Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Jul;68(1):252–255. doi: 10.1104/pp.68.1.252

Ribulose 1,5-Bisphosphate and Activation of the Carboxylase in the Chloroplast 1

Richard C Sicher 1,2, Alan L Hatch 1, David K Stumpf 1, Richard G Jensen 1,3
PMCID: PMC425924  PMID: 16661880

Abstract

Ribulose 1,5-bisphosphate in the chloroplast has been suggested to regulate the activity of the ribulose bisphosphate carboxylase/oxygenase. To generate high levels of ribulose bisphosphate, isolated and intact spinach chloroplasts were illuminated in the absence of CO2. Under these conditions, chloroplasts generate internally up to 300 nanomoles ribulose 1,5-bisphosphate per milligram chlorophyll if O2 is also absent. This is equivalent to 12 millimolar ribulose bisphosphate, while the enzyme, ribulose bisphosphate carboxylase, offers up to 3.0 millimolar binding sites for the bisphosphate in the chloroplast stroma. During illumination, the ribulose bisphosphate carboxylase is deactivated, due mostly to the absence of CO2 required for activation. The rate of deactivation of the ribulose bisphosphate carboxylase was not affected by the chloroplast ribulose bisphosphate levels. Upon addition of CO2, the carboxylase in the chloroplast was completely reactivated. Of interest, addition of 3-phosphoglycerate stopped deactivation of the carboxylase in the chloroplast while ribulose bisphosphate accumulated. With intact chloroplasts in light, no correlation between deactivation of the carboxylase and ribulose bisphosphate levels could be shown.

In contrast, incubation of purified ribulose bisphosphate carboxylase with ribulose bisphosphate irreversibly inhibited activation, especially in the absence of CO2. Addition of the same amount of ribulose bisphosphate to lysed chloroplasts did cause some deactivation of the carboxylase in the extract, but full activation returned when the ribulose bisphosphate was consumed. The ribulose bisphosphate carboxylase in the chloroplast is not irreversibly inhibited by high levels of ribulose bisphosphate.

Full text

PDF
252

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bahr J. T., Jensen R. G. Activation of ribulose bisphosphate carboxylase in intact chloroplasts by CO2 and light. Arch Biochem Biophys. 1978 Jan 15;185(1):39–48. doi: 10.1016/0003-9861(78)90141-8. [DOI] [PubMed] [Google Scholar]
  2. Bahr J. T., Jensen R. G. Ribulose Diphosphate Carboxylase from Freshly Ruptured Spinach Chloroplasts Having an in Vivo Km[CO(2)]. Plant Physiol. 1974 Jan;53(1):39–44. doi: 10.1104/pp.53.1.39. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chu D. K., Bassham J. A. Regulation of ribulose 1,5-diphosphate carboxylase by substrates and other metabolites: further evidence for several types of binding sites. Plant Physiol. 1975 Apr;55(4):720–726. doi: 10.1104/pp.55.4.720. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Goldthwaite J. J., Bogorad L. A one-step method for the isolation and determination of leaf ribulose-1,5-diphosphate carboxylase. Anal Biochem. 1971 May;41(1):57–66. doi: 10.1016/0003-2697(71)90191-6. [DOI] [PubMed] [Google Scholar]
  5. Jensen R. G., Bassham J. A. Photosynthesis by isolated chloroplasts. Proc Natl Acad Sci U S A. 1966 Oct;56(4):1095–1101. doi: 10.1073/pnas.56.4.1095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LYTTLETON J. W., TS'O P. O. The localization of fraction I protein of green leaves in the chloroplasts. Arch Biochem Biophys. 1958 Jan;73(1):120–126. doi: 10.1016/0003-9861(58)90246-7. [DOI] [PubMed] [Google Scholar]
  7. Laing W. A., Christeller J. T. A model for the kinetics of activation and catalysis of ribulose 1,5-bisphosphate carboxylase. Biochem J. 1976 Dec 1;159(3):563–570. doi: 10.1042/bj1590563. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Lilley R. M., Walker D. A. An improved spectrophotometric assay for ribulosebisphosphate carboxylase. Biochim Biophys Acta. 1974 Jul 17;358(1):226–229. doi: 10.1016/0005-2744(74)90274-5. [DOI] [PubMed] [Google Scholar]
  9. Lorimer G. H., Badger M. R., Andrews T. J. The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Equilibria, kinetics, a suggested mechanism, and physiological implications. Biochemistry. 1976 Feb 10;15(3):529–536. doi: 10.1021/bi00648a012. [DOI] [PubMed] [Google Scholar]
  10. Norton I. L., Welch M. H., Hartman F. C. Evidence for essential lysyl residues in ribulosebisphosphate carboxylase by use of the affinity label 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate. J Biol Chem. 1975 Oct 25;250(20):8062–8068. [PubMed] [Google Scholar]
  11. Paech C., Pierce J., McCurry S. D., Tolbert N. E. Inhibition of ribulose-1,5-biphosphate carboxylase/oxygenase by ribulose-1,5-bisphosphate epimerization and degradation products. Biochem Biophys Res Commun. 1978 Aug 14;83(3):1084–1092. doi: 10.1016/0006-291x(78)91506-1. [DOI] [PubMed] [Google Scholar]
  12. Paech C., Tolbert N. E. Active site studies of ribulose-1,5-bisphosphate carboxylase/oxygenase with pyridoxal 5'-phosphate. J Biol Chem. 1978 Nov 10;253(21):7864–7873. [PubMed] [Google Scholar]
  13. Schloss J. V., Norton I. L., Stringer C. D., Hartman F. C. Inactivation of ribulosebisphosphate carboxylase by modification of arginyl residues with phenylglyoxal. Biochemistry. 1978 Dec 26;17(26):5626–5631. doi: 10.1021/bi00619a007. [DOI] [PubMed] [Google Scholar]
  14. Schloss J. V., Stringer C. D., Hartman F. C. Identification of essential lysyl and cysteinyl residues in spinach ribulosebisphosphate carboxylase/oxygenase modified by the affinity label N-bromoacetylethanolamine phosphate. J Biol Chem. 1978 Aug 25;253(16):5707–5711. [PubMed] [Google Scholar]
  15. Sicher R. C., Bahr J. T., Jensen R. G. Measurement of ribulose 1,5-bisphosphate from spinach chloroplasts. Plant Physiol. 1979 Nov;64(5):876–879. doi: 10.1104/pp.64.5.876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sicher R. C., Jensen R. G. Photosynthesis and ribulose 1,5-bisphosphate levels in intact chloroplasts. Plant Physiol. 1979 Nov;64(5):880–883. doi: 10.1104/pp.64.5.880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Vater J., Salnikow J. Identification of two binding sites of the D-ribulose 1,5-bisphosphate carboxylase/oxygenase from spinach for D-ribulose 1,5-bisphosphate and effectors of the carboxylation reaction. Arch Biochem Biophys. 1979 Apr 15;194(1):190–197. doi: 10.1016/0003-9861(79)90609-x. [DOI] [PubMed] [Google Scholar]
  18. Walker D. A. Regulatory mechanisms in photosynthetic carbon metabolism. Curr Top Cell Regul. 1976;11:203–241. doi: 10.1016/b978-0-12-152811-9.50013-4. [DOI] [PubMed] [Google Scholar]
  19. Whitman W. B., Tabita F. R. Modification of Rhodospirillum rubrum ribulose bisphosphate carboxylase with pyridoxal phosphate. 1. Identification of a lysyl residue at the active site. Biochemistry. 1978 Apr 4;17(7):1282–1287. doi: 10.1021/bi00600a023. [DOI] [PubMed] [Google Scholar]
  20. Wishnick M., Lane M. D., Scrutton M. C. The interaction of metal ions with ribulose 1,5-diphosphate carboxylase from spinach. J Biol Chem. 1970 Oct 10;245(19):4939–4947. [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES