Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Jul;68(1):202–206. doi: 10.1104/pp.68.1.202

Uptake and Release of Abscisic Acid by Isolated Photoautotrophic Mesophyll Cells, Depending on pH Gradients

Werner M Kaiser 1, Wolfram Hartung 1
PMCID: PMC425916  PMID: 16661871

Abstract

Uptake and release of abscisic acid (AbA) by isolated mesophyll cells of Papaver somniferum is characterized by the following observations: (a) Uptake rate is a linear function of the external AbA concentration in the range from 10−6 to 5 × 10−5 molar, and decreases with increasing pH. At any pH, uptake rate is linearly related to the concentration of undissociated abscisic acid, calculated from the pK = 4.7 according to the Henderson-Hasselbalch equation. At low external pH (5.0), AbA accumulation in the cells is about 10-fold. (b) Uptake of AbA is completely inhibited by salts such as KNO2 or sodium acetate, which decrease the pH gradient between medium and cells. KCN or m-chlorocarbonylcyanide phenylhydrazone inhibits AbA uptake only after longer incubation periods (20-40 minutes). (c) Uptake rate as well as equilibrium concentration is significantly higher in light than in darkness. (d) At low external pH, release of AbA from preloaded cells is strongly stimulated by KNO2. It is concluded that AbA is distributed between leaf cells and free space according to pH gradients, with the undissociated abscisic acid being the main penetrating species. Uptake and release occur via diffusion, without participation of a carrier.

Full text

PDF
202

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnon D. I. COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS. Plant Physiol. 1949 Jan;24(1):1–15. doi: 10.1104/pp.24.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Paul J. S., Bassham J. A. Maintenance of High Photosynthetic Rates in Mesophyll Cells Isolated from Papaver somniferum. Plant Physiol. 1977 Nov;60(5):775–778. doi: 10.1104/pp.60.5.775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Purczeld P., Chon C. J., Portis A. R., Jr, Heldt H. W., Heber U. The mechanism of the control of carbon fixation by the pH in the chloroplast stroma. Studies with nitrite-mediated proton transfer across the envelope. Biochim Biophys Acta. 1978 Mar 13;501(3):488–498. doi: 10.1016/0005-2728(78)90116-0. [DOI] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES