Scholar]
- Castelfranco P. A., Tang W. J., Bolar M. L. Membrane transformations in aging potato tuber slices. Plant Physiol. 1971 Dec;48(6):795–800. doi: 10.1104/pp.48.6.795. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Decker M., Tanner W. Rapid release of free fatty acids during cell breakage and their effects on a sugar-proton cotransport system in Chlorella vulgaris. FEBS Lett. 1975 Dec 15;60(2):346–348. doi: 10.1016/0014-5793(75)80746-0. [DOI] [PubMed] [Google Scholar]
- Dobretsov G. E., Borschevskaya T. A., Petrov V. A., Vladimirov Y. A. The increase of phospholipid bilayer rigidity after lipid peroxidation. FEBS Lett. 1977 Dec 1;84(1):125–128. doi: 10.1016/0014-5793(77)81071-5. [DOI] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Fourcans B., Jain M. K. Role of phospholipids in transport and enzymic reactions. Adv Lipid Res. 1974;12(0):147–226. doi: 10.1016/b978-0-12-024912-1.50011-9. [DOI] [PubMed] [Google Scholar]
- Jacobson B. S., Smith B. N., Epstein S., Laties G. G. The prevalence of carbon-13 in respiratory carbon dioxide as an indicator of the types of endogenous substrate. The change from lipid to carbohydrate during the respiratory rise in potato slices. J Gen Physiol. 1970 Jan;55(1):1–17. doi: 10.1085/jgp.55.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Konze J. R., Elstner E. F. Ethane and ethylene formation by mitochondria as indication of aerobic lipid degradation in response to wounding of plant tissue. Biochim Biophys Acta. 1978 Feb 27;528(2):213–221. doi: 10.1016/0005-2760(78)90195-9. [DOI] [PubMed] [Google Scholar]
- Laties G. G. The Onset of Tricarboxylic Acid Cycle Activity with Aging in Potato Slices. Plant Physiol. 1964 Jul;39(4):654–663. doi: 10.1104/pp.39.4.654. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ramadoss C. S., Uyeda K., Johnston J. M. Studies on the fatty acid inactivation of phosphofructokinase. J Biol Chem. 1976 Jan 10;251(1):98–107. [PubMed] [Google Scholar]
- Rich P. R., Lamb C. J. Biophysical and enzymological studies upon the interaction of trans-cinnamic acid with higher plant microsomal cytochromes P-450. Eur J Biochem. 1977 Jan;72(2):353–360. doi: 10.1111/j.1432-1033.1977.tb11259.x. [DOI] [PubMed] [Google Scholar]
- Roughan P. G., Batt R. D. Quantitative analysis of sulfolipid (sulfoquinovosyl diglyceride) and galactolipids (monogalactosyl and digalactosyl diglycerides) in plant tissues. Anal Biochem. 1968 Jan;22(1):74–88. doi: 10.1016/0003-2697(68)90261-3. [DOI] [PubMed] [Google Scholar]
- Sampson M. J., Laties G. G. Ribosomal RNA synthesis in newly sliced discs of potato tuber. Plant Physiol. 1968 Jul;43(7):1011–1016. doi: 10.1104/pp.43.7.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theologis A., Laties G. G. Membrane Lipid Breakdown in Relation to the Wound-induced and Cyanide-resistant Respiration in Tissue Slices: A COMPARATIVE STUDY. Plant Physiol. 1980 Nov;66(5):890–896. doi: 10.1104/pp.66.5.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Theologis A., Laties G. G. Relative Contribution of Cytochrome-mediated and Cyanide-resistant Electron Transport in Fresh and Aged Potato Slices. Plant Physiol. 1978 Aug;62(2):232–237. doi: 10.1104/pp.62.2.232. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waring A. J., Laties G. G. Inhibition of the Development of Induced Respiration and Cyanide-insensitive Respiration in Potato Tuber Slices by Cerulenin and Dimethylaminoethanol. Plant Physiol. 1977 Jul;60(1):11–16. doi: 10.1104/pp.60.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Willemot C., Stumpf P. K. Fat metabolism in higher plants. XXXIV. Development of fatty acid synthetase as a function of protein synthesis in aging potato tuber slices. Plant Physiol. 1967 Mar;42(3):391–397. doi: 10.1104/pp.42.3.391. [DOI] [PMC free article] [PubMed] [Google Scholar]
