Abstract
The metabolism of polysaccharides by pea stem segments treated with and without auxin was investigated using a centrifugation technique for removing solution from the free space of the cell wall. Glucose is the predominant sugar in both the ethanol-soluble and ethanol-insoluble fractions of the cell wall solution extracted with water. In the water-soluble, ethanol-insoluble polysaccharides, arabinose, xylose, galactose, and glucose make up 9.5, 23.8, 23.9, and 39.9%, respectively, of the neutral sugars, while rhamnose, fucose, and mannose are present at concentrations between 0.5 and 2.0%.
Auxin treatment enhances the levels of xylose and glucose in ethanol-insoluble polysaccharides relative to controls, and this difference can be detected within 30 minutes of auxin treatment. Cellulose-binding experiments show that the enhanced levels of xylose and glucose are in a polymer having the cellulose-binding properties of xyloglucan. 3H-glucose labeling experiments confirm the auxin-enhanced metabolism of the xyloglucan fraction; however, increased labeling of arabinose is also observed in auxin-treated sections. Auxin treatment also causes a marked increase in the level of uronic acids centrifuged from pea internode sections. Thus, after 3 hours of incubation in indoleacetic acid, the level of uronic acids in the ethanol-insoluble polysaccharides which can be recovered by centrifugation is increased 2- to 3-fold over sections incubated in water. These auxin-enhanced changes in xylose, glucose, and uronic acids are correlated with enhanced rates of section growth.
Incubation of excised pea internode sections in acidic buffers also enhances the rate of xyloglucan and polyuronide metabolism. This acid-enhanced metabolism of xyloglucan and polyuronide is inhibited by low temperature, suggesting that it is enzyme-mediated.
Extraction of the cell wall solution with CaCl2 increases the yield of all neutral sugars. Arabinose and mannose are increased 4- and 3-fold, respectively, and xylose and glucose by about 20%, while galactose levels are 40% higher in cell wall solution extracted with CaCl2 than in that extracted with water. Although calcium increases the amount of neutral sugars extracted, it does not affect the auxin-induced changes in neutral sugars. Extraction of the cell wall solution with ethyleneglycol-bis-(β-aminoethyl ether)-N,N′tetraacetic acid enhances the yield of uronic acids and also increases the difference due to auxin treatment.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer W. D., Talmadge K. W., Keegstra K., Albersheim P. The Structure of Plant Cell Walls: II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells. Plant Physiol. 1973 Jan;51(1):174–187. doi: 10.1104/pp.51.1.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal Biochem. 1973 Aug;54(2):484–489. doi: 10.1016/0003-2697(73)90377-1. [DOI] [PubMed] [Google Scholar]
- Chrispeels M. J. Synthesis and secretion of hydroxyproline containing macromolecules in carrots. I. Kinetic analysis. Plant Physiol. 1969 Aug;44(8):1187–1193. doi: 10.1104/pp.44.8.1187. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacobs M., Ray P. M. Promotion of Xyloglucan Metabolism by Acid pH. Plant Physiol. 1975 Sep;56(3):373–376. doi: 10.1104/pp.56.3.373. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Keegstra K., Talmadge K. W., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: III. A Model of the Walls of Suspension-cultured Sycamore Cells Based on the Interconnections of the Macromolecular Components. Plant Physiol. 1973 Jan;51(1):188–197. doi: 10.1104/pp.51.1.188. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labavitch J. M., Ray P. M. Relationship between Promotion of Xyloglucan Metabolism and Induction of Elongation by Indoleacetic Acid. Plant Physiol. 1974 Oct;54(4):499–502. doi: 10.1104/pp.54.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Labavitch J. M., Ray P. M. Turnover of cell wall polysaccharides in elongating pea stem segments. Plant Physiol. 1974 May;53(5):669–673. doi: 10.1104/pp.53.5.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McNeil M., Albersheim P. The Structure of Plant Cell Walls: VII. Barley Aleurone Cells. Plant Physiol. 1975 Jan;55(1):64–68. doi: 10.1104/pp.55.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rayle D. L., Cleland R. Enhancement of wall loosening and elongation by Acid solutions. Plant Physiol. 1970 Aug;46(2):250–253. doi: 10.1104/pp.46.2.250. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tagawa T., Bonner J. Mechanical Properties of the Avena Coleoptile As Related to Auxin and to Ionic Interactions. Plant Physiol. 1957 May;32(3):207–212. doi: 10.1104/pp.32.3.207. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Talmadge K. W., Keegstra K., Bauer W. D., Albersheim P. The Structure of Plant Cell Walls: I. The Macromolecular Components of the Walls of Suspension-cultured Sycamore Cells with a Detailed Analysis of the Pectic Polysaccharides. Plant Physiol. 1973 Jan;51(1):158–173. doi: 10.1104/pp.51.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Terry M. E., Bonner B. A. An Examination of Centrifugation as a Method of Extracting an Extracellular Solution from Peas, and Its Use for the Study of Indoleacetic Acid-induced Growth. Plant Physiol. 1980 Aug;66(2):321–325. doi: 10.1104/pp.66.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Valent B. S., Albersheim P. The structure of plant cell walls: v. On the binding of xyloglucan to cellulose fibers. Plant Physiol. 1974 Jul;54(1):105–108. doi: 10.1104/pp.54.1.105. [DOI] [PMC free article] [PubMed] [Google Scholar]